

Identifying Peculiarities to Exploit Perceptibility of Widgets
M. Vijaya Lakshmi

1
, D. Uma Devi

2

1
M.Tech II year Student, Department of CSE, Sri Mittapalli College of Engineering,

2
Associate Professor, Department of CSE, Sri Mittapalli College of Engineering,

Abstract

In recent years, there has been important concentration

in the expansion of ranking functions and capable top-k

rescue algorithms to help users in ad-hoc search and

rescue in databases (e.g., buyers searching for

products in a catalog). We introduce a complementary

problem: how to guide a seller in picking the best

peculiarities of a new tuple (e.g., a new product) to

highlight so that it stands out in the crowd of existing

competitive products and is widely visible to the pool of

potential buyers. We develop several formulations of

this problem. Although the problems are NP-complete,

we give several exact and approximation algorithms

that work well in practice. One type of exact algorithms

is based on Integer Programming (IP) formulations of

the problems. Another class of exact methods is based

on maximal regular itemset mining algorithms. The

approximation algorithms are based on greedy

heuristics. A detailed performance study illustrates the

benefits of our methods on real and synthetic data.

Key Words: Data mining, information and facts,

engineering tools and procedures, advertising,

withdrawal methods and algorithms, rescue designs.

I. INTRODUCTION
In recent years, there has been significant interest in

developing effective procedures for ad-hoc search and

rescue in unstructured as well as structured data

repositories, such as text collections and relational

databases. In particular, a large number of emerging

applications require exploratory querying on such

databases; examples include users wishing to search

databases and catalogs of products such as mobiles,

cars, cameras, restaurants, or articles such as news and

job ads. Users browsing these databases typically

execute search queries via public front-end interfaces to

these databases. Typical queries may specify sets of

keywords in case of text databases, or the desired

values of certain peculiarities in case of structured

relational databases. The query-answering system

answers such queries by either returning all data objects

that satisfy the query conditions, or may rank and

return the top-k data objects, or return the results that

are on the query’s skyline. If ranking is employed, the

ranking may either be simplistic – e.g., objects are

ranked by an attribute such as Price; or more

sophisticated – e.g., objects may be ranked by the

degree of “relevance” to the query. While unranked

rescue (also known as Boolean Rescue) is more

common in traditional SQL-based database systems,

ranked rescue (also known as Top-k Rescue) is more

common in text databases, e.g. tf-idf ranking [20].

Recently there has been widespread interest in

developing suitable top-k rescue procedures even for

structured databases [1, 7, and 30]. Skyline rescue

semantics is also investigated where a data point is

retrieved by a query if it is not dominated by any other

data point in all dimensions [4, 19, 22, 25, 29, and 31].

Screening Peculiarities for greatest Perceptibility:

We distinguish between two types of users of these

databases: users who search such databases trying to

locate objects of interest, and users who insert new

objects into these databases in the hope that they will

be easily discovered by the first type of users. For

example, in a database representing an e-marketplace

the former type of users are potential buyers of

products; while the latter type of users are sellers of

products. Almost all of the prior research efforts on

effective search and rescue procedures – such as new

top-k algorithms, new relevance measures, and so on –

have been designed with the first kind of user in mind

(i.e., the buyer). In contrast, less research has been

addressing procedures to help a seller/manufacturer

insert a new product for sale in such databases that

markets it in the best possible manner – i.e., such that it

stands out in a crowd of competitive products and is

widely visible to the pool of potential buyers.

It is this latter problem that is the main focus of this

paper. To understand it a little better, consider the

following scenario: assume that we wish to insert a

classified ad in an online newspaper to advertise about

cars, mobiles and cameras for sale. Our products may

have numerous peculiarities (it will have power

window, four door, petrol, diesel, etc). However, due to

the ad costs involved, it is not possible for us to

describe all peculiarities in the ad. So we have to select,

say the ten best peculiarities. Which ones should we

select? Thus, one may view our effort as an attempt to

build a recommendation system for sellers, unlike the

more traditional recommendation systems for buyers. It

may also be viewed as inverting a ranking function,

i.e., identifying the argument of a ranking function that

will lead to high ranking scores.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

1www.ijert.org

This general problem also arises in domains beyond

ecommerce applications. For example, in the design of

a new product, a manufacturer may be interested in

picking the ten best features from a large wish-list of

possible features – e.g., new car can have the feature of

high mileage. To define our problem more formally, we

need to develop a few abstractions. Let D be the

database of products already being advertised in the

marketplace (i.e., the “competition”). In addition, let Q

be the set of search queries that have been executed

against this database in the recent past – thus Q is the

“workload” or “query register”. For a new product that

needs to be inserted into this database, we assume that

the seller has a complete “ideal” description of the

product. Our problem can now be defined as follows:

PROBLEM:

Given a database D, a query register Q, a new tuple

t, and an integer m, determine the best (i.e., top- m)

peculiarities of t to retain such that if the shortened

version of t is inserted into the database, the number of

queries of Q that retrieve t is exploited.

