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Abstract—This work addresses to a study on the different 

techniques of noise removal from an image using M-Band 

Wavelet Transform. The standard wavelet transform technique 

has already proven its capability for different image processing 

problems such as image denoising. Noise removal from image is 

best done in the frequency domain. Psychophysical results 

indicate human visual processes an image by decomposing into 

multiple channels corresponding to its frequency and 

orientation components at different scales. It is also capable of 

preserving both local and global information. So, multi scale 

wavelet analysis is an ideal approach to describe noise removal. 

In this paper, the capability of M-Band Wavelet Transform is 

discussed in the process of noise removal from different images. 

Keywords—M-Band Wavelet Transform; Additive White Gaussian 

noise; Thresholding; Image Denoise 

 

I. INTRODUCTION 

 

Many types of noises due to sensor or channel 

transmission errors often corrupt images and noise 

suppression becomes a particularly delicate and a difficult task 

[5-6]. Applied noise removal techniques should take into 

account a trade-off between noise reduction and preservation 

of actual image content in a way that enhances the 

diagnostically relevant image content. 

The need for efficient image restoration methods has 

grown with the massive production of digital images and 

movies of all kinds, often taken in poor conditions. No matter 

how good cameras are, an image improvement is always 

desirable to extend their range of action [4]. 

The two main limitations in image accuracy are 

categorized as blur and noise. Blur is intrinsic to image 

acquisition systems, as digital images have a finite number of 

samples and must satisfy the Shannon–Nyquist sampling 

conditions. The second main image perturbation is noise. 

There are different types of noises that can affect an image. 

Some of them are 

A. Salt and pepper noise 

It is the type of noise where some black and white pixels 

occurs randomly on an image. A false saturation gives a white 

spot (salt) and a failed response gives a black spot in the 

image (pepper) [3], [9].  

B. Gaussian white noise 

This is the most common type of noise [3], [7-9] which 

can be generated artificially using the formula  

 

Y = X + sqrt(variance) × random(s) + mean; (1) 

 

Where, X is the input image, Y is the output image, s is the 

size of X. The value of mean and variance is taken as input. 

C. Poisson noise 

In probability theory and statistics, Poisson distribution is 

a discrete probability distribution that expresses the 

probability of a number of events occurring in a fixed interval 

of time and/or space. If the expected number of occurrences in 

a particular time interval is λ, then probability that there are 

exactly k (k = 0, 1, 2 …) occurrences is given by 

𝑓(𝑘, 𝜆) =  
𝜆𝑘𝑒−𝜆

𝑘 !
   (2) 

D. Speckle noise 

Within each resolution cell, a number of elementary 

scatters reflect the incident wave towards the sensor. The 

received image is thus corrupted by a random granular pattern, 

called Speckle. A speckle noise can be modelled as 

𝑣 = 𝑓𝜗   (3) 

 

Where, v is the speckle noise, f is the noise-free image and 

ϑ is a unit mean random field. In this paper, the experimental 

work is done with Gaussian white noise [9]. 

In the field of Image Processing, the wavelet transform has 

emerged with a great success [10]. The M-band wavelet 

transform[24] is a specific area of wavelet transform which 

has so many advantages over standard wavelet transform [17-

23]. 

II. M-BAND WAVELET TRANSFORM 

 

The term wavelet means a small wave. The smallness 

refers to the condition that this (window) function is of finite 

length (compactly supported). The wave refers to the 
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condition that this function is oscillatory [6].The wavelet 

transform (WT) is a powerful tool of signal processing for its 

multiresolutional possibilities [2]. Unlike the Fourier 

transform, the WT is suitable for handling the non-stationary 

signals – variable frequency with respect to time. 

 
(a)        (b) 

 

Fig. 1 Representation of a wave (a), and a wavelet (b) 

 

The illustration in figure2 is commonly used to explain 

how time and frequency resolutions should be interpreted. 

Every box in figure2 corresponds to a value of the wavelet 

transform in the time frequency plane. Note that boxes have a 

certain non-zero area, which implies that the value of a 

particular point in the time-frequency plane cannot be known. 

All the points in the time-frequency plane that falls into a box 

are represented by one value of the WT. 

    

  

 

 
Time 

 

Fig. 2Representation oftime-frequency plane 

 

First thing to notice in figure 2 is that although the widths 

and heights of the boxes change, the area is constant. That is 

each box represents an equal portion of the time-frequency 

plane, but giving different proportions to time and frequency. 

