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Abstract—In the last few years, deep learning has led to huge 

success in the field of computer vision and natural language 

understanding and also in the interplay between them. Among 

different types of deep learning models, convolutional neural 

networks have been most extensively studied for the tasks related 

to visual perception and machine vision. Due to lack of 

computational resources and training data, it is very hard to the 

use high-capacity convolutional neural network without 

overfitting. But recent growth in the availability of annotated 

data and high-performance GPUs have made it possible to obtain 

state-of-the-art results using convolutional neural networks. 

Automatically describing the content of an image is a 

fundamental problem in artificial intelligence that connects 

computer vision and natural language processing. In this project, 

a generative model based on a deep recurrent architecture that 

combines recent advances in computer vision and machine 

translation is being used. Recurrent architecture is used to 

generate natural sentences describing an image. The model will 

be trained to maximize the likelihood of the target description 

sentence given the training image. 

 

  Keywords—Deep Learning, Image captioning, Convolution 

Neural Network, MSCOCO, Recurrent Nets, Lstm, Resnet. 

 

I. INTRODUCTION  

 A recent study on Deep Learning shows that it is part of a 

broader family of machine learning methods based on learning 

data representations, as opposed to task-specific algorithms. 

Deep Learning (DL) and Neural Network (NN) is currently 

driving some of the most ingenious inventions in today’s 

century. Their incredible ability to learn from data and 

environment makes them the first choice of machine learning 

scientists. Deep Learning and Neural Network lies in the heart 

of products such as self-driving cars, image recognition 

software, recommender systems etc. Evidently, being a 

powerful algorithm, it is highly adaptive to various data types 

as well. 

 Image annotation is a process by which a computer system 

assigns metadata in the form of captioning or keywords to a 

digital image. It is a Type of multi-class image classification 

with a very large number of classes. It is used in image retrieval 

systems to organize and locate images of interest from the 

database. The goal of image captioning research is to annotate 

and caption an image which describes the image using a 

sentence. To train a network to accurately describe an input 

image by outputting a natural language sentence. The task of 

describing any image sits on a continuum of difficulty. Some 

images, such as a picture of a dog, an empty beach, or a bowl 

of fruit, may be on the easier end of the spectrum. While 

describing images of complex scenes which require specific 

contextual understanding  and to do this well, not just possibly 

proves to be a much greater captioning challenge. Providing 

contextual information to networks has been both a sticking 

point, and a clear goal for researchers to strive for. 

 
Figure 1. Architectural Design 

 

Our model to caption images are built on multimodal 

recurrent and convolutional neural networks. A Convolutional 

Neural Network is used to extract the features from an image 

which is then along with the captions is fed into an Recurrent 

Neural Network. The architecture of the image captioning 

model is shown in figure 1. 

Image captioning is interesting because it concerns what we 

understand and about perception with respect to machines. The 

problem setting requires both an understanding of what features 

(or pixel context) represent which objects, and the creation of a 

semantic construction “grounded” to those objects. 

 

II. RELATED WORK 

This paper presents how convolutional neural network 

based architectures can be used to caption the contents of an 

image. Captioning here means labelling an image that best 

explains the image based on the prominent objects present in 

that image. Deep convolutional neural networks based machine 

learning solutions are now days dominating for such image 

annotation problems [1, 2]. Recent researches in [3, 4] has 

proposed solution that automatically generates human-like 

description of any image. This problem is of significance in 

practical applications and moreover it link two artificial 

intelligence areas i.e. NLP (Natural Language Processing) and 

Computer Vision. The convolutional network architecture that 

won the ImageNet Challenge in 2012, have been used for large-

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050284
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

