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Abstract 
 

In recent years, there has been important concentration 

in the expansion of ranking functions and capable top-k 

rescue algorithms to help users in ad-hoc search and 

rescue in databases (e.g., buyers searching for 

products in a catalog). We introduce a complementary 

problem: how to guide a seller in picking the best 

peculiarities of a new tuple (e.g., a new product) to 

highlight so that it stands out in the crowd of existing 

competitive products and is widely visible to the pool of 

potential buyers. We develop several formulations of 

this problem. Although the problems are NP-complete, 

we give several exact and approximation algorithms 

that work well in practice. One type of exact algorithms 

is based on Integer Programming (IP) formulations of 

the problems. Another class of exact methods is based 

on maximal regular itemset mining algorithms. The 

approximation algorithms are based on greedy 

heuristics. A detailed performance study illustrates the 

benefits of our methods on real and synthetic data. 

 

Key Words: Data mining, information and facts, 

engineering tools and procedures, advertising, 

withdrawal methods and algorithms, rescue designs. 

 

 

I. INTRODUCTION 
In recent years, there has been significant interest in 

developing effective procedures for ad-hoc search and 

rescue in unstructured as well as structured data 

repositories, such as text collections and relational 

databases. In particular, a large number of emerging 

applications require exploratory querying on such 

databases; examples include users wishing to search 

databases and catalogs of products such as mobiles, 

cars, cameras, restaurants, or articles such as news and 

job ads. Users browsing these databases typically 

execute search queries via public front-end interfaces to 

these databases. Typical queries may specify sets of 

keywords in case of text databases, or the desired 

values of certain peculiarities in case of structured 

relational databases. The query-answering system 

answers such queries by either returning all data objects 

that satisfy the query conditions, or may rank and 

return the top-k data objects, or return the results that 

are on the query’s skyline. If ranking is employed, the 

ranking may either be simplistic – e.g., objects are 

ranked by an attribute such as Price; or more 

sophisticated – e.g., objects may be ranked by the 

degree of “relevance” to the query. While unranked 

rescue (also known as Boolean Rescue) is more 

common in traditional SQL-based database systems, 

ranked rescue (also known as Top-k Rescue) is more 

common in text databases, e.g. tf-idf ranking [20]. 

Recently there has been widespread interest in 

developing suitable top-k rescue procedures even for 

structured databases [1, 7, and 30]. Skyline rescue 

semantics is also investigated where a data point is 

retrieved by a query if it is not dominated by any other 

data point in all dimensions [4, 19, 22, 25, 29, and 31]. 

 

Screening Peculiarities for greatest Perceptibility: 

We distinguish between two types of users of these 

databases: users who search such databases trying to 

locate objects of interest, and users who insert new 

objects into these databases in the hope that they will 

be easily discovered by the first type of users. For 

example, in a database representing an e-marketplace 

the former type of users are potential buyers of 

products; while the latter type of users are sellers of 

products. Almost all of the prior research efforts on 

effective search and rescue procedures – such as new 

top-k algorithms, new relevance measures, and so on – 

have been designed with the first kind of user in mind 

(i.e., the buyer). In contrast, less research has been 

addressing procedures to help a seller/manufacturer 

insert a new product for sale in such databases that 

markets it in the best possible manner – i.e., such that it 

stands out in a crowd of competitive products and is 

widely visible to the pool of potential buyers. 

It is this latter problem that is the main focus of this 

paper. To understand it a little better, consider the 

following scenario: assume that we wish to insert a 

classified ad in an online newspaper to advertise about 

cars, mobiles and cameras for sale. Our products may 

have numerous peculiarities (it will have power 

window, four door, petrol, diesel, etc). However, due to 

the ad costs involved, it is not possible for us to 

describe all peculiarities in the ad. So we have to select, 

say the ten best peculiarities. Which ones should we 

select? Thus, one may view our effort as an attempt to 

build a recommendation system for sellers, unlike the 

more traditional recommendation systems for buyers. It 

may also be viewed as inverting a ranking function, 

i.e., identifying the argument of a ranking function that 

will lead to high ranking scores.  
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This general problem also arises in domains beyond 

ecommerce applications. For example, in the design of 

a new product, a manufacturer may be interested in 

picking the ten best features from a large wish-list of 

possible features – e.g., new car can have the feature of 

high mileage. To define our problem more formally, we 

need to develop a few abstractions. Let D be the 

database of products already being advertised in the 

marketplace (i.e., the “competition”). In addition, let Q 

be the set of search queries that have been executed 

against this database in the recent past – thus Q is the 

“workload” or “query register”. For a new product that 

needs to be inserted into this database, we assume that 

the seller has a complete “ideal” description of the 

product. Our problem can now be defined as follows: 

 

PROBLEM:  

Given a database D, a query register Q, a new tuple 

t, and an integer m, determine the best (i.e., top- m) 

peculiarities of t to retain such that if the shortened 

version of t is inserted into the database, the number of 

queries of Q that retrieve t is exploited.  