We consider several variants, including Boolean,

categorical, text and numeric data, and conjunctive and

disjunctive query semantics. We also consider variants

in which the “budget”, i.e., m, is not specified; in this

case our objective is to determine the value of m such

that the number of satisfied queries divided by m is

exploited. Thus we seek to exploit the “per dollar”

benefit. A special case of this no- budget variant is

when ranking is performed using functions that are

non-monotone on the number of specified peculiarities

(keywords), such as the BM25 [18] scoring function

used in Information Rescue.

We analyze the computational complexity of these

problems, and show that most variants are NP-

complete. We develop two types of methods yielding

optimal solutions: (a) procedures based on Integer

Programming (IP) and Integer Linear Programming

(ILP) methods, which work well for moderate-sized

problem instances, and (b) more scalable solutions

based on novel adaptations of maximal regular set

algorithms that also allow us to leverage several

preprocessing opportunities.

Main Contributions:

The main contributions of this paper may be

summarized as follows:

1. We introduce the problem of identifying peculiarities

of a tuple for exploit perceptibility as a new data

exploration problem. We consider several

interesting variants of the problem as well as diverse

application scenarios.

2. We analyze the computational complexity of the

different variants of the problem and show that most

of them are NP-complete.

3. We develop optimal Integer Programming (IP) and

Integer Linear Programming (ILP) based algorithms

to solve certain variants of the problem. These

algorithms are effective for moderate-sized problem

instances.

4. For certain problem variants, we also develop more

scalable optimal solutions based on novel

adaptations of maximal regular itemset algorithms.

Furthermore, in contrast to ILP-based solutions, we

can leverage preprocessing opportunities in these

approaches.

5. We also develop fast greedy approximation

algorithms that work well for all problem variants.

6. We perform detailed performance evaluations on

both real as well as synthetic data to demonstrate

the effectiveness of our developed algorithms.

II. FUNDAMENTALS

First we provide some useful definitions.

Boolean Database: Let D = {t1…tN} be a collection of

Boolean tuples over the attribute set A = {a1…aM},

where each tuple t is a bit-vector where a0 implies the

absence of a feature and a1 implies the presence of a

feature. A tuple t may also be considered as a subset of

A, where an attribute belongs to t if its value in the bit-

vector is 1.

Tuple Domination: Let t1 and t2 be two tuples such that

for all peculiarities for which tuple t1 has value 1, tuple

t2 also has value 1. In this case we say that t2

dominates t1.

Tuple Compression: Let t be a tuple and let t′ be a

subset of t with m peculiarities. Thus t′ represents a

compressed representation of t. equally, in the bit-

vector representation of t, we retain only m 1’s and

convert the rest to 0’s.

Query Register: Let Q = {q1…qS} be collection of

queries where each query q defines a subset of

peculiarities.

III. MAJOR TROUBLES DEVIATION:

CONJUNCTIVE BOOLEAN WITH QUERY

REGISTER
In this section we formally define the main problem

for Boolean data. In Section 3.1 we formally define the

problem and in Section 4 we provide algorithms for

this problem variant.

Conjunctive Boolean Rescue: We view each query

as a conjunctive query. A tuple t satisfies a query q if q

is a subset of t. For example, a query such as {a1, a3} is

equivalent to “return all tuples such that a1= 1 and a3 =

1”. Alternatively, if we view q as a special type of

“tuple”, then t dominates q. The set of returned tuples

R (q) is the set of all tuples that satisfy q. In this

problem variant as well as in most of the variants

defined later, our task is to compress a new tuple t by

retaining the best set of m peculiarities (i.e., top-m

peculiarities) such that some criterion is optimized.

3.1 Problem Definition

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

2www.ijert.org

Conjunctive Boolean - Query Register (CB-QR):
Given a query register Q with Conjunctive Boolean

Rescue semantics, a new tuple t, and an integer m,

computes a compressed tuple t′ having m peculiarities

such that the number of queries that retrieve t′ is

exploited.

Intuitively, for buyers interested in browsing

products of interest, we wish to ensure that the

compressed version of the new product is visible to as

many buyers as possible. This problem also has a per-

attribute version where m is not specified; in this case

we may wish to determine t′ such that the number of

satisfied queries divided by |t′| is exploited. Intuitively,

if the number of peculiarities retained is a measure of

the cost of advertising the new product, this problem

seeks to exploit the number of potential buyers per

advertising dollar.

