

IEEE 754 Floating Point Multiplier using Carry

Save Adder and Modified Booth Multiplier

K.

Lavanya

 K.

Navatha

M.Tech (EMBEDDED SYSTEMS) Assistant Professor

Electronics and Communication Engineering,

 Electronics And Communication Engineering

SR. Engineering, college, SR.

Engineering, college,

 Abstract-This paper describes design and implementation

of IEEE-754 single precision floating point using carry save

adder (CSA) and modified booth algorithm(MBA) and design

is compared in terms of speed, area and power consumption.

Adders were used to increase the speed; multipliers will help

in reducing power, area and also reduces generation of partial

products and speed up operation which helps in producing

accurate results. Floating point design involves detection of

exceptions and trap overflow and underflow. The algorithm is

implemented in Verilog HDL and simulation results observed

by using Xilinx ISE8.1i. Verification has been implemented on

Spartan 3E.

 Keywords- Carry save adder, floating point multiplier,

modified booth algorithm, Verilog HDL.

I. INTRODUCTION

 Floating point multiplier (FPU) is one of the most

common elements in digital applications such as Digital

signal processing, control units and image processing

because of its fast and rapid execution of arithmetic

operations in a circuit. Floating point (FP) acts as co-

processor that comprises arithmetic operations, adders and

multiplications. Floating point unit is used in all computer

processors which play an important role in processor to

perform math’s coprocessor which is designed to carry out

operations on floating point numbers, and it plays a very

important role in high performance applications such as

microprocessor, digital signal processing (DSP) [1] and

FIR filters. Math processor will help in increasing speed

and capability of a processor. In many applications

programmers has to put effort for maintaining proper

scaling of numbers to maintain precision and also to avoid

overflow for such type of applications we use floating

point which is specifically used to control the desirability

of dynamic ranges of fixed point operations.

 Now a day in many general purpose computer

architectures, one or more floating point units (FPU) are

integrated with central processing unit (CPU). Floating

point unit is an execution unit which is mainly designed to

perform mathematical operations like addition, subtraction

and multiplications and it also performs various

transcendental functions such as trigonometric or

exponential calculations and these operations are done

through software library routines in many advanced

processors

 In this paper single precision floating point multiplier unit

is implemented using pipelining and without pipelining

method. The multiplier and adder units are implemented

using modified booth multiplier and carry save adder

(CSA) [7]. Carry save adder is one of the fastest adder used

in digital circuits increase speed and reduces area, power,

and delay modified booth multiplier will help in increasing

speed and reduce generation of partial products by this it

reduce complexity of multiplication. Floating point (FP)

using pipelining method will improve continuous clock

cycle results and reduces consumption, latency and

increases speed.

II. IEEE754 FLOATING POINT UNIT

2.1 IEEE-74FLOATINGPOINT STANDARDS

 IEEE-754 standard is s standard representation

established by IEEE and widely used standard for floating

point computation. Single precession floating point

represents computer format and it occupies 32-bits in a

computer memory and represents a wide range of values by

using a floating point. In IEEE 754-2008, the 32-bit with

base 2 formats [2][6] is referred as single precision or

binary 32.

The standard basically has four types and they are

 Arithmetic format: it is a set of binary and decimal floating

point numbers which has finite numbers that contains

signed zero, subnormal and infinite numbers and special

value called” not a number”(NaN).

 Interchange format: it is a bit string or encodings that are

mainly used to exchange floating point data in a compact

and efficient form.

 Rounding rules: properties should be satisfied while doing

arithmetic operations and conversion of any numbers on

arithmetic formats.

 Exception handling: It indicates any exceptional conditions

like overflow, underflow etc., while doing operations.

Warangal, India. Warangal, India

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090839

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

913

III.