381

www.ijert.org
www.ijert.org
www.ijert.org


scale image and video recognition [8]. It uses the large public 

image repositories, such as ImageNet [11], and high-

performance computing systems, such as GPUs or large-scale 

distributed clusters. In ImageNet LSVRC-2010 contest, 1.2 

million high resolution images are classified into the 1000 

different classes using Deep Convolutional neural network. The 

top-1 and top5 error rates achieved using this model are 37.5% 

and 17.0% respectively and this is substantially better than the 

state-of-the-art. The neural network architecture which consists 

of 650,000 neurons with 60 million parameters contains five 

convolutional layers. Some of these layers were followed by 

max-pooling layers and three fully-connected layers with a final 

1000-way SoftMax layer. With the applications of ConvNets 

growing rapidly in the computer vision community, a number 

of attempts have been made to improve the original architecture 

proposed in [8], in a bid to achieve better accuracy [7]. One of 

the most recent work in [3] uses an algorithm which learns the 

semantics very selectively and fuse them into hidden and output 

states of RNN. 

III.  MODELS 

 

A.  CONVOLUTIONAL NEURAL NETWORK   

A very deep convolutional neural network model is 

proficient in extracting visual features from an image in a 

hierarchical manner, starting from very basic features like edge 

detectors, and then progressively building more complex 

features like shape detection. In this section we describe the 

components of a basic ConvNet model, and show how these 

different modules are arranged in a network which leads to 

efficient extraction of visual features. 

 
Figure 2. Convolutional neural network architecture 

 

CNNs use a variation of multilayer perceptron designed to 

require minimal preprocessing. They are also known as shift 

invariant or space invariant artificial neural 

networks (SIANN), based on their shared-weights architecture 

and  translation invariance characteristics. A CNN consists of 

an input and an output layer, as well as multiple  hidden layers 

.The hidden layers of a CNN typically consist of convolutional 

layers, pooling layers, fully connected layers and 

normalization layers. Certain pre-processing steps needed for 

efficient working of the CNN model are: 

 

a. Data pre-processing  

The only pre-processing we do here is Mean Subtraction. 

The mean RGB value is computed on the training set and 

subtracted from each pixel. Normalization is ignored because 

normalization only have meaning if different input features 

have different scales, but they should be of approximately 

equal importance to the learning algorithm. Mean subtraction 

is the most common form of pre-processing. It has the 

geometric interpretation of centering the cloud of data on the 

origin along every dimension. With images specifically, for 

convenience it can be common to subtract a single value from 

all pixels, or to do so separately across the three color channels. 

By applying Mean Subtraction we get corresponding mean 

values for RGB [123.682, 116.779 and 103.939]. Same is 

explained with an example in figure 3. 

 
Figure 3. Data pre-processing 

 

b. Convolutional layer 

Convolutional Neural Networks (ConvNets) are 

nearly same as regular neural networks. They consist of 

neurons with weights and biases as learning parameters. A 

non-linear activation function is applied on inputs of each 

neuron. The complete network manifests a single 

differentiable score function from one end pixels of image 

to class scores at the other. And they have a loss function 

(e.g. SVM/SoftMax) on the last layer i.e. fully-connected 

layer. All other steps as in ordinary neural networks also 

apply in ConvNet in same fashion. Unlike of typical Neural 

Networks, an explicit consideration in ConvNet 

architectures is that the images itself are the input to the 

network. And prominent properties of the images are 

encoded in the network is the peculiarity of architecture. 

Images being the input to ConvNet constrain the 

architecture in a more sensible way. In particular, the 

neurons in layers of ConvNet are arranged in all three 

dimensions i.e. width, height and depth which is 

uncommon to that in trivial neural networks. For example, 

the input images have the volume 

dimensions224x224x3.The final output layer dimension is 

reduced to 1x1x1000, because full input image is 

transformed into a single vector of class scores (arranged 

along the depth dimension), moving towards the end of the 

ConvNet architecture.  

 

c. Local connectivity  

When dealing with high-dimensional inputs such as 

images, connecting neurons in two successive volumes 

fully is very impractical. That is why each neuron is only 

connected to neurons in a local region of the input volume. 