CAM

ID
Flash Pixel Battery

TV

Kit
Memory

t1 0 1 0 1 0

t2 0 1 1 0 0

t3 1 0 0 1 1

t4 1 1 0 1 0

t5 1 1 0 0 0

t6 0 1 0 1 0

t7 0 0 1 1 0

DATABASE D

Query

ID
Flash Pixel Battery

TV

Kit
Memory

q1 1 0 1 1 1

q2 1 1 0 0 0

q3 0 1 1 0 0

q4 0 0 1 0 1

q5 1 1 0 1 0

Query Register Q

New

CAM
Flash Pixel Battery

TV

Kit
Memory

t 1 1 0 0 1

New tuple t to be inserted

Fig 1: Illustrating the Fundamentals

IV.ALGORITHMS FOR CONJUNCTIVE

BOOLEAN WITH QUERY REGISTER
In this section we discuss our main algorithmic

results for the main problem variant discussed in

Section 3.

4.1 Optimal Brute Force Algorithm
Clearly, since CB-QR is NP-hard, it is unlikely that

any optimal algorithm will run in polynomial time in

the worst case. The problem can be obviously solved

by a simple brute force algorithm (henceforth called

Brute- Force-CB-QR), which simply considers all

combinations of m-peculiarities of the new tuple t and

determines the combination that will satisfy the

maximum number of queries in the query register Q.

However, we are interested in developing optimal

algorithms that work much better for typical problem

instances.

4.2 Optimal Algorithm based on Maximal Regular

Itemsets

The algorithm based on Integer Linear

Programming described in the previous subsection has

certain limitations; it is impractical for problem

instances beyond a few hundred queries in the query

register. The reason is that it is a very generic method

for solving arbitrary integer linear programming

formulations, and consequently fails to leverage the

specific nature of our problem. In this subsection we

develop an alternate approach that scales very well to

large query registers. This algorithm, called Max-

FreqItemSets-CB-QR, is based on an interesting

adaptation of an algorithm for mining Maximal Regular

Itemsets [7].

4.2.1 The Regular Itemset Problem

Let R be an N-row Mcolumn Boolean table, and let

r > 0 be an integer known as the verge. Given an

itemset I (i.e., a subset of peculiarities), let freq (I) be

defined as the number of rows in R that “support” I

(i.e., the set of peculiarities corresponding to the 1’s in

the row is a superset of I). Compute all itemsets I such

that freq (I) > r.

Computing regular itemsets is a well studied

problem and there are several scalable algorithms that

work well when R is sparse and the verge is suitably

large. Examples of such algorithms include [2, 15]. In

our case, given a new tuple t, recall that our task is to

compute t′, a compression of t by retaining only m

peculiarities, such that the number of queries that

satisfy t′ is exploited. This immediately suggests that

we may be able to leverage algorithms for regular

itemsets mining over Q for this purpose. However,

there are several important complications that need to

be overcome, which we elaborate next.

4.2.2 Balancing the Query Register

Firstly, in itemset mining, a row of the Boolean

table is said to support an itemset if the row is a

superset of the itemset. In our case, a query satisfies a

tuple if it is a subset of the tuple. To overcome this

conflict, our first task is to complement our problem

instance, i.e., convert 1’s to 0’s and vice versa. Let ~t

(~q) denote the complement of a tuple t (query q), i.e.,

where the 1’s and 0’s have been interchanged. Likewise

let ~Q denote the complement of a query register Q

where each query has been complemented. Now, freq

(~t) can be defined as the number of rows in ~Q that

support ~t. Rest of the approach is now seemingly

clear: compute all regular itemsets of ~Q (using an

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

3www.ijert.org

appropriate verge to be discussed later), and from

among all regular itemsets of size M – m, determine the

itemset I that is a superset of ~t with the highest

frequency. The optimal compressed tuple t’ is therefore

the complement of I, i.e., ~I. However, the problem is

that Q is itself a sparse table, as the queries in most

search applications involve the specification of just a

few peculiarities. Consequently, the complement ~Q is

an extremely dense table and this prevents most regular

itemset algorithms from being directly applicable to

~Q. For example, most “level-wise algorithms” (such

as Apriori [1], which operates level by level of the

Boolean lattice over the peculiarities set by first

computing the single itemsets, then itemsets of size 2,

and so on) will only progress past just a few initial

levels before being overcome by an intractable

explosion in the size of candidate sets. To see this,

consider a table with M=50 peculiarities, and let m =

10. To determine a compressed tuple t′ with 10

peculiarities, we need to know the itemset of ~Q of size

40 with maximum frequency. Due to the dense nature

of ~Q, algorithms such as Apriori will not be able to

compute regular itemsets beyond a size of 5-10 at the

most. Likewise, the sheer number of regular itemsets

will also prevent other algorithms such as FP-Tree [9]

from being effective.

We have developed an adaptation of regular itemset

mining algorithms to overcome this problem of

extremely dense datasets. Before we describe details of

our approach, let us discuss the issue of how the verge

parameter should be set.