We consider several variants, including Boolean, 

categorical, text and numeric data, and conjunctive and 

disjunctive query semantics. We also consider variants 

in which the “budget”, i.e., m, is not specified; in this 

case our objective is to determine the value of m such 

that the number of satisfied queries divided by m is 

exploited. Thus we seek to exploit the “per dollar” 

benefit. A special case of this no- budget variant is 

when ranking is performed using functions that are 

non-monotone on the number of specified peculiarities 

(keywords), such as the BM25 [18] scoring function 

used in Information Rescue. 

We analyze the computational complexity of these 

problems, and show that most variants are NP-

complete. We develop two types of methods yielding 

optimal solutions: (a) procedures based on Integer 

Programming (IP) and Integer Linear Programming 

(ILP) methods, which work well for moderate-sized 

problem instances, and (b) more scalable solutions 

based on novel adaptations of maximal regular set 

algorithms that also allow us to leverage several 

preprocessing opportunities. 

 

Main Contributions:  

The main contributions of this paper may be 

summarized as follows: 

1. We introduce the problem of identifying peculiarities 

of a tuple for exploit perceptibility as a new data 

exploration problem. We consider several 

interesting variants of the problem as well as diverse 

application scenarios.  

2. We analyze the computational complexity of the 

different variants of the problem and show that most 

of them are NP-complete. 

3. We develop optimal Integer Programming (IP) and 

Integer Linear Programming (ILP) based algorithms 

to solve certain variants of the problem. These 

algorithms are effective for moderate-sized problem 

instances.  

4. For certain problem variants, we also develop more 

scalable optimal solutions based on novel 

adaptations of maximal regular itemset algorithms. 

Furthermore, in contrast to ILP-based solutions, we 

can leverage preprocessing opportunities in these 

approaches. 

5. We also develop fast greedy approximation 

algorithms that work well for all problem variants. 

6. We perform detailed performance evaluations on 

both real as well as synthetic data to demonstrate 

the effectiveness of our developed algorithms. 

 

II. FUNDAMENTALS 

First we provide some useful definitions. 

Boolean Database: Let D = {t1…tN} be a collection of 

Boolean tuples over the attribute set A = {a1…aM}, 

where each tuple t is a bit-vector where a0 implies the 

absence of a feature and a1 implies the presence of a 

feature. A tuple t may also be considered as a subset of 

A, where an attribute belongs to t if its value in the bit-

vector is 1. 

Tuple Domination: Let t1 and t2 be two tuples such that 

for all peculiarities for which tuple t1 has value 1, tuple 

t2 also has value 1. In this case we say that t2 

dominates t1. 

Tuple Compression: Let t be a tuple and let t′ be a 

subset of t with m peculiarities. Thus t′ represents a 

compressed representation of t. equally, in the bit-

vector representation of t, we retain only m 1’s and 

convert the rest to 0’s. 

Query Register: Let Q = {q1…qS} be collection of 

queries where each query q defines a subset of 

peculiarities.  

III. MAJOR TROUBLES DEVIATION: 

CONJUNCTIVE BOOLEAN WITH QUERY 

REGISTER 
In this section we formally define the main problem 

for Boolean data. In Section 3.1 we formally define the 

problem and in Section 4 we provide algorithms for 

this problem variant.  

Conjunctive Boolean Rescue: We view each query 

as a conjunctive query. A tuple t satisfies a query q if q 

is a subset of t. For example, a query such as {a1, a3} is 

equivalent to “return all tuples such that a1= 1 and a3 = 

1”. Alternatively, if we view q as a special type of 

“tuple”, then t dominates q. The set of returned tuples 

R (q) is the set of all tuples that satisfy q. In this 

problem variant as well as in most of the variants 

defined later, our task is to compress a new tuple t by 

retaining the best set of m peculiarities (i.e., top-m 

peculiarities) such that some criterion is optimized. 

3.1 Problem Definition 
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Conjunctive Boolean - Query Register (CB-QR): 
Given a query register Q with Conjunctive Boolean 

Rescue semantics, a new tuple t, and an integer m, 

computes a compressed tuple t′ having m peculiarities 

such that the number of queries that retrieve t′ is 

exploited. 