At higher frequencies the width of the boxes decreases, means 

the time resolution gets better, and the heights of the boxes 

increase, i.e., the frequency resolution gets poorer. 

 

A. Discrete Wavelet Transform (DWT) 

Consider an image f(x,y) of size M×N whose forward 

discrete transform, T(u, v, …) can be expressed in terms of the 

general relation [1] 

𝑇 𝑢,𝑣,…  =  𝑓 𝑥, 𝑦 𝑔𝑢 ,𝑣,…(𝑥, 𝑦)

𝑥 ,𝑦

 

 (4) 

Where x and y are spatial variables and u, v, … are 

transform variables. Given T(u, v, …), f(x,y) can be obtained 

using generalized inverse discrete transform 

𝑓 𝑥, 𝑦 =  𝑓 𝑢, 𝑣,…  𝑕𝑢 ,𝑣,…(𝑥, 𝑦)

𝑥 ,𝑦

 

 (5) 

The gu,v,… and hu,v,… in these equations are called forward 

and inverse kernels respectively. They determine the nature 

computational complexity and ultimate usefulness of the 

transform pair. 

The discrete wavelet transform (DWT) is a linear 

transformation that operates on a data vector whose length is 

an integer power of two, transforming it into a numerically 

different vector of the same length [1], [2]. 

 

 

 

 

 

 
 

Fig. 3 DWT Tree 
 

It separates data into different frequency components, and 

then matches each component with resolution to its scale. 

DWT is computed with a cascade of filters followed by a 

factor 2 subsampling. 

H and L denotes high and low-pass filters respectively, ↓2 

denotes subsampling. Outputs of these filters are given by 

equations (6) and (7). 

𝑎𝑗+1 𝑝 =   𝑙[𝑛 − 2𝑝]𝑎𝑗  𝑛 

+∞

𝑛=−∞

 

 (6) 

𝑑𝑗+1 𝑝 =   𝑕[𝑛 − 2𝑝]𝑎𝑗  𝑛 

+∞

𝑛=−∞

 

 (7) 

 

Elements aj are used for next step (scale) of the transform 

and elements dj, called wavelet coefficients, determine output 

of the transform. l[n] and h[n] are coefficients of low and 

high-pas filters respectively. Assume that on scale j+1 there is 

only half from number of a and d elements on scale j. 

DWT algorithm for two-dimensional pictures is similar. 

The DWT is performed firstly for all image rows and then for 

all columns (figure4) [20], [22]. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 Wavelet Decomposition for 2D Signals 

 

A vector contains energies of wavelet coefficients 

calculated in sub-bands at successive scales. As a result of 

this transform there are 4 subband images [21], [23] at each 

scale (figure5). 
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Fig. 5 Sub-band Images for Wavelet Decomposition 

 

Sub band image „a‟ is used only for DWT calculation at 

the next scale. 

B. M-Band Wavelet Transform 

The wavelet transform maps a function f(x) Є L
2
(R) onto a 

scale-space plane [18], [19]. The wavelets are obtained from a 

single prototype function ψ(x) by scaling parameters a and 

shift parameters b. The continuous wavelet transform of a 

function f(x) is given as, 

𝑊𝑓𝑎 𝑏 =  𝑓 𝑥 𝜓𝑎 ,𝑏
∗  𝑥 𝑑𝑥 

  (8) 

M-band wavelet decomposition is a direct generalization 

of the above two-band case [25]. Let φ(x) be the scaling 

function satisfying, 

𝜙 𝑥 =  𝑕 𝑘 
𝑘

 𝑀𝜙(𝑀𝑥 − 𝑘) 

  (9) 

In addition there are M - 1 wavelets which also satisfy 

𝜓 𝑗   𝑥 =   𝑀𝑕 𝑗  (𝑘)𝜓(𝑀𝑥 − 𝑘)
𝑘

 

  (10) 

In discrete form these equations can be written as 

𝜙𝑖𝑘  𝑥 =  𝑀−
𝑖

2𝜙(𝑀−𝑖𝑥 − 𝑘)
𝑘

 

  (11) 

𝜓𝑖𝑘
 𝑗   𝑥 =  𝑀−𝑖/2

𝑘
𝜓(𝑗 )(𝑀−𝑖𝑥 − 𝑘) 

  (12) 