4.2.3 Setting of the Verge Parameter

We can solve the problem of itemset mining of

extremely dense datasets. What should be the setting of

the verge? Clearly setting the verge r=1 will solve CB-

QR optimally. But this is likely to make any itemset

mining algorithm impractically slow.

There are two alternate approaches to setting the

verge. One approach is essentially a heuristic, where

we set the verge to a reasonable fixed value dictated by

the practicalities of the application. The intuition is that

the verge enforces that peculiarities should be selected

such that the compressed tuple is satisfied by a certain

minimum number of queries. For example, a verge of

1% means that we are not interested in results that

satisfy less than 1% of the queries in the query register,

i.e., we are attempting to compress t such that at least

1% of the queries are still able to retrieve the tuple. It is

important to note that for a fixed verge setting such as

this, one of two possible outcomes can occur. If the

optimal compression t′ satisfies more than 1% of the

queries, the algorithm will discover it. If the optimal

compression satisfies less than 1% of the queries, then

the algorithm will return empty.

We also suggest an alternate adaptive procedure of

setting the verge that is guaranteed to find the optimal

compression. First initialize the verge to a high value

and compute the regular itemsets of ~Q. If there are no

regular itemsets of size at least M – m that are supersets

of ~t, repeat the process with a smaller verge which is

half of the previous verge.

We now return to the task of how to compute regular

itemsets of the dense Boolean table ~Q. In fact, we do

not compute all regular itemsets of the dense table ~Q,

as we have already argued earlier that there will be

prohibitively too many of them. Instead, our approach

is to compute the maximal regular itemsets of ~Q.

4.2.4 Random Walk to Compute Maximal Regular

Itemsets: A maximal regular itemset is a regular

itemset such that none of its supersets are regular. The

set of maximal regular itemsets are much smaller than

the set of all regular itemsets. For example, if we have a

dense table with M peculiarities, then it is quite likely

that most of the maximal regular itemsets will exist

very high up in the Boolean lattice over the

peculiarities, very close to the highest possible level M.

Fig 2 shows a conceptual diagram of a Boolean lattice

over a dense Boolean table ~Q. The shaded region

depicts the regular itemsets and the maximal regular

itemsets are located at the highest positions of the

border between the regular and irregular itemsets.

Fig 2: Maximal Regular Itemsets in a Boolean Lattice

There exist several algorithms for computing

maximal regular itemsets, e.g. [3, 5, 12, and 14]. We

base our approach on the random walk based algorithm

in [7], which starts from a random singleton itemset I at

the bottom of the lattice, and at each iteration, adds a

random item to I (from among all items A - I such that

I remains regular), until no further additions are

possible. At this point a maximal regular itemset I have

been discovered. If the number of maximal regular

itemsets is relatively small, this is a practical algorithm:

repeating this random walk a reasonable number of

times will with high probability discover all maximal

regular itemsets. However, since this algorithm is based

on traversing the lattice from bottom to top, it implies

that the random walk will have to traverse a lot of

levels before it reaches a maximal regular itemset of a

dense table.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

4www.ijert.org

Fig 3: Two Phase Random Walk

Instead, we propose an alternate approach which

starts from the top of the lattice and traverses down.

Our random walk can be divided into two phases: (a)

Down Phase: starting from the top of the lattice (I =

{a1a2…aM}), walk down the lattice by removing

random items from I until I becomes regular, and (b)

Up Phase: starting from I, walk up the lattice by adding

random items to I (from among all items A - I such that

I remains regular), until the no further additions are

possible. At this point a maximal regular itemset I have

been discovered.

Fig 3 shows an example of the two phases of the

random walk. What is important to note is that this

process is much more capable than a bottom-up

traversal, as our walks are always confined to the top

region of the lattice and we never have to traverse too

many levels. Complementing the query register

eventually results in a dense dataset. In a dense dataset,

maximal regular itemsets are usually at the top of the

lattice. That is, they are close to level M - m, where m

is comparatively much smaller than M. If a bottom-up

approach is used to find maximal regular itemsets, it

will have to traverse a long portion of the lattice (i.e.,

too many levels) and will be incapable. Whereas, in

top-down approach, the first phase tries to find the first

regular itemset along the path from the top which is

usually close to a maximal regular itemset, the walks

are confined to the top region of the lattice and we

never have to traverse too many levels.

4.2.5 Complexity Analysis of a Random Walk

Sequence

In the worst case, the cost of a down-up random

walk is 2.M.|Q|, where M is the total number of

peculiarities and |Q| is the size of the query register.

Although in the worst case the random walk will go up

and down the whole lattice, in practice we only expect

each portion of the walk to traverse only a few levels at

the top of the lattice.

4.2.6 Number of Iterations

Repeating this two phase random walk several times

will discover, with high probability, all the maximal

regular itemsets. The actual number of such iterations

can be monitored adaptively; our approach is to stop

the algorithm if each discovered maximal regular

itemset has been discovered at least twice (or a

maximum number of iterations have been reached).

