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Abstract - The ever-increasing size of unlabelled data and the expensive cost for manual annotation have driven research on semi-
supervised learning (SSL), which aims to take full advantage of labelled and unlabeled samples. There are various hybrid learning
approaches that connect supervised and unsupervised counterparts to each other in the contemporary era, including self-supervised
pretraining paradigms, consistency regularization methods, and pseudo-labeling practices. In this paper, we study three popular
backbone architectures SimCLR, BYOL and MoCo to investigate their specific character is- tics, understand their theoretical roots and
applications in both computer vision and natural language processing. The coming together of these two methods is a breakthrough in
deep learning research, allowing researchers and developers to achieve almost-supervised performance with significantly less labels.
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1. INTRODUCTION

Deep learning has transformed the field of artificial
intelligence by learning multi-level representations directly
from data [1]. But, the performance of supervised learning
approaches fundamentally rely on plentiful labeled data,
which is expensive (e.g., salaries for experts), time-
consuming (intuitive labeling), and sometimes barely
accessible. The ImageNet dataset, for example, took more
than 25,000 workers and several years to annotate [2]. On
the other hand, there is plenty of unlabeled data in almost
all fields. This basic asymmetry has stimulated the
development of semi-supervised learning methods that
attempt to exploit the best properties of supervised and
unsupervised learning [3, 4].

Semi-supervised learning resides between the extreme cases
of supervised learning, where there is a label for each
training example, and unsupervised learning, where no
labels are employed. The basic idea is that unlabeled data
can convey useful structural information on the underlying
data distribution, and thereby boost model performance
beyond what can be achieved with a limited amount of
labeled data [5]. Recent techniques within self-supervised
learning, contrastive methods and consistency-based
approaches have radically increased the effectiveness of
semi-supervised methods, especially when labeled data is
limited [6].

In this review, we seek to integrate recent advances in
hybrid learning methods that can leverage both supervised
and unsupervised signals. We focus on the following three
main methodological families: self-supervised pretraining
approaches to learn representations without labels,
consistency efficiency-focused regularization methods for
inducing invariance properties, and pseudo-labeling
techniques that give birth iteratively a labeled dataset.
Throughout, we underscore both theoretical underpinnings
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and practical application on various domains such as
computer vision and natural language processing.

2. SELF-SUPERVISED PRETRAINING STRATEGIES

Self-supervised learning has been shown to be an effective
paradigm for learning informative representations from
unlabeled data by designing pretext tasks that are
constructed from auxiliary information available in the data
directly [6, 7]. Contrary to standard unsupervised models
that concentrate on density estimation or clustering, self-
supervised models learn features before fine-tuning them on
labelled tasks. This two-stage procedure has proved to be
highly effective, and frequently outperforms supervised
learning or semi-supervised techniques using much smaller
amounts of labeled data [8].
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2.1 Contrastive Learning Foundations
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Many state-of-the-art self-supervised approaches are
grounded on contrastive learning [9], initially proposed in
the context of metric learning. The idea is to discover a
representation that encourages consistency of differently
augmented views of the same example and inconsistency
across examples [10]. This method directly optimizes the
model to possess invariances of data augmentations with
discriminative representations which captures semantic
similarity without any explicit labelling.

The contrastive learning objective can be cast into the
InfoNCE loss that maximizes the mutual information of
representations for positive pairs and minimizes it for
negative pairs [10]. The model is given a query
representation and one positive key as well as K negative
keys, and it learns to differentiate the positive key from the
set of K+1 samples. This provides a formulation that links
contrastive learning to noise-contrastive estimation and a
theoretical grounding of why these methods work in
learning meaningful representations [11].

2.2 SimCLR: Simple Framework for Contrastive
Learning

SimCLR presented a simplified contrastive learning
strategy, and obtained the state-of-the-art performance by
designing sophisticated strategies of augmentation and
architectural components [8]. The method works by
generating multiple augmented views of the same image,
which it treats as positive pairs, and using views from
different images in the same batch as negative examples.
SimCLR applies a combination of data augmentation
operations such as random cropping, color distortion, and
Gaussian blur to create different views.