Intuitively, for buyers interested in browsing 

products of interest, we wish to ensure that the 

compressed version of the new product is visible to as 

many buyers as possible. This problem also has a per-

attribute version where m is not specified; in this case 

we may wish to determine t′ such that the number of 

satisfied queries divided by |t′| is exploited. Intuitively, 

if the number of peculiarities retained is a measure of 

the cost of advertising the new product, this problem 

seeks to exploit the number of potential buyers per 

advertising dollar. 

 

CAM 

ID 
Flash Pixel Battery 

TV 

Kit 
Memory 

t1 0 1 0 1 0 

t2 0 1 1 0 0 

t3 1 0 0 1 1 

t4 1 1 0 1 0 

t5 1 1 0 0 0 

t6 0 1 0 1 0 

t7 0 0 1 1 0 

DATABASE D 

 
Query 

ID 
Flash Pixel Battery 

TV 

Kit 
Memory 

q1 1 0 1 1 1 

q2 1 1 0 0 0 

q3 0 1 1 0 0 

q4 0 0 1 0 1 

q5 1 1 0 1 0 

Query Register Q 

 
New 

CAM 
Flash Pixel Battery 

TV 

Kit 
Memory 

t 1 1 0 0 1 

New tuple t to be inserted 
 

Fig 1: Illustrating the Fundamentals 

IV.ALGORITHMS FOR CONJUNCTIVE 

BOOLEAN WITH QUERY REGISTER 
In this section we discuss our main algorithmic 

results for the main problem variant discussed in 

Section 3. 

4.1 Optimal Brute Force Algorithm 
Clearly, since CB-QR is NP-hard, it is unlikely that 

any optimal algorithm will run in polynomial time in 

the worst case. The problem can be obviously solved 

by a simple brute force algorithm (henceforth called 

Brute- Force-CB-QR), which simply considers all 

combinations of m-peculiarities of the new tuple t and 

determines the combination that will satisfy the 

maximum number of queries in the query register Q. 

However, we are interested in developing optimal 

algorithms that work much better for typical problem 

instances. 
 

4.2 Optimal Algorithm based on Maximal Regular   

Itemsets 

The algorithm based on Integer Linear 

Programming described in the previous subsection has 

certain limitations; it is impractical for problem 

instances beyond a few hundred queries in the query 

register. The reason is that it is a very generic method 

for solving arbitrary integer linear programming 

formulations, and consequently fails to leverage the 

specific nature of our problem. In this subsection we 

develop an alternate approach that scales very well to 

large query registers. This algorithm, called Max- 

FreqItemSets-CB-QR, is based on an interesting 

adaptation of an algorithm for mining Maximal Regular 

Itemsets [7].  

 

4.2.1 The Regular Itemset Problem 

Let R be an N-row Mcolumn Boolean table, and let 

r > 0 be an integer known as the verge. Given an 

itemset I (i.e., a subset of peculiarities), let freq (I) be 

defined as the number of rows in R that “support” I 

(i.e., the set of peculiarities corresponding to the 1’s in 

the row is a superset of I). Compute all itemsets I such 

that freq (I) > r.  

Computing regular itemsets is a well studied 

problem and there are several scalable algorithms that 

work well when R is sparse and the verge is suitably 

large. Examples of such algorithms include [2, 15]. In 

our case, given a new tuple t, recall that our task is to 

compute t′, a compression of t by retaining only m 

peculiarities, such that the number of queries that 

satisfy t′ is exploited. This immediately suggests that 

we may be able to leverage algorithms for regular 

itemsets mining over Q for this purpose. However, 

there are several important complications that need to 

be overcome, which we elaborate next. 
 

4.2.2 Balancing the Query Register 

Firstly, in itemset mining, a row of the Boolean 

table is said to support an itemset if the row is a 

superset of the itemset. In our case, a query satisfies a 

tuple if it is a subset of the tuple. To overcome this 

conflict, our first task is to complement our problem 

instance, i.e., convert 1’s to 0’s and vice versa. Let ~t 

(~q) denote the complement of a tuple t (query q), i.e., 

where the 1’s and 0’s have been interchanged. Likewise 

let ~Q denote the complement of a query register Q 

where each query has been complemented. Now, freq 

(~t) can be defined as the number of rows in ~Q that 

support ~t. Rest of the approach is now seemingly 

clear: compute all regular itemsets of ~Q (using an 
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appropriate verge to be discussed later), and from 