This stopping heuristic is motivated by the Good-

Turing estimate for computing the number of different

objects via sampling [4].

4.2.7 Regular Itemsets at Level M – m

Finally, once all maximal regular itemsets have

been computed, we have to check which ones are

supersets of ~t. Then, for all possible subsets (of size M

– m) of each such maximal regular itemset (see Fig 4),

we can determine that subset I that is (a) a superset of

~t, and (b) has the highest frequency.

Fig 4: Checking Regular Itemsets at Level M-m

The optimal compressed tuple t′ is therefore the

complement of I, i.e., ~I. In summary, the pseudo-code

of our algorithm Max- FreqItemSets-CB-QR is shown

in Fig. 5. Details of how certain parameters such as the

verge are set, are omitted from the pseudo-code.

4.2.8 Preprocessing Opportunities

Note that the algorithm also allows for certain

operations to be performed in a preprocessing step. For

example, all the maximal itemsets can be recomputed,

and the only task that needs to be done at runtime is to

determine, for a new tuple t, those itemsets that are

supersets of ~t and have size M – m. If we know the

range of m that is usually requested for compression in

new tuples, we can even recomputed all regular

itemsets for those values of m, and lookup the itemset

with the highest frequency at runtime.

4.2.9 The Per-Attribute Variant

CB-QR has a per attribute variant, where m is not

provided as an input, and we have to determine the best

m such that number of satisfied queries divided by m is

exploited. This variant can be simply solved by trying

out values of m between 1 and M and making M calls

to any of the algorithms discussed above, and picking

the solution that exploits our objective. Since we adopt

this general strategy for all per-attribute problem

variants, we do not discuss such variants any further in

this paper.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

5www.ijert.org

Fig 5: Algorithm MaxFreqItemSets-CB-QR

V. PROBLEMS VARIANT FOR TEXT DATA

5.1 Text Data Problem Definition

A text database consists of a collection of

documents, where each document is modeled as a bag

of words as is common in Information Rescue. Queries

are sets of keywords, with top-k rescue via query-

specific scoring functions, such as the tf-idf-based

BM25 scoring function [18]. This problem arises in

several applications, e.g., when we wish to post a

classified ad in an online newspaper and need to

specify important keywords that will enable the ad to

be visible to the maximum number of potential buyers.

A subtle point is that, due to the non-monotonicity of

many IR ranking functions, it is possible that a top-m1

tuple compression is worse (fewer queries retrieve

document t’) than a top-m2 compression, where m1 >

m2. The attribute selection problem for text data is also

NP-complete as it can be converted into Boolean

problem considering each keyword as a Boolean

attribute. The problem is NP-hard for the case of

monotone ranking function, as in CB-QR. Hence, it is

also NP-hard for the more complex non-monotonic

ranking functions.

5.2. Algorithms for Text Data

As discussed above, text data can be treated as

Boolean data, and all the algorithms developed for

Boolean data can be used for text data. There are two

issues that we wish to highlight, however. One is that if

we view each distinct keyword in the text corpus (or

query register) as a distinct Boolean attribute, the

dimension of the Boolean database is enormous.

Consequently, none of the optimal algorithms, either

IP-based or regular itemset-based, are feasible for text

data. Fortunately, the greedy heuristics we have

developed scale very well with reasonable results, as

described in the experiments section. The second issue

is that some of the scoring function that are used in text

data – e.g., the BM25 scoring function that takes into

account the document length (size of compressed tuple

t′) – are non-monotonic on the number of keywords

added. In particular, adding a query keyword to t′ may

decrease its BM25 score if this keyword has very low

inverse document frequency (idf). Consequently the

per-attribute versions of our various problem variants

are of interest.

VI. EXPERIMENTS

In this section we describe the experimental setting

and the results. Our main performance indicators are (a)

the time cost of the proposed optimal and greedy

algorithms, and (b) the approximation quality of the

greedy algorithms, for the CB-QR and text data

problem variants presented in Sections 3 and 5

respectively.

System Configuration: We used Microsoft SQL Server

2000 RDBMS on a P4 3.2-GHZ PC with 1 GB of RAM

and 100 GB HDD for our experiments. Algorithms are

implemented in C#, and connected to RDBMS through

ADO.

Datasets: We used two datasets, a cars dataset for the

Boolean data experiments (Section 6.1), and a

publications titles dataset for the text data experiments

(Section 6.2). In particular, we use an online used-cars

dataset consisting of 15,191 cars for sale in the Dallas

area extracted from autos.yahoo.com. In the synthetic

workload, each query specifies 1 to 5 peculiarities

chosen randomly distributed as follows: 1 attribute –

20%, 2 peculiarities – 30%, 3 peculiarities – 30%, 4

peculiarities – 10%, 5 peculiarities – 10%. We assume

that most of the users specify two or three peculiarities.