The spatial extent of this connectivity is a hyper parameter 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050284
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

382

www.ijert.org
www.ijert.org
www.ijert.org


called the ’receptive field’ of the neuron (equivalently this 

is the filter size). The extent of the connectivity along the 

depth axis is always equal to the 

depth of the input volume. It is important to emphasize again 

on the asymmetry that how we treat the spatial dimensions i.e. 

width, height and the depth. The connections are local in space 

(along width and height), but always full along the entire depth 

of the input volume.  

 

d. Zero padding  

Zero-padding is the process of adding zeroes to the input 

matrix in symmetric fashion. This kind of modification is most 

common practice to adjust the size of the input according to 

our requirement. Same is customarily followed in CNN layers 

to preserve the input volume dimensions to be used at the 

output volume. The image is passed through a stack of 

convolutional (conv.) layers, where we use filters with a very 

small receptive field of 3x3. This is the smallest size to capture 

the notion of left/right, up/down, and center. The convolution 

stride is fixed to 1 pixel; the spatial padding of convolutional 

layer input is such that the spatial resolution is preserved after 

convolution, i.e. the padding is 1 pixel for 3 3 conv. layers. The 

figure 4 presents the working of 3x3 filter. Rather than using 

relatively large receptive fields in the first convolutional layers 

e.g.11x11 with stride 4, or 7x7 with 

stride 2, very small 3x3 receptive fields are used throughout 

the whole net, which are convolved with the input at every 

pixel (with stride 1). So a stack of two 3x3 convolution 

layers(without spatial pooling in between) has an effective 

receptive field of 5x5; three such layers have a 7x7 effective 

receptive field. The advantage of using a stack of three 3x3 

convolutional layers instead of a single 7x7 layer are: • First, 

incorporating 3 non-linear rectification layers instead of a 

single one, makes the decision function more discriminative. • 

Second, there is a decrease in the number of parameters: 

assuming both the input and the output of a three layer 3x3 

convolution stack has C channels, it can be mathematically 

shown that using filters of 3x3 will eventually lead to smaller 

number of parameters than using 5x5 or 7x7. 

 
Fig. 4. Working of a 3x3 filter. 

 

e.   Max Polling layer 

Max Pooling layer is very commonly used layer in the 

Convolutional network architecture. It is used after applying 

Convolution to the input as it reduces the dimensions of the 

layer that is given as an input to the layer. As the name suggests 

the function of the layer is to take input and return the 

maximum of all the pixels in the range of the filter applied. 

Mostly small filters are used as using large filters may destroy 

the image and the effect the classification drastically in an 

unwanted manner. Max polling example is shown in figure 5. 

 
Figure 5. Max pooling operation 

 

f.  Fully connected layers  

In a fully connected layer all the neurons of the input are 

connected with all the neurons of the output of the  layer. In 

this layer all the neurons have connections with all the 

activations in the previous layer. They are computationally 

costly in terms of both memory and time. Activations of the 

neurons can be computed using matrix multiplication and 

followed by a bias offset. 

 
Figure 6. Fully connected layers 

 

g.  ReLu (Rectified linear unit)  

ReLu refers to the Rectifier Unit, the most commonly 

deployed activation function for producing non-linearity in 

ConvNets. In the context of artificial neural networks, the 

rectifier is an activation function defined as f(x)=max(0;x); 

Where x is the weighted input to a neuron. It has been used in 

convolutional networks more effectively than the widely used 

logistic sigmoid, and its more practical counterpart, the 

hyperbolic tangent. This is mainly because of its sparse 

activation and efficient gradient propagation (no vanishing or 

exploding gradient problems). 

According to the universal approximation theorem, 

given enough capacity, we know that a feedforward network 

with a single layer is sufficient to represent any function. 