among all regular itemsets of size M – m, determine the 

itemset I that is a superset of ~t with the highest 

frequency. The optimal compressed tuple t’ is therefore 

the complement of I, i.e., ~I. However, the problem is 

that Q is itself a sparse table, as the queries in most 

search applications involve the specification of just a 

few peculiarities. Consequently, the complement ~Q is 

an extremely dense table and this prevents most regular 

itemset algorithms from being directly applicable to 

~Q. For example, most “level-wise algorithms” (such 

as Apriori [1], which operates level by level of the 

Boolean lattice over the peculiarities set by first 

computing the single itemsets, then itemsets of size 2, 

and so on) will only progress past just a few initial 

levels before being overcome by an intractable 

explosion in the size of candidate sets. To see this, 

consider a table with M=50 peculiarities, and let m = 

10. To determine a compressed tuple t′ with 10 

peculiarities, we need to know the itemset of ~Q of size 

40 with maximum frequency. Due to the dense nature 

of ~Q, algorithms such as Apriori will not be able to 

compute regular itemsets beyond a size of 5-10 at the 

most. Likewise, the sheer number of regular itemsets 

will also prevent other algorithms such as FP-Tree [9] 

from being effective. 

We have developed an adaptation of regular itemset 

mining algorithms to overcome this problem of 

extremely dense datasets. Before we describe details of 

our approach, let us discuss the issue of how the verge 

parameter should be set. 
 

4.2.3 Setting of the Verge Parameter 

We can solve the problem of itemset mining of 

extremely dense datasets. What should be the setting of 

the verge? Clearly setting the verge r=1 will solve CB-

QR optimally. But this is likely to make any itemset 

mining algorithm impractically slow. 

There are two alternate approaches to setting the 

verge. One approach is essentially a heuristic, where 

we set the verge to a reasonable fixed value dictated by 

the practicalities of the application. The intuition is that 

the verge enforces that peculiarities should be selected 

such that the compressed tuple is satisfied by a certain 

minimum number of queries. For example, a verge of 

1% means that we are not interested in results that 

satisfy less than 1% of the queries in the query register, 

i.e., we are attempting to compress t such that at least 

1% of the queries are still able to retrieve the tuple. It is 

important to note that for a fixed verge setting such as 

this, one of two possible outcomes can occur. If the 

optimal compression t′ satisfies more than 1% of the 

queries, the algorithm will discover it. If the optimal 

compression satisfies less than 1% of the queries, then 

the algorithm will return empty.  

We also suggest an alternate adaptive procedure of 

setting the verge that is guaranteed to find the optimal 

compression. First initialize the verge to a high value 

and compute the regular itemsets of ~Q. If there are no 

regular itemsets of size at least M – m that are supersets 

of ~t, repeat the process with a smaller verge which is 

half of the previous verge.  

We now return to the task of how to compute regular 

itemsets of the dense Boolean table ~Q. In fact, we do 

not compute all regular itemsets of the dense table ~Q, 

as we have already argued earlier that there will be 

prohibitively too many of them. Instead, our approach 

is to compute the maximal regular itemsets of ~Q.  
 

4.2.4 Random Walk to Compute Maximal Regular 

Itemsets: A maximal regular itemset is a regular 

itemset such that none of its supersets are regular. The 

set of maximal regular itemsets are much smaller than 

the set of all regular itemsets. For example, if we have a 

dense table with M peculiarities, then it is quite likely 

that most of the maximal regular itemsets will exist 

very high up in the Boolean lattice over the 

peculiarities, very close to the highest possible level M. 

Fig 2 shows a conceptual diagram of a Boolean lattice 

over a dense Boolean table ~Q. The shaded region 

depicts the regular itemsets and the maximal regular 

itemsets are located at the highest positions of the 

border between the regular and irregular itemsets. 

 
Fig 2: Maximal Regular Itemsets in a Boolean Lattice 

There exist several algorithms for computing 

maximal regular itemsets, e.g. [3, 5, 12, and 14]. We 

base our approach on the random walk based algorithm 

in [7], which starts from a random singleton itemset I at 

the bottom of the lattice, and at each iteration, adds a 

random item to I (from among all items A - I such that 

I remains regular), until no further additions are 

possible. At this point a maximal regular itemset I have 

been discovered. If the number of maximal regular 

itemsets is relatively small, this is a practical algorithm: 

repeating this random walk a reasonable number of 

times will with high probability discover all maximal 

regular itemsets. However, since this algorithm is based 

on traversing the lattice from bottom to top, it implies 

that the random walk will have to traverse a lot of 

levels before it reaches a maximal regular itemset of a 

dense table. 
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Fig 3: Two Phase Random Walk 

Instead, we propose an alternate approach which 

starts from the top of the lattice and traverses down. 

