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Abstract - The ever-increasing size of unlabelled data and the expensive cost for manual annotation have driven research on semi-

supervised learning (SSL), which aims to take full advantage of labelled and unlabeled samples. There are various hybrid learning 

approaches that connect supervised and unsupervised counterparts to each other in the contemporary era, including self-supervised 

pretraining paradigms, consistency regularization methods, and pseudo-labeling practices. In this paper, we study three popular 

backbone architectures SimCLR, BYOL and MoCo to investigate their specific character is- tics, understand their theoretical roots and 

applications in both computer vision and natural language processing. The coming together of these two methods is a breakthrough in 

deep learning research, allowing researchers and developers to achieve almost-supervised performance with significantly less labels. 
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1. INTRODUCTION 

Deep learning has transformed the field of artificial 

intelligence by learning multi-level representations directly 

from data [1]. But, the performance of supervised learning 

approaches fundamentally rely on plentiful labeled data, 

which is expensive (e.g., salaries for experts), time-

consuming (intuitive labeling), and sometimes barely 

accessible. The ImageNet dataset, for example, took more 

than 25,000 workers and several years to annotate [2]. On 

the other hand, there is plenty of unlabeled data in almost 

all fields. This basic asymmetry has stimulated the 

development of semi-supervised learning methods that 

attempt to exploit the best properties of supervised and 

unsupervised learning [3, 4]. 

Semi-supervised learning resides between the extreme cases 

of supervised learning, where there is a label for each 

training example, and unsupervised learning, where no 

labels are employed. The basic idea is that unlabeled data 

can convey useful structural information on the underlying 

data distribution, and thereby boost model performance 

beyond what can be achieved with a limited amount of 

labeled data [5]. Recent techniques within self-supervised 

learning, contrastive methods and consistency-based 

approaches have radically increased the effectiveness of 

semi-supervised methods, especially when labeled data is 

limited [6]. 

In this review, we seek to integrate recent advances in 

hybrid learning methods that can leverage both supervised 

and unsupervised signals. We focus on the following three 

main methodological families: self-supervised pretraining 

approaches to learn representations without labels, 

consistency efficiency-focused regularization methods for 

inducing invariance properties, and pseudo-labeling 

techniques that give birth iteratively a labeled dataset. 

Throughout, we underscore both theoretical underpinnings 

and practical application on various domains such as 

computer vision and natural language processing. 

2. SELF-SUPERVISED PRETRAINING STRATEGIES 

Self-supervised learning has been shown to be an effective 

paradigm for learning informative representations from 

unlabeled data by designing pretext tasks that are 

constructed from auxiliary information available in the data 

directly [6, 7]. Contrary to standard unsupervised models 

that concentrate on density estimation or clustering, self-

supervised models learn features before fine-tuning them on 

labelled tasks. This two-stage procedure has proved to be 

highly effective, and frequently outperforms supervised 

learning or semi-supervised techniques using much smaller 

amounts of labeled data [8]. 

 

2.1 Contrastive Learning Foundations 
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Many state-of-the-art self-supervised approaches are 

grounded on contrastive learning [9], initially proposed in 

the context of metric learning. The idea is to discover a 

representation that encourages consistency of differently 

augmented views of the same example and inconsistency 

across examples [10]. This method directly optimizes the 

model to possess invariances of data augmentations with 

discriminative representations which captures semantic 

similarity without any explicit labelling. 

The contrastive learning objective can be cast into the 

InfoNCE loss that maximizes the mutual information of 

representations for positive pairs and minimizes it for 

negative pairs [10]. The model is given a query 

representation and one positive key as well as K negative 

keys, and it learns to differentiate the positive key from the 

set of K+1 samples. This provides a formulation that links 

contrastive learning to noise-contrastive estimation and a 

theoretical grounding of why these methods work in 

learning meaningful representations [11]. 

2.2 SimCLR: Simple Framework for Contrastive 

Learning 

SimCLR presented a simplified contrastive learning 

strategy, and obtained the state-of-the-art performance by 

designing sophisticated strategies of augmentation and 

architectural components [8]. The method works by 

generating multiple augmented views of the same image, 

which it treats as positive pairs, and using views from 

different images in the same batch as negative examples. 

SimCLR applies a combination of data augmentation 

operations such as random cropping, color distortion, and 

Gaussian blur to create different views. 

A key architectural innovation in SimCLR is the projection 

head: a non-linear transformation before computing the 

contrastive loss. Interestingly, this projection head increases 

quality of representation despite being thrown away after 

pretraining, indicating that the contrastive objective benefits 

from a distinct feature space compared to downstream tasks 

[8]. Furthermore, SimCLR showed that increasing batch 

sizes not only increases the number of negatives per 

positive pair but it also improves performance a lot. Given 

the appropriate training configurations, SimCLR attained 

76.5% top-1 accuracy on ImageNet with linear 

evaluation, challenging other supervised 

pretraining works. 