However, the layer might be massive and the network is prone 

to overfitting the data. Therefore, there is a common trend in 

the research community that our network architecture needs to 

go deeper. The authors argue that stacking layers shouldn’t 

degrade the network performance, because we could simply 

stack identity mappings (layer that doesn’t do anything) upon 

the current network, and the resulting architecture would 

perform the same. This indicates that the deeper model should 

not produce a training error higher than its shallower 

counterparts. They hypothesize that letting the stacked layers 
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fit a residual mapping is easier than letting them directly fit the 

desired underlaying mapping. And the residual block above 

explicitly allows it to do precisely. 

As a matter of fact, ResNet was not the first to make 

use of shortcut connections, Highway Network introduced 

gated shortcut connections. These parameterized gates control 

how much information is allowed to flow across the shortcut. 

Similar idea can be found in the Long Term Short Memory 

(LSTM) cell, in which there is a parameterized forget gate that 

controls how much information will flow to the next time step. 

Therefore, ResNet can be thought of as a special case of 

Highway Network. 

However, experiments show that Highway Network 

performs no better than ResNet, which is kind of strange 

because the solution space of Highway Network contains 

ResNet, therefore it should perform at least as good as ResNet. 

This suggests that it is more important to keep these “gradient 

highways” clear than to go for larger solution space. 

 

 

 
Figure 7. ResNet Architecture 

 

Plain Network. Our plain baselines (Figure 7, middle) are 

mainly inspired by the philosophy of VGG nets [4] (Figure 

7,left). The convolutional layers mostly have 3×3 filters and 

follow two simple design rules: (i) for the same output feature 

map size, the layers have the same number of filters; and (ii) if 

the feature map size is halved, the number of filters is doubled 

so as to preserve the time complexity per layer. We perform 

down sampling directly by convolutional layers that have a 

stride of 2. The network ends with a global average pooling 

layer and a 1000-way fully-connected layer with softmax. The 

total number of weighted layers is 34 in Figure 7 (middle). 

It is worth noticing that our model has fewer filters and lower 

complexity than VGG nets [4] (Figure 7, left). Our 34-layer 

baseline has 3.6 billion FLOPs (multiply-adds), which is only 

18% of VGG-19 (19.6 billion FLOPs). 

Residual Network. Based on the above plain network, we 

insert shortcut connections (Figure 7,right) which turn the 

network into its counterpart residual version. The identity 

shortcuts can be directly used when the input and output are of 

the same dimensions (solid line shortcuts in Figure 7). When 

the dimensions increase , we consider two options:  

(A) The shortcut still performs identity mapping, with extra 

zero entries padded for increasing dimensions. This option 

introduces no extra parameter; (B) The projection shortcut in 

Eqn.(2) is used to match dimensions(done by 1×1 

convolutions). For both options, when the shortcuts go across 

feature maps of two sizes, they are performed with a stride of 

2. 

 

 
Figure 8. A residual model 

 

In this paper, we address the degradation problem by 

introducing a deep residual learning framework. Instead of 

hoping each few stacked layers directly fit a desired underlying 

mapping, we explicitly let these layers fit a residual mapping. 

Formally, denoting the desired underlying mapping as H(x), 

we let the stacked nonlinear layers fit another mapping of F(x) 

:= H(x)−x. The original mapping is recast into F(x)+x. We 

hypothesize that it is easier to optimize the residual mapping 

than to optimize the original, unreferenced mapping. To the 

extreme, if an identity mapping were optimal, it would be 

easier to push the residual to zero than to fit an identity 

mapping by a stack of nonlinear layers. 