Our random walk can be divided into two phases: (a) 

Down Phase: starting from the top of the lattice (I = 

{a1a2…aM}), walk down the lattice by removing 

random items from I until I becomes regular, and (b) 

Up Phase: starting from I, walk up the lattice by adding 

random items to I (from among all items A - I such that 

I remains regular), until the no further additions are 

possible. At this point a maximal regular itemset I have 

been discovered.  

Fig 3 shows an example of the two phases of the 

random walk. What is important to note is that this 

process is much more capable than a bottom-up 

traversal, as our walks are always confined to the top 

region of the lattice and we never have to traverse too 

many levels. Complementing the query register 

eventually results in a dense dataset. In a dense dataset, 

maximal regular itemsets are usually at the top of the 

lattice. That is, they are close to level M - m, where m 

is comparatively much smaller than M. If a bottom-up 

approach is used to find maximal regular itemsets, it 

will have to traverse a long portion of the lattice (i.e., 

too many levels) and will be incapable. Whereas, in 

top-down approach, the first phase tries to find the first 

regular itemset along the path from the top which is 

usually close to a maximal regular itemset, the walks 

are confined to the top region of the lattice and we 

never have to traverse too many levels.  
 

4.2.5 Complexity Analysis of a Random Walk 

Sequence 

In the worst case, the cost of a down-up random 

walk is 2.M.|Q|, where M is the total number of 

peculiarities and |Q| is the size of the query register. 

Although in the worst case the random walk will go up 

and down the whole lattice, in practice we only expect 

each portion of the walk to traverse only a few levels at 

the top of the lattice.  

4.2.6 Number of Iterations 

Repeating this two phase random walk several times 

will discover, with high probability, all the maximal 

regular itemsets. The actual number of such iterations 

can be monitored adaptively; our approach is to stop 

the algorithm if each discovered maximal regular 

itemset has been discovered at least twice (or a 

maximum number of iterations have been reached). 

This stopping heuristic is motivated by the Good-

Turing estimate for computing the number of different 

objects via sampling [4].  

 

4.2.7 Regular Itemsets at Level M – m 

Finally, once all maximal regular itemsets have 

been computed, we have to check which ones are 

supersets of ~t. Then, for all possible subsets (of size M 

– m) of each such maximal regular itemset (see Fig 4), 

we can determine that subset I that is (a) a superset of 

~t, and (b) has the highest frequency.  

 
Fig 4: Checking Regular Itemsets at Level M-m 

The optimal compressed tuple t′ is therefore the 

complement of I, i.e., ~I. In summary, the pseudo-code 

of our algorithm Max- FreqItemSets-CB-QR is shown 

in Fig. 5. Details of how certain parameters such as the 

verge are set, are omitted from the pseudo-code. 
 

4.2.8 Preprocessing Opportunities 

Note that the algorithm also allows for certain 

operations to be performed in a preprocessing step. For 

example, all the maximal itemsets can be recomputed, 

and the only task that needs to be done at runtime is to 

determine, for a new tuple t, those itemsets that are 

supersets of ~t and have size M – m. If we know the 

range of m that is usually requested for compression in 

new tuples, we can even recomputed all regular 

itemsets for those values of m, and lookup the itemset 

with the highest frequency at runtime. 
 

4.2.9 The Per-Attribute Variant 

CB-QR has a per attribute variant, where m is not 

provided as an input, and we have to determine the best 

m such that number of satisfied queries divided by m is 

exploited. This variant can be simply solved by trying 

out values of m between 1 and M and making M calls 

to any of the algorithms discussed above, and picking 

the solution that exploits our objective. Since we adopt 

this general strategy for all per-attribute problem 

variants, we do not discuss such variants any further in 

this paper. 
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Fig 5: Algorithm MaxFreqItemSets-CB-QR 

 

V. PROBLEMS VARIANT FOR TEXT DATA 

 

5.1 Text Data Problem Definition 

A text database consists of a collection of 

documents, where each document is modeled as a bag 

of words as is common in Information Rescue. Queries 

are sets of keywords, with top-k rescue via query-

specific scoring functions, such as the tf-idf-based 

BM25 scoring function [18]. This problem arises in 

several applications, e.g., when we wish to post a 

classified ad in an online newspaper and need to 

specify important keywords that will enable the ad to 

be visible to the maximum number of potential buyers. 

A subtle point is that, due to the non-monotonicity of 

many IR ranking functions, it is possible that a top-m1 

tuple compression is worse (fewer queries retrieve 

document t’) than a top-m2 compression, where m1 > 

m2. The attribute selection problem for text data is also 

NP-complete as it can be converted into Boolean 

problem considering each keyword as a Boolean 

attribute. The problem is NP-hard for the case of 

monotone ranking function, as in CB-QR. Hence, it is 

also NP-hard for the more complex non-monotonic 

ranking functions.  
 