6.1 Boolean Data
We focus on CB-QR, which can be solved by a

superset of the algorithms used in the other variants.

The top-m peculiarities selected by our algorithms

seem promising. For example, even with a small real

query register of 185 queries, our optimal algorithms

could select top features specific to the car, e.g., sporty

features are selected for sports cars, safety features are

selected for passenger sedans, and so on.

We first compare the execution times of the optimal

and greedy algorithms that solve CB-QR. These are

(Section 4): ILP-CB-QR, MaxFreqItemSets-CB-QR,

which produce optimal results, and ConsumeAttr-CB-

QR, ConsumeAttrCumul- CB-QR, and

ConsumeQueries-CB-QR, which are greedy

approximations. The CB-QR suffix is skipped in the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

6www.ijert.org

graphs for clarity. Fig 6 shows how the execution times

vary with m for the real query workload averaged over

100 randomly selected to-be-advertised cars from the

dataset. Note that different y-axis scales are used for

the two optimal and the three greedy algorithms to

better display the differences among the methods.

The times in Fig 6 for MaxFreqItemSets also

include the preprocessing stage, which can be

performed once in advance regardless of the new tuple

(user car), as explained in Section 4.3. Fig 7 shows the

quality, that is, the numbers of satisfied queries for the

greedy algorithms along with the optimal numbers, for

varying m. The numbers of queries are averaged over

100 randomly selected to-be-advertised cars from the

dataset. Note that no query is satisfied for m = 3

because all queries specify more than 3 peculiarities.

We see that ConsumeAttr and ConsumeAttrCumul

produce near optimal results. In contrast,

ConsumeQueries has low quality, since it is often the

case that the peculiarities of the queries with few

peculiarities (which are selected first) are not common

in the workload.

Fig 6: Execution times for CB-QR for varying m, for real workload

of 185 queries.

Fig 7: Satisfied queries for greedy and optimal algorithms for CB-QR

for varying m, for real workload of 185 queries.

Fig 8 and Fig 9 repeat the same experiments for the

synthetic query workload of 2000 queries. In Fig 8, we

do not include the ILP algorithm, because it is very

slow for more than 1000 queries (as also shown in Fig

10).

Fig 8: Execution times for CB-QR for varying m, for the synthetic

workload of 2000 queries.

Fig 9: Satisfied queries for greedy and optimal algorithms for CB-

QR for varying m, for synthetic workload of 2000 queries.

Next, we measure the execution times of the

algorithms for varying query register size and number

of peculiarities. Fig 10 shows how the average

execution time varies with the query register size,

where the synthetic workloads were created as

described earlier in this section. We observe that ILP

does not scale for large query registers; this is why

there are no measurements for ILP for more than 1000

queries. ConsumeQueries performs consistently worse

than other greedy algorithms since we make a pass on

the whole workload at each iteration to find the next

query to add. We conclude ConsumeQueries is

generally a bad choice.

Fig 10: Execution times for CB-QR for varying synthetic workload

size for m = 5.

Fig 11 focuses on the two optimal algorithms, and

measures the execution times of the algorithms,

averaged over 100 randomly selected to-be-advertised

cars from the dataset, for varying number M of total

peculiarities of the dataset and queries, for a synthetic

query register of 200 queries. We observe that ILP is

faster than MaxFreqItemSets for more than 32 total

peculiarities. For 32 total peculiarities Max-

FreqItemSets is faster as also shown in Fig 6. However,

note that ILP is only feasible for very small query

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

7www.ijert.org

registers. For larger query registers, ILP is very slow or

infeasible, as is also shown by the missing values in Fig

10.

Fig 11: Execution times for CB-QR for varying number of total

peculiarities for the synthetic workload of 200 queries for m = 5

To summarize, ILP is better for small query

registers and many total peculiarities (i.e. short and

wide query register), whereas Max- FreqItemSets is

better for larger query registers with fewer total

peculiarities (i.e. long and narrow query register).

However for query registers those are long and wide,

the problem becomes truly intractable, and

approximation methods such as our greedy algorithms

perhaps the only feasible approaches.

6.2 Screens of Experiment

In this paper, we are describing how a query will be

processed. According to that, some of the screens are

given here for easy resemblance:

Fig 12: How the buyer is going to observe the peculiarities.

Fig 12 represents when a user logins into the online

with the given registered userid and password. Then the

user will get the screen with different widgets having

the peculiarities.

Fig 13: Details of peculiarities for a “CAR”

Fig 13 represents the selection of a widget from the

list. In the above list, it represents the peculiarities of

the “CAR” widget. So, it gives the specifications of

each and every widget.

Fig 14: Seller adding the details

Fig 14 represents the screen of the seller for adding

the details of a widget. This is very important to seller

for updating the peculiarities according to the widgets

added.