The formulation of F(x) +x can be realized by 

feedforward neural networks with “shortcut connections” 

(Figure 8). Shortcut connections [2, 3, 4] are those skipping 

one or more layers. In our case, the shortcut connections 

simply perform identity mapping, and their outputs are added 

to the outputs of the stacked layers (Fig. 2). Identity shortcut 

connections add neither extra parameter nor computational 

complexity. The entire network can still be trained end-to-end 

by SGD with backpropagation, and can be easily implemented 

using common libraries (e.g., Caffe [9]) without modifying the 

solvers. We present comprehensive experiments on 

ImageNet[5] to show the degradation  problem and evaluate 

our method. We show that: 1) Our extremely deep residual nets 

are easy to optimize, but the counterpart “plain” nets (that 

simply stack layers) exhibit higher training error when the 

depth increases; 2) Our deep residual nets can easily enjoy 
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accuracy gains from greatly increased depth, producing results 

substantially better than previous networks. 

Similar phenomena are also shown on the CIFAR-10 

set, suggesting that the optimization difficulties and the effects 

of our method are not just akin to a particular dataset. We 

present successfully trained models on this dataset with over 

100 layers, and explore models with over 1000 layers. On the 

ImageNet classification dataset [5], we obtain excellent results 

by extremely deep residual nets.  

 

B.  RECURRENT NEURAL NETWORK 

In this paper, we propose a neural and probabilistic 

framework to generate descriptions from images. Recent 

advances in statistical machine translation have shown that, 

given a powerful sequence model, it is possible to achieve state-

of-the-art results by directly maximizing the probability of the 

correct translation given an input sentence in an “end-to-end” 

fashion – both for training and inference. These models make 

use of a recurrent neural network which encodes the variable 

length input into a fixed dimensional vector, and uses this 

representation to “decode” it to the desired output sentence. 

Thus, it is natural to use the same approach where, given an 

image (instead of an input sentence in the source language), one 

applies the same principle of “translating” it into its description. 

Thus, we propose to directly maximize the probability of the 

correct description given the image by using the following 

formulation: 

 
where θ are the parameters of our model, I is an image, and S 

its correct transcription. Since S represents any sentence, its 

length is unbounded. Thus, it is common to apply the chain rule 

to model the joint probability, where N is the length of this 

particular example as 

 
where we dropped the dependency on θ for convenience. At 

training time, (S,I) is a training example pair, and we optimize 

the sum of the log probabilities as described in (2) over the 

whole training set using stochastic gradient descent. 

 It is natural to model with a Recurrent Neural Network 

(RNN), where the variable number of words we condition upon 

up to t − 1 is expressed by a fixed length hidden state or memory 

ht. This memory is updated after seeing a new input xt by using 

a non-linear function f:  

 
To make the above RNN more concrete two crucial design 

choices are to be made: what is the exact form of f and how are 

the images and words fed as inputs xt. For f we use a Long-

Short Term Memory (LSTM) net, which has shown state-of-the 

art performance on sequence tasks such as translation. This 

model is outlined in the next section. For the representation of 

images, we use a Convolutional Neural Network (CNN). They 

have been widely used and studied for image tasks, and are 

currently state-of-the art for object recognition and detection. 

Our particular choice of CNN uses a novel approach to batch 

normalization and yields the current best performance on the 

ILSVRC 2014 classification competition [12]. Furthermore, 

they have been shown to generalize to other tasks such as scene 

classification by means of transfer learning [4]. The words are 

represented with an embedding model. 

C. LSTM-based Sentence Generator   

Define abbreviations and acronyms the first time they are 

used in the text, even after they have been defined in the 

abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, 

and rms do not have to be defined. Do not use abbreviations in 

the title or heads unless they are unavoidable. 

The choice of f in (3) is governed by its ability to deal with 

vanishing and exploding gradients [10], the most common 

challenge in designing and training RNNs. To address this 

challenge, a particular form of recurrent nets, called LSTM, 

was introduced [10] and applied with great success to 

translation [3, 13] and sequence generation [9]. The core of the 

LSTM model is a memory cell c encoding knowledge at every 

time step of what inputs have been observed up to this step (see 

Figure 2) . The behavior of the cell is controlled by “gates” – 

layers which are applied multiplicatively and thus can either 

keep a value from the gated layer if the gate is 1 or zero this 

value if the gate is 0. In particular, three gates are being used 

which control whether to forget the current cell value (forget 

gate f), if it should 

 
Figure 9. LSTM: the memory block contains a cell c which is 

controlled by three gates. In blue we show the recurrent 

connections – the output m at time t − 1 is fed back to the 

memory at time t via the three gates; the cell value is fed back 

via the forget gate; the predicted word at time t − 1 is fed back 

in addition to the memory output m at time t into the SoftMax 

for word prediction. 