A key architectural innovation in SImCLR is the projection
head: a non-linear transformation before computing the
contrastive loss. Interestingly, this projection head increases
quality of representation despite being thrown away after
pretraining, indicating that the contrastive objective benefits
from a distinct feature space compared to downstream tasks
[8]. Furthermore, SimCLR showed that increasing batch
sizes not only increases the number of negatives per
positive pair but it also improves performance a lot. Given
the appropriate training configurations, SimCLR attained
76.5% top-1 accuracy on ImageNet with linear
evaluation,  challenging  other  supervised

pretraining works.
2.3 MoCo: Momentum Contrast

MoCo copes with the computational difficulties of storing
large negative sample sets in contrastive learning by using a
neat-queue method [12]. Instead of using only large batch
sizes, MoCo stores a dictionary of encoded representations
as a dynamic queue. This queue acts as a big, consistent set
of negative examples that is effective across large training

[JERTV 15l S010065

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 15 Issue 01, January - 2026

iterations, and separates the number of negative samples
from the batch size.

To maintain the stability of the representations in queue,
MoCo uses momentum encoders (momentum encode
updates the value at time t as an exponential moving average
with a decay constant that is dependent on m) to update the
query encoder 8_key = m-0_key + (1-m)-0_query, where m
€ [0, 1] is a coefficient which controls momentum [12]. This
momentum based update allows avoiding sudden changes in
the encoder that would make old queue entries incompatible
with the current representations. MoCo v2, which
introduced many improvements over SImCLR such as the
MLP pro-jection head and stronger augmentations, scored
71.1% on ImageNet top-1 accuracy with linear evaluation,
showing effectiveness of the momentum based approach
[13].

2.4 BYOL: Bootstrap Your Own Latent

BYOL is a radical change from classic contrastive work as it
abandons negative pairs entirely [14]. This method
questioned the common sense that contrastive learning must
come with negative samples to avoid collapsing of
representation. BYOL relies on two neural networks: an
online one that is actively trained via gradient descent, and a
target network whose parameters are updated as exponential
moving averages of the online counterpart.

At training time, the online network predicts the
representation that would be produced by the target network
for various augmented views of a given image. The
asymmetric design with a prediction head of the target
Siamese online network avoids collapsing to trivial
solutions, [14]. BYOL attained 74.3% top-1 accuracy on
ImageNet with linear evaluation, showing that self-
supervision can be obtained through from pure prediction
objectives without contrastive terms. Recent theoretical
findings that the unsupervised loss of BYOL operates as
implicit contrastive learning given batch normalization and
predictor asymmetry [15].

3. CONSISTENCY REGULARIZATION METHODS

Consistency regularization is one of the prototypes semi-
supervised learning methods that is built upon the
smoothness assumption: “the predictions of a model should
not change much under small perturbations to example or
model weights” [16]. This is consistent with the manifold
hypothesis, that high dimensional data lies on lower
dimensional manifolds and points in the same manifold
should have similar predictions [3].
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3.1 I1I-Models and Temporal Ensembling

In [17], the II-Model introduced input-based consistency
regularization as it generates predictions on two randomly
augmented versions of each input and calibrates its
parameters so that they are closer in terms of their
discrepancy. The consistency loss, which is often based on
mean squared error or KL divergence, is added to the loss
on labeled examples. This simple trick greatly enhances
learning on small labeled datasets by harnessing the power
of unlabeled data and consistency enforcement over the
output predictions.

Temporal Ensembling improves on this by updating EMA
of predictions throughout the training epochs [17]. Instead
of predicting twice per example in every epoch, temporal
ensembling uses past predictions as a consistency target: Z i
= o0Z i+ (1-0) z i where Z i is the EMA prediction for
example i, and z i is the current prediction. This mitigates
computational cost and stabilizes training by applying
temporal smoothing on predictions, and results in better
performance on CIFAR-10 and SVHN benchmarks.

3.2 Mean Teacher

The method extends the consistency regularization by using
a teacher-student framework, in which the teacher model is
a temporally averaged version of the student model [18].
The student is optimized to minimize both the supervised
loss on labeled data but also a consistency loss between its
predictions and the teacher's predictions on unlabeled data.
Importantly, the teacher's parameters are updated using an
exponential moving average of those of the student instead
of gradient descent: 0 teacher = 0O teacher + (I-
a)0_student.