5.2. Algorithms for Text Data 

As discussed above, text data can be treated as 

Boolean data, and all the algorithms developed for 

Boolean data can be used for text data. There are two 

issues that we wish to highlight, however. One is that if 

we view each distinct keyword in the text corpus (or 

query register) as a distinct Boolean attribute, the 

dimension of the Boolean database is enormous. 

Consequently, none of the optimal algorithms, either 

IP-based or regular itemset-based, are feasible for text 

data. Fortunately, the greedy heuristics we have 

developed scale very well with reasonable results, as 

described in the experiments section. The second issue 

is that some of the scoring function that are used in text 

data – e.g., the BM25 scoring function that takes into 

account the document length (size of compressed tuple 

t′) – are non-monotonic on the number of keywords 

added. In particular, adding a query keyword to t′ may 

decrease its BM25 score if this keyword has very low 

inverse document frequency (idf). Consequently the 

per-attribute versions of our various problem variants 

are of interest. 
 

VI. EXPERIMENTS 

In this section we describe the experimental setting 

and the results. Our main performance indicators are (a) 

the time cost of the proposed optimal and greedy 

algorithms, and (b) the approximation quality of the 

greedy algorithms, for the CB-QR and text data 

problem variants presented in Sections 3 and 5 

respectively.  

System Configuration: We used Microsoft SQL Server 

2000 RDBMS on a P4 3.2-GHZ PC with 1 GB of RAM 

and 100 GB HDD for our experiments. Algorithms are 

implemented in C#, and connected to RDBMS through 

ADO. 

Datasets: We used two datasets, a cars dataset for the 

Boolean data experiments (Section 6.1), and a 

publications titles dataset for the text data experiments 

(Section 6.2). In particular, we use an online used-cars 

dataset consisting of 15,191 cars for sale in the Dallas 

area extracted from autos.yahoo.com. In the synthetic 

workload, each query specifies 1 to 5 peculiarities 

chosen randomly distributed as follows: 1 attribute – 

20%, 2 peculiarities – 30%, 3 peculiarities – 30%, 4 

peculiarities – 10%, 5 peculiarities – 10%. We assume 

that most of the users specify two or three peculiarities.  

 

6.1 Boolean Data 
We focus on CB-QR, which can be solved by a 

superset of the algorithms used in the other variants.  

The top-m peculiarities selected by our algorithms 

seem promising. For example, even with a small real 

query register of 185 queries, our optimal algorithms 

could select top features specific to the car, e.g., sporty 

features are selected for sports cars, safety features are 

selected for passenger sedans, and so on.  

We first compare the execution times of the optimal 

and greedy algorithms that solve CB-QR. These are 

(Section 4): ILP-CB-QR, MaxFreqItemSets-CB-QR, 

which produce optimal results, and ConsumeAttr-CB-

QR, ConsumeAttrCumul- CB-QR, and 

ConsumeQueries-CB-QR, which are greedy 

approximations. The CB-QR suffix is skipped in the 
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graphs for clarity. Fig 6 shows how the execution times 

vary with m for the real query workload averaged over 

100 randomly selected to-be-advertised cars from the 

dataset. Note that different y-axis scales are used for 

the two optimal and the three greedy algorithms to 

better display the differences among the methods.  

The times in Fig 6 for MaxFreqItemSets also 

include the preprocessing stage, which can be 

performed once in advance regardless of the new tuple 

(user car), as explained in Section 4.3. Fig 7 shows the 

quality, that is, the numbers of satisfied queries for the 

greedy algorithms along with the optimal numbers, for 

varying m. The numbers of queries are averaged over 

100 randomly selected to-be-advertised cars from the 

dataset. Note that no query is satisfied for m = 3 

because all queries specify more than 3 peculiarities. 

We see that ConsumeAttr and ConsumeAttrCumul 

produce near optimal results. In contrast, 

ConsumeQueries has low quality, since it is often the 

case that the peculiarities of the queries with few 

peculiarities (which are selected first) are not common 

in the workload. 

 
Fig 6: Execution times for CB-QR for varying m, for real workload 

of 185 queries. 

 
Fig 7: Satisfied queries for greedy and optimal algorithms for CB-QR 

for varying m, for real workload of 185 queries. 

 

Fig 8 and Fig 9 repeat the same experiments for the 

synthetic query workload of 2000 queries. In Fig 8, we 

do not include the ILP algorithm, because it is very 

slow for more than 1000 queries (as also shown in Fig 

10). 