Fig 15: Priorities according to the usage of peculiarities

VII. ASSOCIATED WORKS

A large corpus of work has tackled the problem of

ranking the results of a query. In the documents world,

the most popular procedures are tf-idf based [20]

ranking functions, like BM25 [18], as well as link-

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

8www.ijert.org

structure-based procedures like PageRank [2] if such

links are present (e.g., the Web). In the database world,

automatic ranking procedures for the results of

structured queries have been proposed [1, 7, and 30].

Also there has been recent work [3] on ordering the

displayed peculiarities of query results.

Both of these tuple and attribute ranking procedures

are inapplicable to our problem. The former inputs a

database and a query, and outputs a list of database

tuples according to a ranking function, and the latter

inputs the list of database results and selects a set of

peculiarities that “explain” these results. In contrast,

our problem inputs a database, a query register, and a

new tuple, and computes a set of peculiarities that will

rank the tuple high for as many queries in the query

register as possible.

Although the problem of choosing peculiarities is

seemingly related to the area of feature selection [5],

our work differs from the work on feature selection

because our goal is very specific – to enable a tuple to

be highly visible to the database users – and not to

reduce the cost of building a mining model such as

classification or clustering.

Kleinberg et al. [12] present a set of microeconomic

problems suitable for data mining procedures; however

no specific solutions are presented. Their problem

closer to our work is identifying the best parameters for

a advertising strategy in order to exploit the attracted

customers, given that the competitor independently also

prepares a similar strategy. Our problem is different

since we know the competition. Another area where

boosting an item's rank has received attention is Web

search, where the most popular procedures involve

manipulating the link structure of the Web to achieve

higher perceptibility [8].

Integer and linear programming optimization

problems are extremely well studied problems in

operations research, management science and many

other areas of applicability (see recent book on this

subject [19]). Integer programming is well-known to be

NP-hard [6]; however carefully designed branch and

bound algorithms can capability solve problems of

moderate size.

Computing regular itemsets is a popular area of

research in data mining and some of the best known

algorithms include Apriori [1] and FP-Tree [9]. Several

papers have also investigated the problem of computing

maximal regular itemsets [3, 5, 12, 14, and 17]. Almost

all the popular approaches are designed for sparse

datasets and do not work well for our unique problem

of dense datasets. Apriori [1] employs a bottom-up,

breadth first search that enumerates every single regular

itemset. In many applications (especially in dense data)

with long regular patterns enumerating all possible

subsets of an M length pattern (M can easily be 50 or

60 or longer) is computationally unfeasible. Also, we

are not interested in mining all regular itemsets, but

only maximal regular itemsets in our algorithm. A

known approach for mining maximal regular itemsets

is the complete random walk [7], which is a bottom-up

approach. To see this, consider a table with 50

peculiarities, and assume we need to determine a

compressed tuple t′ with 10 peculiarities. Now, we need

to know the itemset of ~Q (complemented query

register which is a dense dataset) of size 40 with

maximum frequency. Due to the dense nature of ~Q,

the bottom-up approach will not be able to compute

regular itemsets beyond a size of 5-10. Likewise, other

approaches for mining maximal regular itemsets such

as the Genetic Algorithm (GA) based approach [11] is

also mainly intended for sparse dataset and does not

work well for dense dataset. In contrast, our proposed

method works well for dense dataset. The recent works

[14] and [13] are related to our work. The former tries

to find out the dominant relationship between products

and potential buyers where by analyzing such

relationships, companies can position their products

more effectively while remaining profitable. The latter

introduces skyline query types taking into account not

only min/max peculiarities (e.g., price, weight) but also

spatial peculiarities and the relationships between these

different attribute types. Their work aims at helping

manufacturers choose the right specs for a new product,

whereas our work to choose the peculiarities subset of

an existing product for advertising purposes.

In previous work [16], we tackled the main variant

of the problem with Boolean conjunctive query

semantics where a tuple satisfies a query if all the

peculiarities present in query are also present in the

tuple (Section 3). We extend the idea in the current

paper. We consider both the database (existing

products) and query register with various query

semantics (conjunctive, top-k, skyline, negations, etc.).

Several procedures have been proposed for capable

skyline query processing [4, 19, 25, and 31]. There has

been recent work on categorical skylines [21] and

skyline computation over low cardinality domains [15]

that also considers skyline for Boolean data as well.

One main difference of our work with the existing

works is that our goal is not to propose a method for

processing or maintaining the skylines, instead we use

skylines as a query semantic where a new tuple can be

visible for maximum number of queries. Another

related work is mining top-k regular itemsets without

minimum support verge [10] which finds top-k closed

regular itemsets. Also it is not proven that the top-k

approach works well for dense dataset. The top-k

approach without minimum support verge [10] finds

top-k regular closed patterns of length no less than

min_l, where min_l is the minimal length of each

pattern.