We mitigate the noise and instability of premature gradients
that existing methods suffered from by offering more
reliable consistency targets due to temporal averaging [18].
Mean Teacher outperforms temporal ensembling by a large
margin, achieving the error rate of 6.28% on CIFAR-10
with only 4K labels, as compared to 12.16% when using
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temporal ensembling alone. The success of the method is
based on the fact that teacher model delivers a smooth and
accurate prediction, rather than predictions from single
epoch, which actually computes self-ensemble without any
computational overhead at inference.

3.3 Unsupervised Data Augmentation (UDA)

UDA blends the consistency regularization and complex
augmentation strategies that are appropriate for domains
[19]. In computer vision, UDA uses RandAugment which
automatically chooses augmentations and then applies
sequences of transforms with different strengths [20]. For
NLP, UDA proposes new augmentation methods such as
back translation (translating a sentence to another language
and then back to the original), word replacement by TF-
IDF-based similarity with contextualized embedding.

The consistency loss in UDA is calculated only on the
unlabeled samples where the model makes high-confidence
predictions on their original (not augmented) input, which
inherently integrates confidence-based filtering with
consistency enforcement [19]. This selective behavior
avoids the model from learning improper invariances on
uncertain predictions. UDA advanced the state of the art on
several NLP benchmarks, achieving a 4.20% rate of errors
in sentiment classification for IMDb with merely 20 labeled
examples per class and escape human performance at.50%
using domain specific augmentation strategies to guide
consistent regularization.

3.4 FixMatch

FixMatch combines consistency regularization with pseudo-
labeling via an elegant weak to strong consistency principle
[21]. The approach uses a weak augmentation (common
flips and crops) for pseudo-labels and then employs strong
augmentation (such as Rand Augment or CT Augment) to
get the consistency target. Pseudo-labels are produced based
on predictions with high confidence only for weakly
augmented input and serve as targets for training with
strongly augmented versions of the same input.

The joint objective is: L = L s +A u-l(max (q b) > 1) ‘H
(4_b, p_b), where L_s is the supervised loss, b and p b is
model’s predictions the weakly and strongly augmented
input [21]. This formulation incentivizes the model to make
confident and uniform (consistent across runs or crops)
predictions in spite of strong augmentations. On CIFAR-10,
FixMatch reaches an accuracy of 94.93% with only 250
labels, showing that our approach is highly data efficient
thanks to the synergy of consistency regularization and
pseudo-labeling.
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4. PSEUDO-LABELING AND CO-TRAINING
APPROACHES

Pseudo-labeling is conceptually different to semi-
supervised learning, and directly tackles label scarcity
by synthesizing labels for unlabeled data [22].
Predictions by the model become pseudo labels for
unlabeled instances, which are used to grow the
training data and develop the model further by means
of a variant of self-training.
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4.1 Self-Training Framework

The self-training framework, which has its roots in early
work by Scudder [23] and Yarowsky [24], iteratively
produces pseudo-labels for unlabeled data based on the
model’s predictions at test time followed by training on all
original labeled instances and newly generated pseudo-
labeled data. Recent works [22] include a confidence
thresholding, keeping pseudo-labels only when the model is
highly-confident: § i = argmax c p model(y=c|x 1) if max
¢ pmodel (y=c|xi)>1.

The success of self-training depends on the quality of
pseudo-labels and how to avoid confirmation bias, in which
poor pseudo-labels can reinforce errors made by a model
[25]. Methods such as label sharpening that transform weak
probability distributions into hard one-hot labels are widely
used for disparate loss smoothing methods to provide more
clear learning targets [26]. Recent work analytically shows
that ST (self-training) is effective when the learned decision
boundary of a model is well-calibrated for high-confident
regions such as those derived from informally labeled data.

4.2 Co-Training and Multi-View Learning

Co-training generalizes self-training by training multiple
models on distinct views of the data, and enabling each
model to produce pseudo-labels for the other model [27]. In
the traditional co-training approach, it is assumed that
features can be divided into two conditionally independent
views on the basis of class label. Given this assumption,
contrary predictions of models trained on alternate views
can offer informative signals about prediction uncertainty.
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Contemporary  approaches relax the assumption of
conditional independence and achieve diversity with
separate initializations, architectures, or training strategies
but not by an explicit feature partitioning [28]. Deep co-
training trains multiple networks using varying architectures
or initializations and make use of model diversity for more
robust  pseudo-labels than  single-model  methods.
Apparently, when models with different inductive biases can
reach consensus on their predictions for unlabeled examples,
it is much more likely that those predictions are correct and
the errors do not compound during iterative training.