2.3 MoCo: Momentum Contrast 

MoCo copes with the computational difficulties of storing 

large negative sample sets in contrastive learning by using a 

neat-queue method [12]. Instead of using only large batch 

sizes, MoCo stores a dictionary of encoded representations 

as a dynamic queue. This queue acts as a big, consistent set 

of negative examples that is effective across large training 

iterations, and separates the number of negative samples 

from the batch size. 

To maintain the stability of the representations in queue, 

MoCo uses momentum encoders (momentum encode 

updates the value at time t as an exponential moving average 

with a decay constant that is dependent on m) to update the 

query encoder θ_key = m·θ_key + (1-m)·θ_query, where m 

∈ [0, 1] is a coefficient which controls momentum [12]. This 

momentum based update allows avoiding sudden changes in 

the encoder that would make old queue entries incompatible 

with the current representations. MoCo v2, which 

introduced many improvements over SimCLR such as the 

MLP pro-jection head and stronger augmentations, scored 

71.1% on ImageNet top-1 accuracy with linear evaluation, 

showing effectiveness of the momentum based approach 

[13]. 

2.4 BYOL: Bootstrap Your Own Latent 

BYOL is a radical change from classic contrastive work as it 

abandons negative pairs entirely  [14]. This method 

questioned the common sense that contrastive learning must 

come with negative samples to avoid collapsing of 

representation. BYOL relies on two neural networks: an 

online one that is actively trained via gradient descent, and a 

target network whose parameters are updated as exponential 

moving averages of the online counterpart. 

At training time, the online network predicts the 

representation that would be produced by the target network 

for various augmented views of a given image. The 

asymmetric design with a prediction head of the target 

Siamese online network avoids collapsing to trivial 

solutions, [14]. BYOL attained 74.3% top-1 accuracy on 

ImageNet with linear evaluation, showing that self-

supervision can be obtained through from pure prediction 

objectives without contrastive terms. Recent theoretical 

findings that the unsupervised loss of BYOL operates as 

implicit contrastive learning given batch normalization and 

predictor asymmetry [15]. 

3. CONSISTENCY REGULARIZATION METHODS 

Consistency regularization is one of the prototypes semi-

supervised learning methods that is built upon the 

smoothness assumption: “the predictions of a model should 

not change much under small perturbations to example or 

model weights” [16]. This is consistent with the manifold 

hypothesis, that high dimensional data lies on lower 

dimensional manifolds and points in the same manifold 

should have similar predictions [3]. 
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3.1 Π-Models and Temporal Ensembling 

In [17], the Π-Model introduced input-based consistency 

regularization as it generates predictions on two randomly 

augmented versions of each input and calibrates its 

parameters so that they are closer in terms of their 

discrepancy. The consistency loss, which is often based on 

mean squared error or KL divergence, is added to the loss 

on labeled examples. This simple trick greatly enhances 

learning on small labeled datasets by harnessing the power 

of unlabeled data and consistency enforcement over the 

output predictions. 

Temporal Ensembling improves on this by updating EMA 

of predictions throughout the training epochs [17]. Instead 

of predicting twice per example in every epoch, temporal 

ensembling uses past predictions as a consistency target: Z_i 

= αZ_i + (1-α) z_i where Z_i is the EMA prediction for 

example i, and z_i is the current prediction. This mitigates 

computational cost and stabilizes training by applying 

temporal smoothing on predictions, and results in better 

performance on CIFAR-10 and SVHN benchmarks. 

3.2 Mean Teacher   

The method extends the consistency regularization by using 

a teacher-student framework, in which the teacher model is 

a temporally averaged version of the student model [18]. 

The student is optimized to minimize both the supervised 

loss on labeled data but also a consistency loss between its 

predictions and the teacher's predictions on unlabeled data. 

Importantly, the teacher's parameters are updated using an 

exponential moving average of those of the student instead 

of gradient descent: θ_teacher = αθ_teacher + (1-

α)θ_student. 

We mitigate the noise and instability of premature gradients 

that existing methods suffered from by offering more 

reliable consistency targets due to temporal averaging [18]. 

Mean Teacher outperforms temporal ensembling by a large 

margin, achieving the error rate of 6.28% on CIFAR-10 

with only 4K labels, as compared to 12.16% when using 

temporal ensembling alone. The success of the method is 

based on the fact that teacher model delivers a smooth and 

accurate prediction, rather than predictions from single 

epoch, which actually computes self-ensemble without any 

computational overhead at inference. 

3.3 Unsupervised Data Augmentation (UDA) 

UDA blends the consistency regularization and complex 

augmentation strategies that are appropriate for domains 

[19]. In computer vision, UDA uses RandAugment which 

automatically chooses augmentations and then applies 

sequences of transforms with different strengths [20]. For 

NLP, UDA proposes new augmentation methods such as 

back translation (translating a sentence to another language 

and then back to the original), word replacement by TF-

IDF-based similarity with contextualized embedding. 

