Abstract: Due to the technology development and advancement, the digital images are losing its authenticity and genuinity. Various detection techniques are used to find the authenticity of the digital images. In this paper we mainly concentrate on detection of copy-move forgery in images. SIFT (Scale Invariant Feature Transform) is used for matching the images. Here we find the boundary of the forged images. They fail for flipped images. So, MIFT (Mirror-Reflection Invariant Feature Transform) is used to overcome these disadvantages. It is also called as Reflective SIFT.

Keywords: SIFT-Scale Invariant Feature Transform, MIFT-Mirror-Reflective Invariant Feature Transform, Image forgery, key points, flipped.

1. INTRODUCTION:
Digital images can be manipulated due to the availability of Hardware and Software. So it is very important to verify the genuinity of images. There are three major types for altering the digital images. They are copy-move, splicing, cloning. Cloning is closer to splicing.

In copy move technique a part of the image is copied and then moved to another place. This copied or duplicated part of the forged image can be rotated, flipped, scaled and blurred before moving to a new location. The first forged image was done in early 1840s. This first forged image was done by H.Bayrad.

Fig 1: This was a fake image picked up by the British Newspaper website, which apparently shows a dead Osama bin Laden, broadcasted on Pakistani television.

Fig 2: This iconic portrait of U.S. President Abraham Lincoln is actually a composite of Lincoln’s head and the Southern Politician John Calhoun’s body. This is the second forged image in circa 1860.
2. METHODOLOGY
SIFT IMAGE FEATURES:
SIFT - Scale Invariant Feature Transforms
Many features are available for any object, interesting points
on the object, which can be extracted to provide a “feature”
description. These features are usually extracted to describe
a feature of an object that is not affected by the complications
experienced in other methods, such as object scaling, rotation.

SIFT features are also very resilient to the effect of “noise” in
the image. SIFT approach, for feature extraction, can be
extracted to provide a “feature” description.

There are many considerations when extracting these features. SIFT image features provide a set of features
of an object that are not affected by the complications
experienced in other methods, such as object scaling, rotation.

SIFT features are also very resilient to the effect of “noise” in
the image. SIFT approach, for feature extraction, can be
extracted to provide a “feature” description.

2. KEY POINT LOCALISATION:
This stage attempts to eliminate more points from
the list of key-points by finding those that have low contrast or
are poorly localized on an edge. This is achieved by
calculating the Laplacian equation. Extreme based on poor
localization is eliminated by noting that there is a large
principle curvature across the edge but a small curvature in
the perpendicular direction in the DOG function. Each point
of an image can be identified using its location and quality.
With these specifications the key points are determined.

3. ORIENTATION ASSIGNMENT:
In this step, based on the local image properties, the
consistent orientation to key points are assigned. The key
point descriptor described below can then be represented
relative to this orientation achieving invariance to rotation.

4. KEY POINT DESCRIPTOR:
The local gradient data used above, is also used to
create key point descriptors. This data is then used to create
a set of histograms over a window centered on the key point.
Key point descriptors typically using a set of 16 histograms,
aligned in a 4x4 grid, each with 8 orientation bins, one for
each of the main compass directions and one for each of the
mid-points of these directions.

MIFT:
In image transformation, flipping of images is a common
operation. There are three different ways appeared in the
mirror reflection. They are Horizontal reflection, Vertical
reflection and combined reflection. The key points are
extracted by the process of MIFT. These key points are
defined by the quality vector.

ORDER OF 16 CELLS:
After specifying the dominant orientation out of 36
candidates the 16 cells are organized in a fixed order by using
SIFT. There will be multiple descriptors for some
combinations of scale and location. It is because multiple
peaks of 36 orientations are closer to the highest peak.

\[m_r = \sum_{k=1}^{(Nbin-2)/2} L(nd - k + Nbin)%Nbin \]
\[m_l = \sum_{k=1}^{(Nbin-2)/2} L(nd + k + Nbin)%Nbin \]

Fig 3: (a) Key points in original image. (b) Corresponding key points. (c) Scattering in the 14th cell of (b). (d) Scattering in the 14th cell of (a). (e) Descriptor of (a). (f) SIFT descriptor of (b). (g) MIFT descriptor of (b).
Order of 8 Orientations:
Reorganization of cells is a first essential step. Then restructuring the order of orientation bins in each cell is the next step. This is done based on the values of m_l and m_r.

3. EXPERIMENTAL RESULTS
Fig 4 is tested using SIFT algorithm and it also detects the boundary of the forged part, but it fails for flipped images. Fig 5 is tested using MIFT algorithm and it successfully detects the flipped images.

4. CONCLUSION
In this paper SIFT and MIFT algorithms produce good results against the forgery images. It works for almost all the types of transformations including reflection. Though SIFT and MIFT gives such good results, still it fails for images with flat region. No key points are found in flat region, further work can be done to achieve this forgery image.

5. REFERENCE