read its input (input gate i) and whether to output the new cell 

value (output gate o). The definition of the gates and cell update 

and output are as follows: 
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where ⊙ represents the product with a gate value, and the 

various W matrices are trained parameters. Such multiplicative 

gates make it possible to train the LSTM robustly as these gates 

deal well with exploding and vanishing gradients [10]. The 

nonlinearities are sigmoid σ(·) and hyperbolic tangent h(·). The 

last equation mt is what is used to feed to a SoftMax, which will 

produce a probability distribution pt over all words. 

 

IV. METHODOLOGY 

The first step involves collecting properly annotated data, large 

enough so that a complex model trained on it will give 

satisfactory results. For this purpose, we use MSCOCO 

dataset, which contains about 1.2 million images of 1000 

different categories. The second and the most challenging part 

include training the model after deciding what its architecture 

would be. The training phase actually involves two phases, a 

pre-training phase followed by a fine tuning phase. Among 

these, the pre-training phase is more challenging and involves 

much more computational resources than the fine tuning phase 

because it involves training a model from the scratch, while 

fine tuning just involves slight modifications to the network’s 

parameters so as to use the network for some different 

application. We use pre-trained weights of the ResNet model. 

So, in the training part we train the model to classify an image 

as belonging to one of the 1000 classes and generate a caption. 

A. Training 

For any machine learning algorithm to perform the desired 

task, we’ve to train the model to do so. By training we mean 

that we’ve to obtain the optimal values of the parameters of the 

model (weights and biases in our case), which will generalize 

well to perform the required task. The ConvNet training 

procedure generally follows [8]. Namely, the training is carried 

out by optimizing the multinomial logistic regression objective 

using mini-batch gradient descent (based on backpropagation 

[12]) with momentum. The training was regularized by weight 

decay and dropout regularization for the first two fully 

connected layers (dropout ratio set to 0.5). The learning rate 

was initially set to 102, and then decreased by a factor of 10 

when the validation set accuracy stopped improving. The 

learning was stopped after 370K iterations (74 epochs). The 

model is trained for the image captioning task. 

B. Dataset 

 COCO is a large-scale object detection, segmentation, and 

captioning dataset. COCO has several features: 

Object segmentation, recognition in context etc.The COCO 

dataset is an excellent object detection dataset with 80 classes, 

80,000 training images,41,000 testing images and 40,000 

validation images. 

C. Testing 

Once the model has been trained for the image 

classification and captioning task, it can now be used for the 

object detection phase. The image can contain large objects as 

well as relatively smaller objects. Our task is to detect all of 

them, not just the larger objects. For that purpose, we 

progressively divide the image and classify it as belonging to 

one of the 1000 classes. We start with the whole image, feed it 

into the ConvNet architecture. The resulting class mostly 

represents the most significant (in terms of size) object in the 

image. Now we divide the image into two equal halves, and 

feed these two halves into the ConvNet. The idea is that these 

two halves as separate images will mostly contain a different 

object as the most prominent object. We repeat this experiment 

by further dividing these images into 2 halves and classifying 

them. This step may further detect smaller objects which are 

prominent in the divided image. Finally, we repeat this step 

one last time to further divide the image into two halves and 

classifying them. So, in total we have 15 images of different 

sizes, formed from the original image. For all the above-

mentioned steps, we display top 2 classes per image and 

threshold the probabilities to threshold. What this means is that 

we’ll only show the second class if its probability exceeds 

more than threshold i.e. it is a prominent object in the image. 