4.3 Noisy Student Training

Noisy Student is a powerful instance of a self-training
technique at scale that surpasses state-of-the-art
performance on ImageNet classification [29]. These
approaches consists in training a teacher on labeled data and
then use it to predict pseudo-labels for unlabeled samples
before finally undertaking the training of a wider student
over the union set with additional noise from data
augmentation, dropout and stochastic depth.

The student model is intentionally larger than the teacher so
that we have some extra capacity for learning from the
pseudo-labeled data and capturing some patterns that the
teacher may miss [29]. Noise is injected during the training
of the student model which avoids the plaguing issue of
students over fitting on teacher’s predictions and encourages
learning tougher features. This cycle can repeat with the
student being turned teacher for the next round. Our Noisy
Student model obtained 88.4% top-1 accuracy on ImageNet,
setting a new state-of-the-art result and showing that
iterative self-training can effectively utilize sets of unlabeled
data with careful architectural and algorithmic changes.

5. APPLICATIONS IN COMPUTER VISION

Semi-supervised learning methods have been applied
widely in the field of computer vision, where pixel-level or
instance-level labeling is especially costly and time-
consuming [30].

eImage Classification
*Object Detection
and Segmentation

*Medical Imaging

/ Applications in

Computer
Vision
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5.1 Image Classification

Semi-supervised approaches have excelled in several image
classification benchmarks. On CIFAR-10, FixMatch
matched the performance of fully supervised training,
achieving 95.7% accuracy with just 250 labeled examples
(40 per class) comparing to 96.1% [21] on the same task and
with access to all 50k labels in the dataset. Self-supervised
pretraining and fine-tuning has become a common practice
and methods, such as SimCLR or MoCo, give strong
initialization for downstream tasks [31]. The model and
method of contrastive pretraining coupled with semi-
supervised fine-tuning is a powerful paradigm that provides
computational advantages to  achieve  competitive
performances, given small labelled data.

5.2 Object Detection and Segmentation

In semi-supervised learning tasks these are even more
difficult in dense prediction problems, because of structured
outputs. Recent ‘Consistency Regularization’ and pseudo-
labeling methods have been adapted to object detection by
merely enforcing the consistency of bounding box
predictions across augmented images [32, 33]. For semantic
segmentation, MixMatch and FixMatch have been
generalized to produce pixel-wise pseudo-labels without
additional annotations with competitive results [30].

Self-supervised pretraining has achieved great success,
particularly in segmentation tasks. Contrastively pretrained
models on large unlabeled datasets learn representations that
encode object boundaries and semantic structure, and
transfer effectively to pixel-level prediction with little
labeled data [34]. In medical imaging segmentation, using
few expert annotations, self-supervised pretraining with
consistency regularization has made it possible to apply
deep learning models in clinical practice [35].

5.3 Medical Imaging

Medical imaging is a potentiality-rich application domain
for which semi-supervised learning can alleviate the
bottleneck of annotations. Annotation of radiological
images is knowledge-dependent and time-consuming,
making annotated data highly limited [36]. Pretraining have
been widely used as standard procedure for pretraining on
very large non-medical labeled data followed by fine-tuning
on smaller medical imaging dataset such as tumor
detection, organ segmentation and disease classification [37,
35].

Special regularization techniques for medical imaging
adapted to the continuous-discrete nature of the prediction
space are enforced predictions to remain robust under
clinically-important transformations, they enhance
robustness and generalizability [38]. The introduction of
domain-specific augmentations, contrastive pretraining and
consistency regularization has allowed semi-supervised
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approaches to approximate supervised performance with 10-
20% fewer labels, democratizing medical Al applications.

6. APPLICATIONS IN NATURAL LANGUAGE
PROCESSING

A number of groundbreaking developments have occurred
with natural language processing through the use of semi-
supervised and self-supervised learning, radically altering
the way that models are built for language [39, 40].