IEEE-754 FLOATING POINT FORMAT

 IEEE is a technically used standard followed by many

hardware and software implementation. Single precision

floating point standard represents 32bits (4bytes) in

computer number format, most significant bit will start

from left this single precision is having three basic

components sign, exponent and mantissa sign bit width is 1

bit, exponent of width is 8bits and mantissa of 24 bits out

of which 23 bits are explicitly stored [6] and 1 bit is

implicitly stored, sign bit is used represent sign of floating

point number where sign(s=o positive numbers=1 negative

number)

31 30 23 22 0

S Exponent (E) Fraction (F)

 1bit 8bit 23 bits

Fig 3.1 32 Bit single precession floating point

 The Number representation of single precession [9].

Value = (-1) s *2E-127 * 1.M (normalized) when E>0

S= sign bit (0 for positive, 1 for negative)

e=unbiased exponent; e=E-127(bias)

E=exponent it can be signed or unsigned integer, 8-bit

signed integer it ranges from𝐸𝑚𝑖𝑛 = - 128 to

𝐸𝑚𝑎𝑥 =127(2’compliment) and for unsigned it ranges from

𝑒𝑚𝑖𝑛 =0 to 𝐸𝑚𝑎𝑥 =255 which is the accepted biased form in

IEEE 754 single precession. In this exponent with value

127 represents actual zero. The true mantissa will have 23

fraction bits to the right of binary point and implicit to left

of binary point with value 1unless exponent bit is stored

with zeros. In memory we can see only 23 fraction bits in

mantissa even though it has 24bit.If E>0 and E<255 and

has 1 in MSB of significant then that number is said to be

normalized number.

3.1 FLOATING POINT MULTIPLICATION ALGORTHIM

 Floating point multiplications are used in many digital

circuits and signal processing computations, floating point

multiplication design involves overflow and

underflow[1][5][9]. In this normalized floating point

number have the form of Z=X*Y= (- 1S) * 2 (E - Bias) *

(1.M).

To multiply two floating point numbers it involves

following steps [8]:

 If one or both operand is equal to zero I results

zero otherwise

 Multiplying the significant bits in mantissa(X*Y)

 Adding the exponent of two numbers and then the

result will be subtracted from bias (E1+E2-Bias).

 Obtains the sign bit (X XOR Y).

 Normalizing the result if needed, by shifting

mantissa to right and incrementing exponent result.

 Rounding the results to the allowed mantissa bits.

 Checking for overflow and underflow

1. Overflow occurs when result is greater than

maximum exponent.

2. Underflow, when result is smaller than minimum exponent.

Fig 3. 2. Floating point multiplication flow chart.

3.1.1. Radix-4Modified booth encoder

Booth algorithm is an important algorithm that is used to

implement signed number multiplication, which treats both

positive and negative numbers uniformly [3]. The

disadvantages that occurred in booth algorithm can be

overcome by using this Modified booth encoder technique,

which was proposed by O.L.Macsorely.in modified booth

it is possible to reduce partial products by half i.e. for n-

multiplier bits we get n/2+1 partial products[4]. Modified

booth is twice faster than normal booth multiplier and one

of the efficient way by which it can reduce partial products

by grouping two consecutive bits and uses two operands to

perform signed bit. The booth encoded operand is called

multiplier and other operand is multiplicand. In this

technique it compares 3bits at a time by using overlapping

technique, grouping of bits are taken from LSB, and first

block use only two bits and for third bit it will assume as

zero [3]. The functional operation of radix-4 modified

booth is shown in table1.

Radix-4 booth algorithm is shown below [3]:

1. Extend the sign bit 1 position if necessary to ensure that n

is even.

2. Assume a zero at right end of LSB of a multiplier

3. According to the values of each block taken in multiplier

will take partial products by 0, +y,-y, +2y,-2y.