 
Fig 8: Execution times for CB-QR for varying m, for the synthetic 

workload of 2000 queries. 

 
Fig 9: Satisfied queries for greedy and optimal algorithms for CB- 

QR for varying m, for synthetic workload of 2000 queries. 

Next, we measure the execution times of the 

algorithms for varying query register size and number 

of peculiarities. Fig 10 shows how the average 

execution time varies with the query register size, 

where the synthetic workloads were created as 

described earlier in this section. We observe that ILP 

does not scale for large query registers; this is why 

there are no measurements for ILP for more than 1000 

queries. ConsumeQueries performs consistently worse 

than other greedy algorithms since we make a pass on 

the whole workload at each iteration to find the next 

query to add. We conclude ConsumeQueries is 

generally a bad choice. 

 
Fig 10: Execution times for CB-QR for varying synthetic workload 

size for m = 5. 

Fig 11 focuses on the two optimal algorithms, and 

measures the execution times of the algorithms, 

averaged over 100 randomly selected to-be-advertised 

cars from the dataset, for varying number M of total 

peculiarities of the dataset and queries, for a synthetic 

query register of 200 queries. We observe that ILP is 

faster than MaxFreqItemSets for more than 32 total 

peculiarities. For 32 total peculiarities Max- 

FreqItemSets is faster as also shown in Fig 6. However, 

note that ILP is only feasible for very small query 
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registers. For larger query registers, ILP is very slow or 

infeasible, as is also shown by the missing values in Fig 

10. 

 
Fig 11: Execution times for CB-QR for varying number of total 

peculiarities for the synthetic workload of 200 queries for m = 5 

To summarize, ILP is better for small query 

registers and many total peculiarities (i.e. short and 

wide query register), whereas Max- FreqItemSets is 

better for larger query registers with fewer total 

peculiarities (i.e. long and narrow query register). 

However for query registers those are long and wide, 

the problem becomes truly intractable, and 

approximation methods such as our greedy algorithms 

perhaps the only feasible approaches. 

 

6.2 Screens of Experiment 
 

In this paper, we are describing how a query will be 

processed. According to that, some of the screens are 

given here for easy resemblance: 

 

 
Fig 12: How the buyer is going to observe the peculiarities. 

 

Fig 12 represents when a user logins into the online 

with the given registered userid and password. Then the 

user will get the screen with different widgets having 

the peculiarities. 

  

 
Fig 13: Details of peculiarities for a “CAR” 

 

Fig 13 represents the selection of a widget from the 

list. In the above list, it represents the peculiarities of 

the “CAR” widget. So, it gives the specifications of 

each and every widget. 
 

 

 
Fig 14:  Seller adding the details 

 

Fig 14 represents the screen of the seller for adding 

the details of a widget. This is very important to seller 

for updating the peculiarities according to the widgets 

added. 
 

 
Fig 15: Priorities according to the usage of peculiarities 

 

VII. ASSOCIATED WORKS 

A large corpus of work has tackled the problem of 

ranking the results of a query. In the documents world, 

the most popular procedures are tf-idf based [20] 

ranking functions, like BM25 [18], as well as link-
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structure-based procedures like PageRank [2] if such 

links are present (e.g., the Web). In the database world, 

automatic ranking procedures for the results of 

structured queries have been proposed [1, 7, and 30]. 

Also there has been recent work [3] on ordering the 

displayed peculiarities of query results. 

Both of these tuple and attribute ranking procedures 

are inapplicable to our problem. The former inputs a 

database and a query, and outputs a list of database 

tuples according to a ranking function, and the latter 

inputs the list of database results and selects a set of 

peculiarities that “explain” these results. In contrast, 

our problem inputs a database, a query register, and a 

new tuple, and computes a set of peculiarities that will 

rank the tuple high for as many queries in the query 

register as possible. 

Although the problem of choosing peculiarities is 

seemingly related to the area of feature selection [5], 

our work differs from the work on feature selection 

because our goal is very specific – to enable a tuple to 

be highly visible to the database users – and not to 

reduce the cost of building a mining model such as 

classification or clustering. 

Kleinberg et al. [12] present a set of microeconomic 

problems suitable for data mining procedures; however 

no specific solutions are presented. Their problem 

closer to our work is identifying the best parameters for 

a advertising strategy in order to exploit the attracted 

customers, given that the competitor independently also 

prepares a similar strategy. Our problem is different 

since we know the competition. Another area where 

boosting an item's rank has received attention is Web 

search, where the most popular procedures involve 

manipulating the link structure of the Web to achieve 

higher perceptibility [8]. 

