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Image Denoising Using M-Band Wavelets
A Study on M-Band Wavelet and its Application for Image Denoising

1JERTV 31S060953

Kaushik Sinha
Assistant Professor, Dept. of IT
College of Engineering and Management, Kolaghat
KTPP Township, West Bengal, India

Abstract—This work addresses to a study on the different
techniques of noise removal from an image using M-Band
Wavelet Transform. The standard wavelet transform technique
has already proven its capability for different image processing
problems such as image denoising. Noise removal from image is
best done in the frequency domain. Psychophysical results
indicate human visual processes an image by decomposing into
multiple channels corresponding to its frequency and
orientation components at different scales. It is also capable of
preserving both local and global information. So, multi scale
wavelet analysis is an ideal approach to describe noise removal.
In this paper, the capability of M-Band Wavelet Transform is
discussed in the process of noise removal from different images.

Keywords—M-Band Wavelet Transform; Additive White Gaussian
noise; Thresholding; Image Denoise

. INTRODUCTION

Many types of noises due to sensor or channel
transmission errors often corrupt images and noise
suppression becomes a particularly delicate and a difficult task
[5-6]. Applied noise removal techniques should take into
account a trade-off between noise reduction and preservation
of actual image content in a way that enhances the
diagnostically relevant image content.

The need for efficient image restoration methods has
grown with the massive production of digital images and
movies of all kinds, often taken in poor conditions. No matter
how good cameras are, an image improvement is always
desirable to extend their range of action [4].

The two main limitations in image accuracy are
categorized as blur and noise. Blur is intrinsic to image
acquisition systems, as digital images have a finite number of
samples and must satisfy the Shannon—Nyquist sampling
conditions. The second main image perturbation is noise.
There are different types of noises that can affect an image.
Some of them are

A. Salt and pepper noise

It is the type of noise where some black and white pixels
occurs randomly on an image. A false saturation gives a white
spot (salt) and a failed response gives a black spot in the

image (pepper) [3], [9]-
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B. Gaussian white noise

This is the most common type of noise [3], [7-9] which
can be generated artificially using the formula

Y = X + sgrt(variance) x random(s) + mean; 1)

Where, X is the input image, Y is the output image, s is the
size of X. The value of mean and variance is taken as input.

C. Poisson noise

In probability theory and statistics, Poisson distribution is
a discrete probability distribution that expresses the
probability of a number of events occurring in a fixed interval
of time and/or space. If the expected number of occurrences in
a particular time interval is A, then probability that there are
exactly k (k=0, 1, 2 ...) occurrences is given by

Ake=2
|

flk ) =25 @)

D. Speckle noise

Within each resolution cell, a number of elementary
scatters reflect the incident wave towards the sensor. The
received image is thus corrupted by a random granular pattern,
called Speckle. A speckle noise can be modelled as

v=f9 3)

Where, v is the speckle noise, f is the noise-free image and
9 is a unit mean random field. In this paper, the experimental
work is done with Gaussian white noise [9].

In the field of Image Processing, the wavelet transform has
emerged with a great success [10]. The M-band wavelet
transform[24] is a specific area of wavelet transform which
has so many advantages over standard wavelet transform [17-
23].

II.  M-BAND WAVELET TRANSFORM
The term wavelet means a small wave. The smallness

refers to the condition that this (window) function is of finite
length (compactly supported). The wave refers to the
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condition that this function is oscillatory [6].The wavelet
transform (WT) is a powerful tool of signal processing for its
multiresolutional possibilities [2]. Unlike the Fourier
transform, the WT is suitable for handling the non-stationary
signals — variable frequency with respect to time.

(@ (b)

Fig. 1 Representation of a wave (a), and a wavelet (b)

The illustration in figure2 is commonly used to explain
how time and frequency resolutions should be interpreted.
Every box in figure2 corresponds to a value of the wavelet
transform in the time frequency plane. Note that boxes have a
certain non-zero area, which implies that the value of a
particular point in the time-frequency plane cannot be known.
All the points in the time-frequency plane that falls into a box
are represented by one value of the WT.

Fre Better time
Better que ‘\ resolution;
N
frequency ncy poor
resolution; frequer)cy
poor time resolution
resolution

Time

Fig. 2Representation oftime-frequency plane

First thing to notice in figure 2 is that although the widths
and heights of the boxes change, the area is constant. That is
each box represents an equal portion of the time-frequency
plane, but giving different proportions to time and frequency.
At higher frequencies the width of the boxes decreases, means
the time resolution gets better, and the heights of the boxes
increase, i.e., the frequency resolution gets poorer.

A. Discrete Wavelet Transform (DWT)

Consider an image f(x,y) of size MxN whose forward
discrete transform, T(u, v, ...) can be expressed in terms of the
general relation [1]

T,.) = ) () gus,. 59)
Y @

Where x and y are spatial variables and u, v, ... are
transform variables. Given T(u, v, ...), f(X,y) can be obtained
using generalized inverse discrete transform

F) = D F v, hys, (59)
v ®)

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 3 Issue 6, June - 2014

The g,.... and h,, . in these equations are called forward
and inverse kernels respectively. They determine the nature
computational complexity and ultimate usefulness of the
transform pair.

