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Abstract - In this paper, we propose a novel algorithm called
Multi-Projection Ensemble  Discriminate  Clustering
(MPEDC) for Image Steganalysis. Propose to utilize the ideal
projection of Straight Separate Examination (SSE)
calculation to get more projection vectors by utilizing the
smaller scale turn strategy. These vectors are like the ideal
vector. MPEDC consolidates solo K-implies calculation to
settle on an exhaustive choice grouping adaptively. The
intensity of the proposed technique is shown on three
steganographic strategies with three component extraction
techniques. Test results show that the precision can be
improved utilizing iterative segregate characterization.
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I. INTRODUCTION

The conflict between Steganography &
Steganalysis has come to be fundamental impenetrability of
Information Security. The most popular steganalysis
mostly consists of function extraction and classifier
learning. For JPEG images, early aspects are at once used
in the DCT area to instruct the classifier. The CC-JRM
(JPEG wealthy model with Cartesian-calibration) [1]
characteristic uses the concept of feature fusion to fuse the
40 sub-models of inter block and intra-block statistical
houses of DCT model and the subset of eleven sub-models
of DCT essential co-occurrence matrices. Later, the
researchers proposed Discrete Cosine Transform Residual
(DCTR) [2] and Gabor Filter Residual (GFR) [3], which
are higher feature extraction methods. In this paper, we will
use these traditional aspects
to instruct the tremendous classifier.

As for characteristic classification, there exists a
large range of various computing device to gaining
knowledge tools employed in steganalysis. The Linear
Discriminate Analysis (LDA) ensemble classifier [4] can
maintain a quick running velocity underneath excessive
dimensional fact & exact accuracy. It carries multiple LDA
sub-classifiers & each sub-classifier randomly extracts
a part of the function to assemble the feature subspace. In
our model, we combine LDA & K-Means clustering [5],
[6] to greater precisely address the complicated
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issues arising in steganalysis, and make use of ensemble
learning to create the uniform detection model. Self-
learning ensemble discriminate clustering [7] effectively
utilized the ensemble gaining knowledge of idea to create
an ensemble classifier consisting of LDA and k-means
classifiers trained on a set of Stego and cover images to
remedy the problems of steganalysis in excessive
dimensional characteristic space.

Il. BACKGROUND
Both LDA & K-means are elegant first-
class cataloging strategies in Machine Learning. The built-
in classifier which combines LDA and K-means
can resolve stego free image steganalysis problems.

A. LDA and K-Means

The Linear Discriminate Analysis (LDA) is one of
the most generally utilized segregation basis in the
component grouping, which characterizes a projection
vector that makes the inside class disperse Sy littler and the
between-class dissipate Sy bigger. The LDA technique can
well decrease the dimensionality of picture highlights, and
it has a solid intensity of separation which is broadly used
to choose the element subspace. K-implies calculation, as a
hard grouping calculation, is a run of the mill illustrative of
the model based target work bunching strategy utilizing the
iterative change rules.
B. Self-Learning Ensemble Discriminate Clustering

Self-learning Ensemble Discriminate Clustering is
denoted as SEDC in [7], where the typical of every sample
point is projected onto the vector obtained by LDA and
used because the initial cluster center of the K-means
algorithm. The simplest projection direction w is given
which is defined by max J(w)as follows:

w'S,w
VT Sw

W (1)
To obtain max J(w), we minimizes Sy, and maximizes S.
w can be calculated by

-l
w=2S87"(u; —uy) @)

Where ul and u2 are the means of the cover and stego
features.
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Fig. 1 Block diagram of the proposed MPEDC. The random subspace of each example is constructed by sampling mg, << m feature randomly from the entire
feature space.

I1l. MULTI-PROJECTION ENSEMBLE DISCRIMINATE
CLUSTERING

The MPEDC (Multi-Projection  Ensemble
Discriminate Clustering) additionally incorporates the LDA
and K-implies calculations. For the decent variety of
separate, we attempt to display the arbitrary dispersion in
the classifier and search for a multi-projection course. The
separated highlights are utilized to prepare various sub-
classifiers. Figure 1 gives the general square graph of the
proposed MPEDC.

A. Problem Formulation

We note a classification problem with ny training
samples and feature with m-dimension. For my c {1,...,m},

|[my| = Mgy is the number of random subspace. In the vth
m, my, My
sampled subset, LDA is trained r.{, i }f'=1’
m,

{vm. vr_n. }a:_!_h. X
tested on <1 7770 =17 where i is Mgy, msub-
dimension feature from the original cover feature x; and
m,
Yi is msyp dimension feature from the original feature y; to
be detected, which are batch unlabeled feature data. ny and
N are the numbers of training and testing samples. We use
ul and u as means of the cluster in the cover and the
unlabeled testing feature, respectively. In the vth subspace,
the projection vector wy is obtained by LDA on the training
set.