Integer and linear programming optimization 

problems are extremely well studied problems in 

operations research, management science and many 

other areas of applicability (see recent book on this 

subject [19]). Integer programming is well-known to be 

NP-hard [6]; however carefully designed branch and 

bound algorithms can capability solve problems of 

moderate size.  

Computing regular itemsets is a popular area of 

research in data mining and some of the best known 

algorithms include Apriori [1] and FP-Tree [9]. Several 

papers have also investigated the problem of computing 

maximal regular itemsets [3, 5, 12, 14, and 17]. Almost 

all the popular approaches are designed for sparse 

datasets and do not work well for our unique problem 

of dense datasets. Apriori [1] employs a bottom-up, 

breadth first search that enumerates every single regular 

itemset. In many applications (especially in dense data) 

with long regular patterns enumerating all possible 

subsets of an M length pattern (M can easily be 50 or 

60 or longer) is computationally unfeasible. Also, we 

are not interested in mining all regular itemsets, but 

only maximal regular itemsets in our algorithm. A 

known approach for mining maximal regular itemsets 

is the complete random walk [7], which is a bottom-up 

approach. To see this, consider a table with 50 

peculiarities, and assume we need to determine a 

compressed tuple t′ with 10 peculiarities. Now, we need 

to know the itemset of ~Q (complemented query 

register which is a dense dataset) of size 40 with 

maximum frequency. Due to the dense nature of ~Q, 

the bottom-up approach will not be able to compute 

regular itemsets beyond a size of 5-10. Likewise, other 

approaches for mining maximal regular itemsets such 

as the Genetic Algorithm (GA) based approach [11] is 

also mainly intended for sparse dataset and does not 

work well for dense dataset. In contrast, our proposed 

method works well for dense dataset. The recent works 

[14] and [13] are related to our work. The former tries 

to find out the dominant relationship between products 

and potential buyers where by analyzing such 

relationships, companies can position their products 

more effectively while remaining profitable. The latter 

introduces skyline query types taking into account not 

only min/max peculiarities (e.g., price, weight) but also 

spatial peculiarities and the relationships between these 

different attribute types. Their work aims at helping 

manufacturers choose the right specs for a new product, 

whereas our work to choose the peculiarities subset of 

an existing product for advertising purposes. 

In previous work [16], we tackled the main variant 

of the problem with Boolean conjunctive query 

semantics where a tuple satisfies a query if all the 

peculiarities present in query are also present in the 

tuple (Section 3). We extend the idea in the current 

paper. We consider both the database (existing 

products) and query register with various query 

semantics (conjunctive, top-k, skyline, negations, etc.). 

Several procedures have been proposed for capable 

skyline query processing [4, 19, 25, and 31]. There has 

been recent work on categorical skylines [21] and 

skyline computation over low cardinality domains [15] 

that also considers skyline for Boolean data as well. 

One main difference of our work with the existing 

works is that our goal is not to propose a method for 

processing or maintaining the skylines, instead we use 

skylines as a query semantic where a new tuple can be 

visible for maximum number of queries. Another 

related work is mining top-k regular itemsets without 

minimum support verge [10] which finds top-k closed 

regular itemsets. Also it is not proven that the top-k 

approach works well for dense dataset. The top-k 

approach without minimum support verge [10] finds 

top-k regular closed patterns of length no less than 

min_l, where min_l is the minimal length of each 

pattern.  

VIII. CONCLUSIONS 

In this work we introduced the problem of picking 

the best peculiarities of a new tuple, such that this tuple 

will be ranked highly, given a dataset, a query register, 
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or both, i.e., the tuple “stands out in the crowd”. We 

presented variants of the problem for Boolean, 

categorical, text and numeric data, and showed that 

even though the problem is NP-complete in most cases; 

optimal algorithms are feasible for small inputs. 

Furthermore, we present greedy algorithms, which are 

experimentally shown to produce good approximation 

ratios. After all, a query register is only an approximate 

surrogate of real user preferences, and moreover in 

some applications neither the database, nor the query 

register may be available for analysis; thus we have to 

make assumptions about the nature of the competition 

as well as about the user preferences. Finally, in all 

these problems our focus is on deciding what subset of 

peculiarities to retain of a product. We do not attempt 

to suggest what values to set for specific peculiarities, 

which is a problem tackled in advertising research, e.g., 

[17]. However, while we acknowledge that the scope of 

our problem definition is indeed limited in several 

ways, we do feel that our work takes an important first 

step towards developing principled approaches for 

attribute selection in a data exploration environment. 
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