The discrete wavelet transform (DWT) is a linear
transformation that operates on a data vector whose length is
an integer power of two, transforming it into a numerically
different vector of the same length [1], [2].

X L V2 > a; L V2 P,
H V2 d H» V2 >d,
Fig. 3 DWT Tree

It separates data into different frequency components, and
then matches each component with resolution to its scale.
DWT is computed with a cascade of filters followed by a
factor 2 subsampling.

H and L denotes high and low-pass filters respectively, |2
denotes subsampling. Outputs of these filters are given by
equations (6) and (7).

a1[p] = Z l[n — 2pla;(n)

o
dalpl = . hin=2plg®
)

Elements a; are used for next step (scale) of the transform
and elements d;, called wavelet coefficients, determine output
of the transform. I[n] and h[n] are coefficients of low and
high-pas filters respectively. Assume that on scale j+1 there is
only half from number of a and d elements on scale j.

DWT algorithm for two-dimensional pictures is similar.
The DWT is performed firstly for all image rows and then for
all columns (figure4) [20], [22].
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Fig. 4 Wavelet Decomposition for 2D Signals

A vector contains energies of wavelet coefficients
calculated in sub-bands at successive scales. As a result of
this transform there are 4 subband images [21], [23] at each
scale (figure5).
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M-1
20 | hey F@) =) cWgu@+ ) ) &)
h(n-1) =1
v(n) | d(n) (14)
h(n-2) . -
The expansion coefficients can be expressed as,
v(n-1) d(n-1)
c(k) ={f, Pix)
4k) = (f, %)), j=1..,M-1
(15)
v(n-2) d(n-2) Using () and (10) in (15), it can be shown that,
1
c(k =—Zathk—l
_ - (k) NoP (Dh( )
Fig. 5 Sub-band Images for Wavelet Decomposition (16)
Sub band image ‘a’ is used only for DWT calculation at d (k) = Z a(DRO Mk — 1)
the next scale. ! ! -

B. M-Band Wavelet Transform

The wavelet transform maps a function f(x) € LR) onto a
scale-space plane [18], [19]. The wavelets are obtained from a
single prototype function y(x) by scaling parameters a and
shift parameters b. The continuous wavelet transform of a
function f(x) is given as,

W, (b) = f Qs (X)dx
®)

M-band wavelet decomposition is a direct generalization
of the above two-band case [25]. Let ¢(x) be the scaling
function satisfying,

#() = ) b VHP(Mx — k)

Which is equivalent to processing the sequence a(k) with a
set of linear time-invariant filters of impulse responses and
down sampling filter outputs by M. The M-band wavelet
system has been in the focus of several recent investigations
[25]. Noteworthy advantages of M-band wavelet systems over
two-band wavelet systems are their richer parameter space
which leads to a greater variety of compactly supported
wavelets. These are practically implementable and have their
ability to achieve more rapidly a given frequency resolution as
a function of decomposition scale. These facts provide greater
freedom and flexibility in choosing time frequency tilling.

The structure of the classical one-dimensional filter bank
problem [18] is given in figure 6. The filter bank problem
involves the design of the real coefficient realizable. Closely
related to the filter bank problem is the transmultiplexer

©) problem. A transmultiplexer[18] is a device for converting
In addition there are M - 1 wavelets which also satisfy time-domain-multiplexed (TDM) signals to frequency-
. . domain-multiplexed signals (FDM).
YD (x) = Z VMR (k) (Mx — k)
k
do(n
(10) » ho(n) ll\/l R M g s
In discrete form these equations can be written as 4,(n)
n
i , hi(n) MLt M 0:(n)
. _ L i x(npr M > l S s R >
Bu() = ) MIBMx— k) ) (>
(11) y(n)
Wy — —i/2 G =i dm-1(n)
Y (x) = kM YU (M~ x — k) Lyt hya(n) 1 iM > > TM B gua(n)
(12)
A function f(x) € V° € L%R) can be constructed from a Fig. 6 An M-channel filter bank
discrete sequence a(k) € I*(R) in the form, |
fe) =) alopc—k) i
1 1
(13) M-1 Vo M-1
f(x) can also be expressed in terms of the sum of i i
projections onto subspaces V; and W;? as, . v R
T - /M 0 /M T
Fig. 7 Ideal frequency responses in an M-channel filter bank
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Fig. 8An M-channel Trans-multiplexer

The basic structure of a transmultiplexer is shown in figure
8. The transmultiplexer problem is to design filters such that
perfect reconstruction is guaranteedand the filter responses
approximate in figure 7.

I11.  IMAGE DENOISING

Two main limitations in.The image and noise model is
given as equation (18)

X=S+o.g (18)

Where, S is an original image and X is a noisy image
corrupted by additive white Gaussian noise g of standard
deviation . Both images s and X are of size N by M (mostly
M = N and always power of 2) [11-14].

A. Basic steps for image denoising

The basic steps involved in image denoising as followed in
this paper is shown in the block diagram (figure 9) below.