and

The centroid of each class u; means u; =

, (j =1, 2), where n1 and n2 are the
number of cover and stego images to be detected
(unknown) [7] and @j is the jth cluster. For MPEDC, we
assume that the input cover images have labels and the
cover images to be detected have the same statistical
property, e.g. ul ~ ul. Therefore, u2 can be expressed as
:=0-0; =0-—uy (3)

Now, in the vth view, total scatter matrix S; and between
class scatter matrix Sp may therefore be expressed as:

5 = [_m et — W’
Z (4)

()

Where the total scatter matrix S; means S; = Sy + Sw. Fig. 1,

we need to get the vth projection vector wy, here,

w, =871 0 - dy) = (8§ - 8,)7 '@ - m)  (p)

B. Multi-Projection Accessing & K-Means Clustering
MPEDC calculation small scale pivot the

projection vector wy, which are like wi, and afterward

venture the examples onto various vectors approximating

the best projection vector for coordinated order to get

increasingly precise grouping results. w is as per the

following

=1
=10

y o =
dr oW,

&= ' Eﬂr.'.' +a

L ¥ ™
where wy is the yth projection vector obtained randomly
from wy. The operation .« means the element-by-element
multiplication. vy is a positive integer, which is a parameter

related to embedding rate r expressed as

r=(s
r=05

| 5 = round(10r),
| 0,

W=
(8)
where v and r are negatively correlated and 10r should be
an integer. If 10r is not an integer, we will round off this
value. According to the LDA algorithm, the a stands for a
randomly vector containing either positive or negative
elements with values close to zero. Therefore, a is defined
as
2h -1
] []I -1 (9)

where b is used to generate a random vector of
Mg dimensions with element values between 0 and 1.

d=

When calculating a¥, we can get the corresponding W
About the choice of parameter vy, we will explain more
specification in the experimental part of the article.

After obtaining multiple projections, MPEDC can
project W and@ of each  sub-classifier onto the

corresponding projection vector respectively as the first

R T 4 4

cluster center of K-means clustering, i.e., W1Wy = W W,

Every instance nearest to the clustering centroid will be
distributed to the corresponding class.

In each sub-classifier, there will be two categories

of cover and stego. MPEDC will re-cluster them with LDA

and K-means algorithms, which means these two categories

using LDA are projected onto a single vector for the
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supervised classification. The pseudo code of the iteration
process is presented in Algorithm 1, where the parameter T
is the number of iterations. The above-mentioned algorithm
is shown in Algorithm 2. The parameter L stands for the
number of the sub-classifier. In particular, Pe and t
represents the detection error and the number of
experiments, respectively.

IV. EXPERIMENTAL VERIFICATION

In our experiments, a total of 10,000 JPEG
grayscale images from the BOSS BASE 1.01 [8] with the
same size 512 x 512 and quality factors QF = 55 and QF =
85 are used as the unique covers. We performed nsF5 (no-
shrinkage F5) [9] and J-UNIWARD[8] steganographic
methods on the original images to produce 10,000 stego
images using CC-JRM[1], DCTR [2] and GFR [3]. All the
results are from the average of T = 10 times.

ALGORITHM A
Iteration Process

l:forT« 1totdo
2: Get tagged cover and stego images according to the
previous classification results;
3: Compute the best projection vector with LDA
algorithm by Eq. (2);
4: Run K-means: obtain the cluster label vector;
5: end for

ALGORITHM B
The proposed Clustering Algorithm
Ensure: Cluster label vector and Pe
1: for meantime «— 1to T do
2: Form a random subspace
Msup << M
3:forl« 1toKdo
4: Compute ul, u, u2, St, Sb by Egs. (3) — (5)
5: Compute the projections wy by Eq.  (6)
6: Compute rotated multi-projection w, v by Egs. (7)

-9)

my c{1,..m}, |my| =

7: Compute the projection vector for all samples &
their means, such as u®,, Y&\

8: Run K-means: obtain the cover, stego clusters and
their label vectors

9: Run iteration algorithm in Algorithm A

10: end for

11: end for

A. Detection Error Comparisons

In Tables 1-2, we can obviously see the error rates
of detecting the features of different steganalysis methods
in J-UNIWARD and nsF5 with different embedding rates.
For example, the error detection rates of MPEDC for
different embedding rates of DCTR features in J-
UNIWARD are almost lower than SEDC as QF = 75.
However, the CCIRM features with different embedding
rates show different characteristics, and the detection rate
of SEDC algorithm is lower than that of MPEDC at the
embedding rates of 0.2, 0.3
and 0.4, which are respectively 47.9%, 41.4% and 33.7%.
With the higher embedding rate, the detection is easier,
especially against nsF5. Also, both SEDC and MPEDC
methods have the poor performance on J-UNIWARD with
lower embedding rates.