6. Applications in
Natural Language

Processing

6.2 Consistency
Regularization in
NLP

6.3 Prompt-Based
and Few-Shot
Learning

6.1 Pretraining and Transfer Learning

The prevalence in modern NLP research is pretraining
models on large text corpora and then fine-tuning them on a
downstream task with small amounts of labeled data. BERT
introduced masked language modeling, in which random
tokens are masked and the model is trained to predict those
tokens from their contexts [39]. Autoregressive Language
Modeling: The GPT architectures are based on
autoregressive language modeling, in which the next token
is predicted conditionally on the preceding tokens [41, 40].

These pretraining objectives empower models to capture
rich contextual representations of the text, encoding syntax
and semantics, as well as world knowledge. Transfer
learning from pretraining a model on downstream tasks
with virtually no labeled data has become common and
BERT, in particular, has been able to achieve state-of-the-art
results across many NLP benchmarks by fine-tuning on
task-specific examples [39]. The paradigm showcases the
capacity of self-supervised learning at scale, for which
models trained on billions of unlabeled tokens develop
broad capabilities that are transferable to many tasks.

6.2 Consistency Regularization in NLP

UDA validated that the consistency regularization is
effective for text and sequence tasks and they proposed
domain-specific augmentation methods [19]. Back-
translation can produce paraphrases by translating through
an intermediate language and back, providing topic-
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equivalent variations on labels. The TF-IDF-based word
replacement by contextualized embedding from pre-trained
LMs is another augmentation strategy that preserves the
meaning.

The collaboration between pre-trained language models and
consistency regularization pushes the frontier of low-
resource NLP. On IMDDb sentiment classification, UDA
obtained 95.8% accuracy using only 20 labeled examples
versus 88.7% for the standard supervised learning [19].
These illustrate the strong synergism between consistency-
based  semi-supervised learning and  pretrained
representations, which itself enables few-shot learning.

6.3 Prompt-Based and Few-Shot Learning

Massive language model pretraining has made few-shot and
zero-shot learning feasible via prompt-based approaches
[40, 42]. Pretrained models can be conditioned on well-
crafted prompts to complete a wide variety of tasks with
little or no task-specific fine-tuning from practitioners. GPT-
3, conditioned with task descriptions or examples as input
to its prefix [40], has shown impressive few-shot learning on
a variety of tasks based on 300B tokens of pre-training.

This is the logical conclusion of semi-supervised learning in
which massive self-supervised pretraining supplies overall
competence, and a small number of labeled examples or
prompts supervise task-specific behavior. Recent work in
prompt design and in-context learning is investigating how
to better elicit knowledge from language models, making
labeled data even less necessary [43].

7. CHALLENGES AND FUTURE DIRECTIONS

Despite this, there are still several challenges. Many of
these methods are sensitive to hyper-parameters,
augmentation policies and discrepancy between labeled and
the unlabeled data distribution [44]. In order to understand
such insight, the when and why semi-supervised work is
successful would require theoretical insight into the
inductive bias of which they introduce [45].

Potential future directions would be devising more robust
methods to cope with distribution shift [46], better
confidence calibration given pseudo-labeling [47] and
learning adaptive augmentation strategies [20]. The great
computational burden of large scale self-supervised
pretraining has led to efforts towards efficient training
techniques [48]. Furthermore, combining several semi-
supervised approaches via meta-learning would allow for
automatic selection of the method in function of the dataset
[49].

8. CONCLUSION

Hybrid learning frameworks that across supervised and
unsupervised methods have revolutionized deep learning,
etc. has led to state-of-the-art performance on several tasks
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despite using a small amount of labeled data. Self-
supervised pretraining methods such as SimCLR [8], BYOL
[14] & MoCo [12] learn strong representations from
unlabeled data. Consistency regularization methods enforce
invariances to improve the generalization [18, 21]. Pseudo-
labeling methods repeatedly enlarge their training sets with
the help of confident predictions [22; 29].

The confluence of these methods is indicative of a trend in
machine learning. Instead of relying on labeled data as the
only supervisory signal, recent methods highlight data
structure, augmentation invariances and model consistency.
This holistic view allows for the power of vast amounts of
weakly labeled examples when the labels themselves are
scarce. As the methodology matures and its theory becomes
richer, semi supervision will be at the core of many practical
instantiations and can finally make place for tasks where
labels are scarce by nature or too expensive to obtain.
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