VIII. CONCLUSIONS

In this work we introduced the problem of picking

the best peculiarities of a new tuple, such that this tuple

will be ranked highly, given a dataset, a query register,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

9www.ijert.org

or both, i.e., the tuple “stands out in the crowd”. We

presented variants of the problem for Boolean,

categorical, text and numeric data, and showed that

even though the problem is NP-complete in most cases;

optimal algorithms are feasible for small inputs.

Furthermore, we present greedy algorithms, which are

experimentally shown to produce good approximation

ratios. After all, a query register is only an approximate

surrogate of real user preferences, and moreover in

some applications neither the database, nor the query

register may be available for analysis; thus we have to

make assumptions about the nature of the competition

as well as about the user preferences. Finally, in all

these problems our focus is on deciding what subset of

peculiarities to retain of a product. We do not attempt

to suggest what values to set for specific peculiarities,

which is a problem tackled in advertising research, e.g.,

[17]. However, while we acknowledge that the scope of

our problem definition is indeed limited in several

ways, we do feel that our work takes an important first

step towards developing principled approaches for

attribute selection in a data exploration environment.

ACKNOWLEDGMENT

The authors gratefully acknowledge the

contributions of the reviewers. Their comments have

considerably improved the quality of this article. We,

authors express gratitude to all the anonymous

reviewers for their affirmative annotations among our

paper.

REFERENCES

 [1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen,

and A. I. Verkamo. Fast discovery of association

rules. In U.M. Fayyad, G. Piatetsky- Shapiro, P.

Smyth, and R. Uthurusamy, (eds.), Advances in

Information Discovery and Data Mining, pp. 307-

328. AAAI/MIT Press, 1996.

 [2] S. Brin and L. Page: The Anatomy of a Large-Scale

Hypertextual Web Search Engine. WWW

Conference, 1998.

 [3] Gautam Das, Vagelis Hristidis, Nishant Kapoor, S.

Sudarshan. Ordering the Peculiarities of Query

Results. SIGMOD, 2006.

[4] Good, I., The population frequencies of species and

the estimation of population parameters,

Biometrika, v. 40, 1953, pp. 237-264.

[5]Isabelle Guyon and Andre Elisseeff. An introduction

to variable and feature selection. Journal of

Machine Learning Research, 3(mar): 2003.

[6]Michael R. Garey and David S. Johnson (1979).

Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman.

ISBN 0-7167-1045-5.

[7] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja,

H. Toivonen, R. S. Sharm: Discovering all most

specific sentences. ACM TODS. 28(2): 2003

[8] M. Gori and I. Witten. The bubble of web

perceptibility. Commun. ACM 48, 3 (Mar. 2005),

115-117.

[9] Jiawei Han, Jian Pei, Yiwen Yin: Mining Regular

Patterns without Candidate Generation. SIGMOD

2000: 1-12.

[10]Jiawei Han, Jianyong Wang, Ying Lu, and Petre

Tzvetkov: Mining top-k regular closed patterns

without minimum support, ICDM 2002.

[11]Jen-peng Huang, Che-Tsung Yang, Chih-Hsiung

Fu: A Genetic Algorithm Based Searching of

Maximal Regular Itemsets. ICAI 2004.

[12] J. Kleinberg, C. Papadimitriou and P. Raghavan.A

Microeconomic View of Data Mining. Data Min.

Knowl. Discov. 2, 4 (Dec. 1998).

[13]Cuiping Li, Beng Chin Ooi, Anthony K. H. Tung,

Shan Wang: DADA: a Data Cube for Dominant

Relationship Analysis. SIGMOD 2006.

[14]Cuiping Li, Anthony K. H. Tung, Wen Jin, Martin

Ester: On Dominating Your Neighborhood

Profitably. VLDB 2007: 818-829

[15]Michael D. Morse, Jignesh M. Patel, H. V.

Jagadish: Capable Skyline Computation over Low-

Cardinality Domains. VLDB 2007.

[16] Muhammed Miah, Gautam Das, Vagelis Hristidis,

Heikki Mannila: Standing Out in a Crowd:

Selecting Attributes for Maximum Visibility.

ICDE 2008: 356-365

[17]Thomas T. Nagle, John Hogan. The Strategy and

Tactics of Pricing: A Guide to Growing More

Profitably (4th Edition), Prentice Hall, 2005.

[18]S E Robertson and S Walker. Some simple

effective approximations to the 2-Poisson model

for probabilistic weighted rescue. SIGIR 1994.

[19] Alexander Schrijver: Theory of Linear and Integer

Programming. John Wiley and Sons. 1998.

[20]G. Salton. Automatic Text Processing: The

Transformation, Analysis, and Rescue of

Information by Computer. Addison Wesley, 1989.

[21]Nikos Sarkas, Gautam Das, Nick Koudas, Anthony

K. H. Tung: Categorical skylines for streaming

data. SIGMOD Conference 2008: 239-250

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

10www.ijert.org