A function f(x) Є V
0
 Є L

2
(R) can be constructed from a 

discrete sequence a(k) Є l
2
(R) in the form, 

𝑓 𝑥 =  𝑎(𝑘)𝜙(𝑥 − 𝑘)
𝑘

 

  (13) 

f(x) can also be expressed in terms of the sum of 

projections onto subspaces Vi and Wi
(j)

 as, 

𝑓 𝑥 =  𝑐 𝑘 
𝑘

𝜙𝑖 ,𝑘 𝑥 +   𝑑𝑗 (𝑘)𝜓𝑖𝑘
 𝑗   𝑥 

𝑘

𝑀−1

𝑗=1

 

        (14) 

The expansion coefficients can be expressed as, 

𝑐 𝑘 =  𝑓,𝜙𝑖 ,𝑘  , 

𝑑𝑗  𝑘 =  𝑓,𝜓𝑖 ,𝑘
 𝑗   ,       𝑗 = 1,… ,𝑀 − 1 

  (15) 

Using (9) and (10) in (15), it can be shown that, 

𝑐 𝑘 =
1

 𝑀
 𝑎 𝑙 𝑕(𝑀𝑘 − 𝑙)

𝑙
 

  (16) 

𝑑𝑗  𝑘 =  𝑎 𝑙 𝑕(𝑙)(𝑀𝑘 − 𝑙)
𝑙

 

  (17) 

Which is equivalent to processing the sequence a(k) with a 

set of linear time-invariant filters of impulse responses and 

down sampling filter outputs by M. The M-band wavelet 

system has been in the focus of several recent investigations 

[25]. Noteworthy advantages of M-band wavelet systems over 

two-band wavelet systems are their richer parameter space 

which leads to a greater variety of compactly supported 

wavelets. These are practically implementable and have their 

ability to achieve more rapidly a given frequency resolution as 

a function of decomposition scale. These facts provide greater 

freedom and flexibility in choosing time frequency tilling. 

The structure of the classical one-dimensional filter bank 

problem [18] is given in figure 6. The filter bank problem 

involves the design of the real coefficient realizable. Closely 

related to the filter bank problem is the transmultiplexer 

problem. A transmultiplexer[18] is a device for converting 

time-domain-multiplexed (TDM) signals to frequency-

domain-multiplexed signals (FDM).  

 

 

 

 

 

 

 

Fig. 6 An M-channel filter bank 
 

 

 

 

 

 

Fig. 7 Ideal frequency responses in an M-channel filter bank 
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Fig. 8An M-channel Trans-multiplexer 

 

The basic structure of a transmultiplexer is shown in figure 

8. The transmultiplexer problem is to design filters such that 

perfect reconstruction is guaranteedand the filter responses 

approximate in figure 7. 

III. IMAGE DENOISING 

 

Two main limitations in.The image and noise model is 

given as equation (18) 

X = S + σ.g   (18) 

 

Where, S is an original image and X is a noisy image 

corrupted by additive white Gaussian noise g of standard 

deviation σ. Both images s and X are of size N by M (mostly 

M = N and always power of 2) [11-14]. 

A. Basic steps for image denoising 

The basic steps involved in image denoising as followed in 

this paper is shown in the block diagram (figure 9) below. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9Basic Steps for Image Denoising 

B. Threshold Determination 

The standard thresholding of wavelet coefficients is 

governed mainly by either „hard‟ or „soft‟ thresholding 

function [10] as shown in figure 10. The first function in 

figure10(a) is a „hard‟ function, and figure 2(b) is a „soft‟ 

function [17]. 

 

 

 

 

 

 

 

 

 

 

 
            (a)   (b) 

 

Fig. 10 Thresholding functions; (a) hard, (b) soft 

 

The hard thresholding function is given as 

 

𝑧 = 𝑕𝑎𝑟𝑑 𝑤 =  
𝑤, 𝑓𝑜𝑟  𝑤 > 𝜆

0, 𝑓𝑜𝑟  𝑤 ≤ 𝜆
   (19) 

 

Similarly, soft thresholding function is given as [14] 

 

𝑧 = 𝑠𝑜𝑓𝑡 𝑤 =

  
𝑠𝑖𝑔𝑛𝑢𝑚(𝑤)  ×  𝑚𝑎𝑥(|𝑤|  −  𝜆, 0), 𝑓𝑜𝑟  𝑤 > 𝜆

𝑤, 𝑓𝑜𝑟  𝑤 ≤ 𝜆
  (20) 

 

Where, w and z are the input and output wavelet 

coefficients respectively, λ is a selected threshold value for 

both (19) and (20). 