 Table1: Radix4 Modified Booth Encoder

3.2 Carry save Adder

Carry save adder (CSA) design [7] is used in high speed

multioperand adder. Carry save adder is a standalone full

adder and carries out number of partial products, without

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090839

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

914

any carry chain operations. Carry save adder is mainly used

to calculate partial products that are generated by integer

multipliers. By using carry save adder it is possible to

reduce delay. In carry save adder N-bits contain N-disjoint

full adders [3] in which it contains single sum and carry

which depends on inputs. Carry save adder is known as

(3:2) counter or compressor that is it takes 3 inputs and

produces 2outputs without any carry chain. Carry save

adder not only solve adder problems but it also solves

different problems that occurs in a digital system, carry

save adder can compress n-bits by taking any type of adder

in place of full adder we take ripple carry adder as ripple

adder is cascaded with full adders we use ripple adder as

sub block in carry save adder.

Fig.3.3 Carry save Adder

3.2.1 Ripple Carry Adder

 Another known adder is ripple carry adder (RCA) and

it is composed of cascaded full adders for n-bit adder as

shown in above fig .ripple carry adder is constructed with

the help of full adder blocks and these adders are arranged

in series. The carry out of one stage is fed directly to the

carry-in of the next stage. For an n-bit parallel adder it

requires n full adders. It is used to obtain the final sum and

carry output by adding partial products. In this adder at

each stage input (𝑐𝑖𝑛)is carry output (𝑐𝑜𝑢𝑡)of previous

adder stages[7] i.e., each carry bit ripples to next full adder

and is called as ripple carry adder(RCA)

Logic equations:

𝐺𝑖=carry generation function

𝑃𝑖=carry propagation function

𝐺𝑖 = 𝑋𝑖𝑌𝑖 𝑃𝑖 = 𝑋𝑖𝑋𝑂𝑅𝑌𝑖

 𝐶𝑖+1 = 𝐺 + 𝑃𝑖𝑐𝑖 𝑆𝑖 = 𝑃𝑖𝑋𝑂𝑅𝐶𝑖

Fig 3.4.Rripple carry adder

3.3.Floating point multiplier using pipeling

 pipeline technique will help a circuit to operate at

higher clock rates by dividing lage task into small subtasks

without overlapping,it helps in reducing the complexity of

a circuit.pipeline multiplier[10]

is suitable to perform

higher

arthimatic operations such as digital singals.Floating

point multiplier architecture is mainly used to reduce

delay.pipelined architecture provides fast response and also

consumes more area,pipeline produce a flexible data path

which is easy o modify then fixed datapath and reduces

maintenance time,and it also reduces clock period and

increases latency[10].In this floating point multipler using

pipeline use modified booth multiplier of 26bits and it is

divide into 3 stage pipeline.in this pipeline stage one

represent check zero module stage two will check for sign

bits and stage three represents normalizer and finall results.

To multiply two operand in pipeline multiplier it involves

following steps

1.

Check for zero module that is operands are checked

whether zero_flag has zero or one if it as zero then it

will initiallise to all stages and resultant output will be

zero,if zero_flag is one in

any operand

then

input will

assign IEEE754

format and connected to check

sign,add exponent and mantissa

2.

Check sign will represent whether operand bits used in

pipeline multiplier hast positive sign or negative sign bits

i.e.,if both operands have same sign bit then it represent

positive sign otherwise negative sign.

3.

Add exponent will show whether module is in active state

or not (if zero_flag is set then active otherwise zero will be

passed to next state and set zero_flag to 0)

4.

Multiply mantissa will check for zero_flag.if zero is set

then no caluculations will be done.if mantissa is set to 0

then multiplier operation will be done, if mantissa has 1

hen it shows that execution is done.

5.

Normalizer will check for overflow and underflow.