Noisy Input L, Apply M-Band
Image Wavelet Transform
v
v v v
Channel 1 Channel 2 Channel M?
Coefficient Coefficient Coefficient
v v v
v
Apply Denoise
(Hard or Soft)
v
Denoised Apply Inverse M-Band

Output Image Wavelet Transform

Fig. 9Basic Steps for Image Denoising

B. Threshold Determination

The standard thresholding of wavelet coefficients is
governed mainly by either ‘hard’ or ‘soft’ thresholding
function [10] as shown in figure 10. The first function in
figurelO(a) is a ‘hard’ function, and figure 2(b) is a ‘soft’
function [17].
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.
lx

@) (b)
Fig. 10 Thresholding functions; (a) hard, (b) soft

The hard thresholding function is given as

_ _(w, for|w|>2
2 = hard(w) = (O, for|w| < A) (19)
Similarly, soft thresholding function is given as [14]
z =soft(w) =
(signum(w) x max(|lw| — 4,0), for |w| > /1) (20)
w, for|lw| <2

Where, w and z are the input and output wavelet

coefficients respectively, A is a selected threshold value for
both (19) and (20).

C. Performance Measurement

The performance of various denoising algorithms is
quantitatively compared using MSE (mean square error) [5],
[15] and PSNR [16] (Peak Signal to Noise Ratio) as

1
MSE = — Y1 S _ils(n,m) — y(n,m)|? (21)
2552
PSNR = 101logy, (M—SE) (22)

Where, s is an original image and y(n,m) is a recovered
image from a noisy image s(n,m).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments are conducted (process was as shown in
figure 9) taking M=4 (for M-Band) on natural greyscale test
images like Lena, Barbara, Peppers, Boat etc. of size
512x512. The kind of noise, added to original image, is
Gaussian of different noise levels ¢ = 2, 5 and 10 one after
another. Figure 11 shows the original and noisy version of
barbara image.

@ (©)
Fig. 11Experimental Image of barbara (256x256)
(a) Original, (b) After adding Gaussian White Noise of 6=2, variance=30
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a) (b)
Fig. 12Peppers image 300% magnified; (a) Noisy, (b) Denoised Image

. .
) ) b © )
Fig. 13Boat Image 400% magnified (a)noisy image, (b)denoised image using
hard threshold, (c) denoised image using soft threshold

() (b) (©
Fig. 14Lena Image 400% magnified (a)noisy image, (b)denoised image using
hard threshold, (c) denoised image using soft threshold

The PSNR values as given in equation (21) and (22), are
obtained as shown in table I. The PSNR from various
methods are compared in Table | and the data are collected
from an average of fifteen to twenty runs on the each imageof
size 512x512.
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value gradually decreases. A comparison among all the
pictures are given in the following figure 15 and 16.

Peak Signal to Noise Ratio (PSMR)

Comparison of PSNR Values
32 T T T

30F

25t N

W ~

240

2r
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2
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Fig. 15Comparison among all the images as graph

Comparison of PSNR Yalues
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Fig. 16 Comparison among all the images as bar chart

V. CONCLUSION

In this paper, the advantages, applications, and limitations

TABLE |
PSNR VALUES FOR IMAGES OF SIZE 512x512
Image a Value of Sigma (o
Nan?e Th. Type 2 = @ 10
lena Hard 35.0385 30.5835 28.8199
Soft 31.3728 27.3253 23.6765
barbara hard 35.3577 30.0593 27.0913
soft 30.9910 26.3386 22.7523
baboon hard 36.0850 28.2366 24.1164
soft 29.6279 24,1578 20.7253
boat hard 35.1460 29.8883 27.4503
soft 30.8520 26.4326 22.8586
fruits hard 35.1648 30.0153 27.8897
soft 31.0728 26.7965 23.3131
goldhill hard 35.0529 29.5271 27.6074
soft 30.7525 26.5456 23.1724
peppers hard 35.1891 31.4086 29.5094
soft 31.8152 27.6794 23.7337

From the PSNR values shown in table 1, it is very much
clear that, as we increase the value of noise level (), PSNR

IJERTV 31S060953

a Type of threshold — hard or soft

ofM-band wavelet transform and its extensions are realized.
M-band Wavelet Transforms is a powerful extension to
standard DWT. This transform technique is investigated to
reduce the major limitations of standard DWT and its
extensions in certain signal processing applications.

The history, basic theory, recent trends, and various forms
of M-band wavelet transforms with their applications are
collectively and comprehensively analysed. Recent
developments in M-band wavelet transforms are critically
compared with existing forms of WTs. Potential applications
are investigated and suggested that can be benefited with the
use of different variants of M-band wavelet transforms.

Individual software codes are developed for simulation of
selected applications such as Denoising both WTs and M-
band wavelet transforms. The performance is statistically
validated and compared to determine the advantages and
limitations of M-band wavelet transforms over well-
established WTs. Promising results are obtained using
individual  implementation  of  existing  algorithms
incorporating novel ideas into well-established frameworks.
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