From Tables 1-2, we can clearly see that there are
a few results that MPEDC is lower than SEDC. When
calculating the rotating multi-projection vector, b is a
random vector, so the vector obtained by the rotation has a
certain randomness, which may lead to a very small
number of cases that have a negative impact on the
classification result. Even if our experiment takes the
average of 10 experiments (t = 10), the negative effects
cannot be completely excluded. Moreover, most of the
classifiers do not have a good classification effect on the
features of low embedding rate, and the MPEDC algorithm
will amplify the negative effects on the features of low
embedding rate. As shown in Table 1, when the embedding
rate is 0.1 for the GFR (QF = 75), the error detection rate of
MPEDC is higher than SEDC by 2.6%.

Table 1: The detection errors for different steganalysis schemes using SEDC and MPEDC in J-UNIWARD of different payloads with QF = 75 and QF = 95

Payload (bpnzac)
QF Feature Method 01 02 03 04
CC-JRM SEDC 54.1% 48.9% 42.4% 34.7%
MPEDC 53.4% 20.4% 43.5% 35.4%
SEDC 53.3% 45.0% 33.1% 25.1%
% DCTR MPEDC 52.7% 44.4% 33.0% 22.0%
GER SEDC 47.7% 39.1% 25.4% 19.1%
MPEDC 50.3% 37.8% 25.2% 15.0%
CC-IRM SEDC 55.1% 55.0% 55.8% 48.2%
MPEDC 54.0% 53.7% 52.5% 48.2%
SEDC 54.1% 54.0% 49.9% 44.4%
8 DCTR MPEDC 55.3% 53.4% 49.5% 43.9%
GER SEDC 52.7% 51.7% 46.8% 39.9%
MPEDC 54.1% 51.4% 44.2% 36.3%
Table 2: The detection errors for different steganalysis schemes using SEDC and MPEDC in
nsF5 of different payloads with QF = 75 and QF = 95
Payload (bpnzac)
1QF Feature Method 0.05 01 015 02
CC-JRM SEDC 46.7% 26.5% 18.6% 11.5%
MPEDC 44.9% 28.0% 16.5% 8.7%
55 DCTR SEDC 45.0% 32.6% 20.1% 14.1%
MPEDC 48.7% 33.9% 17.6% 9.0%
GFR SEDC 48.4% 37.6% 27.1% 18.7%
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MPEDC 49.1% 36.7% 24.4% 15.3%

CC-JRM SEDC 40.5% 22.3% 13.3% 6.7%

MPEDC 41.4% 19.7% 7.8% 3.0%

SEDC 46.7% 30.7% 17.1% 8.4%

8 DCTR MPEDC 49.1% 28.4% 13.0% 4.6%

GER SEDC 50.8% 37.2% 28.4% 19.9%

MPEDC 48.4% 38.7% 26.1% 16.0%

Table 3: For the different features of the four embedding rates, as shown in the 12 sets of experiments in Tables 1-2, improving AVE of the detection rate of
MPEDC compared to SEDC
QF J-UNIWARD nskF5

QF CC-JRM DCTR GFR CC-JRM DCTR GFR
65 —0.55% 1.10% 0.65% 1.20% 0.55% 1.48%
85 0.658% 0.65% 1.18% 2.63% 1.85% 1.68%

In Table 3, we list the improved average error detection
rate (AVE) of MPEDC relative to SEDC under the four
embedding rates of the same feature. It can be seen that for

corresponding to the J-UNIWARD QF of 75 is slightly
worse, and the other 11 sets of experiments are greatly
improved, which also proves the effectiveness of our

the 12 sets of experiments in Tables 1-2, AVE approach.
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Fig. 2 For QF = 75, PE over ten iterations of DCTR against J-UNIWARD (payload = 0.5), GFR against J-UNIWARD (payload = 0.4), and CC-JRM against
nsF5 (payload = 0.1) with different dims of sub-classifiers, where iteration L, T and msub are 95, 10 and 1100, respectively

B. Iterative Weight Definition

In Fig. 2, we can clearly see that when the three of
features DCTR, GFR and CC-JRMare in the first iteration,
the detection error rate is reduced by a large margin, while
in more than second iterations, although the error rate is
reduced, the reduction rate is less. Considering the time
complexity and efficiency of our classification, we think
that the performance of the classifier is higher when the
number of iterations T is 1.

C. The Selection of Parameter y

The size of y has an important relation with the
embedding rate as Eq. (8). For example, when the
embedding rate is 0.2, the projection rotates slightly three
times; when the embedding rate is greater than or equal to
0.5, the projection does not rotate. In Eq. (8), 10r should be
an integer. When 10r is not an integer, we round off the r
value. For example, when the embedding ratio is 0.015, the
value of 10 x 0.015 is 0.15, and then we take the
approximation of r as 0.2 and the number of v as 3.

V. CONCLUSION

In this paper, we describe to the comfy association
between LDA and K-means clustering. At that point, turn a
projection acquired by the LDA calculation in an arbitrary
subspace and vyield roughly numerous projections to
consolidate LDA and K-implies grouping into MPEDC.
Exploratory outcomes show that the proposed strategy can
viably identify J-UNIWARD and nsF5 as the best in class
steganographic calculation. Particularly for steganographic
highlights with a high implanted rate, the identification
mistake rate is lower.
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