Fig 3.5.Stage Pipeline Multiplier

IV. SIMULATION RESULTS

Simulation results shown below are implemented using

Verilog HDL using Xilinx ISE 8.1i.and implemented in

spatarn3E.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090839

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

915

Number of bonded IOs

25 out of 66

XORs

12

IOs

26

Delay

13.121ns

TABLE.3.SYNTHESIS REPORT FOR RADIX4 MODIFIED BOOTH

MULTIPLIER

Types of Parameters

Used

Number of slices

1244

Number of 4 input LUTs

2332

Bonded IOs

105

Adders

53

Registers

52

Multiplexers

13

Flip-flops

52

IO Buffers

104

OFFSET

107.637ns

Clock buffer

1

TABLE.4.

SYNTHESIS REPORT FOR FLOATING POINT WITH

PIPELINING AND WITHOUT PIPELINING

Types of

parameters

Floating point

without pipeline

Floating point with

pipeline

Number of slices

1921

1099

Number of 4 input

LUTSs

3629

2033

Number of bonded
IOs

99

99

IOs

99

99

IO buffers

98

98

Adders

53

53

Flip-flops

193

193

Registers

193

199

Comparators

4

4

Multiplexers

13

13

Xors

25

25

Clock period

163.749ns

6.625ns

Clock frequency

6.107Mhz

159.899Mhz

delay

81.874

6.254ns

Fig.4.1.

RTL Schematic of Floating Point Multiplier without Pipelining

Fig.4.2. Simulation Results for Floating Point Multiplier without Pipeline

Fig.4.3.RTL of Floating Point Pipelined Multiplier.

Fig.4.4.Simulation Results for Floating Point using pipeline

V. CONCLUSION

In this paper we implemented single precision floating

point multiplier with and without pipelining using Xilinx

8.1i and is implemented in Spartan 3E,and observed that

floating point multiplier with pipeline is having high speed

performance. It has less delay and less clock period then

floating point multiplier without pipelining and also

pipelining has reduced complexity and offers high

throughput with low latency. It can be implemented in any

type of processor and is also suitable for system on

chip(Soc) prototyping.

 REFERENCES

1. P. Belanovi´c and M. Leeser. A Library of Parameterized Floating Point
Modules and Their Use. In Proceedings, International Conference on

Field Programmable Logic and Applications, Montpelier, France, Aug.

2002.

2. IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic, 2008.
3. Radix-4 Encoder Booth Multiplier

4. A High-Speed Multiplication Algorithm Using Modified Partial Product

Reduction Tree P. Asadee, International Journal of Electrical and
Electronics Engineering, 4: 4, (2010).

5. D. Sangwan and M. K. Yadav, “Design and Implementation of
Adder/Subtractor and Multiplication Units for Floating-Point Arithmetic”,

in International Journal of Electronics Engineering, (2010), pp. 197-203.

6. An ANSI/ IEEE Standard for Radix-Independent Floating-Point
Arithmetic, Technical Committee on microprocessor of IEEE computer

society, October, 1987.

7. P.Sreenivasulu, Dr. K.Srinivasa Rao, Malla Reddy and Dr.A.Vinay Babu
―Energy and Area efficient Carry Select Adder on a reconfigurable

hardware‖ International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 ,Vol. 2, Issue 2, Mar-Apr 2012pp.436-440.

8. IEEE Floating Point Representation of Real Number, Fundamentals of

Computer Science. Link:

http://www.math.grin.edu/~stone/courses/fundamentals/ieee- reals.html
9. L. Louca, T. A. Cook and W. H. Johnson, “Implementation of IEEE

Single Precision Floating Point Addition and Multiplication on FPGAs”,

Proceedings of 83rd IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM‟96), (1996), pp. 107–116.

10. Amine Bermark, Guixuan Liang and Qingzheng, “A High-speed 32-bit
Signed/ Unsigned Pipelined Multiplier”, Department of Electronics and

Computer Engineering, Honkong University of Science and Technology,

Hong Kong, China.

TABLE.2.SYNTHESIS REPORT FOR CARRY SAVE ADDER

Types of Parameters Used and Available

Number of slices 10 out of 960

Number of 4 input LUTs 17 out of 1920

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090839

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

916