 

C. Performance Measurement 

The performance of various denoising algorithms is 

quantitatively compared using MSE (mean square error) [5], 

[15] and PSNR [16] (Peak Signal to Noise Ratio) as 

 

𝑀𝑆𝐸 =  
1

𝑁𝑀
   𝑠 𝑛,𝑚 − 𝑦(𝑛,𝑚) 2𝑀

𝑚=1
𝑁
𝑛=1  (21) 

𝑃𝑆𝑁𝑅 =  10 log10  
255 2

𝑀𝑆𝐸
    (22) 

 

Where, s is an original image and y(n,m) is a recovered 

image from a noisy image s(n,m).

 

IV.

 

EXPERIMENTAL RESULTS

 

AND DISCUSSION

 

The experiments are conducted (process was as shown in 

figure 9) taking M=4 (for M-Band) on natural greyscale test 

images like Lena, Barbara, Peppers, Boat

 

etc.

 

of size 

512×512. The kind of noise, added to original image, is 

Gaussian of different noise levels σ = 2, 5

 

and 10 one after 

another.

 

Figure 11 shows the original and noisy version of 

barbara

 

image.

 

 

(a)

   

(b)

 

Fig. 11Experimental Image of barbara

 

(256×256)

 

(a) Original, (b) After adding Gaussian White Noise of σ=2, variance=30
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(a)   (b) 

Fig. 12Peppers image 300% magnified; (a) Noisy, (b) Denoised Image 

 

 
(a)  (b)  (c) 

Fig. 13Boat Image 400% magnified (a)noisy image, (b)denoised image using 

hard threshold, (c) denoised image using soft threshold 

 

 
(a)  (b)  (c) 

Fig. 14Lena Image 400% magnified (a)noisy image, (b)denoised image using 

hard threshold, (c) denoised image using soft threshold 

 

The PSNR values as given in equation (21) and (22), are 

obtained as shown in table I. The PSNR from various 

methods are compared in Table I and the data are collected 

from an average of fifteen to twenty runs on the each imageof 

size 512×512. 

TABLE I 

PSNR VALUES FOR IMAGES OF SIZE 512×512 

Image 

Name 
Th. Typea Value of Sigma (σ) 

2 5 10 

lena 
Hard 35.0385 30.5835 28.8199 

Soft 31.3728 27.3253 23.6765 

barbara 
hard 35.3577 30.0593 27.0913 

soft 30.9910 26.3386 22.7523 

baboon 
hard 36.0850 28.2366 24.1164 

soft 29.6279 24.1578 20.7253 

boat 
hard 35.1460 29.8883 27.4503 

soft 30.8520 26.4326 22.8586 

fruits 
hard 35.1648 30.0153 27.8897 

soft 31.0728 26.7965 23.3131 

goldhill 
hard 35.0529 29.5271 27.6074 

soft 30.7525 26.5456 23.1724 

peppers 
hard 35.1891 31.4086 29.5094 

soft 31.8152 27.6794 23.7337 

a. Type of threshold – hard or soft 

 

From the PSNR values shown in table I, it is very much 

clear that, as we increase the value of noise level (σ), PSNR 

value gradually decreases. A comparison among all the 

pictures are given in the following figure 15 and 16. 

 

Fig. 15Comparison among all the images as graph 

 

Fig. 16 Comparison among all the images as bar chart 

V.
 

CONCLUSION
 

In this paper, the advantages, applications, and limitations 

ofM-band wavelet transform and its extensions are realized. 

M-band Wavelet Transforms is

 

a powerful extension to 

standard DWT. This transform technique

 

is investigated to 

reduce the major limitations of standard DWT and its 

extensions in certain signal processing applications.

 

The history, basic theory, recent trends, and various forms 

of M-band wavelet transforms with their applications are 

collectively and comprehensively analysed. Recent 

developments in M-band wavelet transforms

 

are critically 

compared with existing forms of WTs. Potential applications 

are investigated and suggested that can be benefited with the 

use of different variants of M-band wavelet transforms. 

 

Individual software codes are developed for simulation of 

selected applications such as Denoising both WTs and M-

band wavelet transforms. The performance is statistically 

validated and compared to determine the advantages and 

limitations of M-band wavelet transforms over well-

established WTs. Promising results are obtained using 

individual implementation of existing algorithms 

incorporating novel ideas into well-established frameworks.
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