Here threshold is given as an input by the user while feeding 

the image to the Convolutional network. For measuring the 

accuracy, precision and recall of the model, we define the 

following terms:  

• Correctly matched: True positive (the objects that were 

detected by the model and were actually present in the image).  

• Mistakenly matched: False positive (the objects that were 

detected by the model but were actually not present in the 

image).  

• Correctly rejected: True negative (the objects that were 

not detected by the model and were actually not present in the 

image).  

• Mistakenly rejected: False negative (the objects that were 

not detected by the model but were actually present in the 

image). 

 
Figure 10. Progressive division and classification of the sample image 

 

For each threshold value, we measure the accuracy, 

precision and recall of our model on different images and take 

the average. Below is the plot showing variation of accuracy, 

precision and recall with different threshold values. 
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Figure 11. Graph showing the variation of model’s recall with threshold 

values 

 

 
Figure 12. Graph showing the variation of model’s accuracy with 

threshold values 

 

 
Figure 11. Graph showing the variation of model’s precision with 

threshold values 

 

D. Evaluation Metrics 

Although it is sometimes not clear whether a description 

should be deemed successful or not given an image, prior art 

has proposed several evaluation metrics. The most reliable (but 

time consuming) is to ask for raters to give a subjective score 

on the usefulness of each description given the image. In this 

paper, we used this to reinforce that some of the automatic 

metrics indeed correlate with this subjective score. 

The metrics can be computed automatically assuming one 

has access to ground truth, i.e. human generated descriptions. 

The most commonly used metric so far in the image 

description literature has been the BLEU score [5], which is a 

form of precision of word n-grams between generated and 

reference sentences 2. Even though this metric has some 

obvious drawbacks, it has been shown to correlate well with 

human evaluations. 

 

V. RESULTS 

Many of the challenges that we faced when training our 

models had to do with overfitting. Indeed, purely supervised 

approaches require large amounts of data, but the datasets that 

are of high quality have less than 100000 images. The task of 

assigning a description is strictly harder than object 

classification and data driven approaches have only recently 

become dominant. As a result, we believe that, even with the 

results we obtained which are quite good, the advantage of our 

method versus most current human-engineered approaches 

will only increase in the next few years as training set sizes 

will grow. Nonetheless, we explored several techniques to deal 

with overfitting. The most obvious way to not overfit is to 

initialize the weights of the CNN component of our system to 

a pretrained model . We did this in all the experiments (similar 

to [8]), and it did help quite a lot in terms of generalization. 

Another set of weights that could be sensibly initialized are 

We, the word embeddings. We tried initializing them from a 

large news corpus [2], but no significant gains were observed, 

and we decided to just leave them uninitialized for simplicity. 

Lastly, we did some model level overfitting-avoiding 

techniques. We tried dropout [4] and ensemble models, as well 

as exploring the size (i.e., capacity) of the model by trading off 

number of hidden units versus depth. Dropout and ensemble 

gave a few BLEU points improvements, and that is what we 

report throughout the paper. 

 

 
VI. CONCLUSION 

 

An end-to-end neural network system that can 

automatically view an image and generate a reasonable 

description in plain English. It is based on a convolution neural 

network that encodes an image into a compact representation, 

followed by a recurrent neural network that generates a 

corresponding sentence. The model is trained to maximize the 

likelihood of the sentence given the image. Experiments on 

several datasets show the robustness  in terms of qualitative 

results (the generated sentences are very reasonable) and 

quantitative evaluations, using either ranking metrics or 
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BLEU, a metric used in machine translation to evaluate the 

quality of generated sentences. It is clear from these 

experiments that, as the size of the available datasets for image 

description increases, so will the performance of the proposed 

model. Furthermore, it will be interesting to see how one can 

use unsupervised data, both from images alone and text alone, 

to improve image description approaches. 
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