The consistency loss in UDA is calculated only on the 

unlabeled samples where the model makes high-confidence 

predictions on their original (not augmented) input, which 

inherently integrates confidence-based filtering with 

consistency enforcement [19]. This selective behavior 

avoids the model from learning improper invariances on 

uncertain predictions. UDA advanced the state of the art on 

several NLP benchmarks, achieving a 4.20% rate of errors 

in sentiment classification for IMDb with merely 20 labeled 

examples per class and escape human performance at.50% 

using domain specific augmentation strategies to guide 

consistent regularization. 

3.4 FixMatch 

FixMatch combines consistency regularization with pseudo-

labeling via an elegant weak to strong consistency principle 

[21]. The approach uses a weak augmentation (common 

flips and crops) for pseudo-labels and then employs strong 

augmentation (such as Rand Augment or CT Augment) to 

get the consistency target. Pseudo-labels are produced based 

on predictions with high confidence only for weakly 

augmented input and serve as targets for training with 

strongly augmented versions of the same input. 

The joint objective is: L = L_s +λ u·1(max (q b) ≥ τ) ·H 

(q̂_b, p_b), where L_s is the supervised loss, q b and p b is 

model’s predictions the weakly and strongly augmented 

input [21]. This formulation incentivizes the model to make 

confident and uniform (consistent across runs or crops) 

predictions in spite of strong augmentations. On CIFAR-10, 

FixMatch reaches an accuracy of 94.93% with only 250 

labels, showing that our approach is highly data efficient 

thanks to the synergy of consistency regularization and 

pseudo-labeling. 
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4. PSEUDO-LABELING AND CO-TRAINING 

APPROACHES 

Pseudo-labeling is conceptually different to semi-

supervised learning, and directly tackles label scarcity 

by synthesizing labels for unlabeled data [22]. 

Predictions by the model become pseudo labels for 

unlabeled instances, which are used to grow the 

training data and develop the model further by means 

of a variant of self-training. 

 

4.1 Self-Training Framework 

The self-training framework, which has its roots in early 

work by Scudder [23] and Yarowsky [24], iteratively 

produces pseudo-labels for unlabeled data based on the 

model’s predictions at test time followed by training on all 

original labeled instances and newly generated pseudo-

labeled data. Recent works [22] include a confidence 

thresholding, keeping pseudo-labels only when the model is 

highly-confident: ŷ _i = argmax_c p model(y=c|x_i) if max 

c p model (y= c |x i) ≥ τ. 

The success of self-training depends on the quality of 

pseudo-labels and how to avoid confirmation bias, in which 

poor pseudo-labels can reinforce errors made by a model 

[25]. Methods such as label sharpening that transform weak 

probability distributions into hard one-hot labels are widely 

used for disparate loss smoothing methods to provide more 

clear learning targets [26]. Recent work analytically shows 

that ST (self-training) is effective when the learned decision 

boundary of a model is well-calibrated for high-confident 

regions such as those derived from informally labeled data. 

4.2 Co-Training and Multi-View Learning 

Co-training generalizes self-training by training multiple 

models on distinct views of the data, and enabling each 

model to produce pseudo-labels for the other model [27]. In 

the traditional co-training approach, it is assumed that 

features can be divided into two conditionally independent 

views on the basis of class label. Given this assumption, 

contrary predictions of models trained on alternate views 

can offer informative signals about prediction uncertainty. 

Contemporary approaches relax the assumption of 

conditional independence and achieve diversity with 

separate initializations, architectures, or training strategies 

but not by an explicit feature partitioning [28]. Deep co-

training trains multiple networks using varying architectures 

or initializations and make use of model diversity for more 

robust pseudo-labels than single-model methods. 

Apparently, when models with different inductive biases can 

reach consensus on their predictions for unlabeled examples, 

it is much more likely that those predictions are correct and 

the errors do not compound during iterative training. 

4.3 Noisy Student Training 

Noisy Student is a powerful instance of a self-training 

technique at scale that surpasses state-of-the-art 

performance on ImageNet classification [29]. These 

approaches consists in training a teacher on labeled data and 

then use it to predict pseudo-labels for unlabeled samples 

before finally undertaking the training of a wider student 

over the union set with additional noise from data 

augmentation, dropout and stochastic depth. 

The student model is intentionally larger than the teacher so 

that we have some extra capacity for learning from the 

pseudo-labeled data and capturing some patterns that the 

teacher may miss [29]. Noise is injected during the training 

of the student model which avoids the plaguing issue of 

students over fitting on teacher’s predictions and encourages 

learning tougher features. This cycle can repeat with the 

student being turned teacher for the next round. Our Noisy 

Student model obtained 88.4% top-1 accuracy on ImageNet, 

setting a new state-of-the-art result and showing that 

iterative self-training can effectively utilize sets of unlabeled 

data with careful architectural and algorithmic changes. 

5. APPLICATIONS IN COMPUTER VISION 

Semi-supervised learning methods have been applied 

widely in the field of computer vision, where pixel-level or 

instance-level labeling is especially costly and time-

consuming [30]. 
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5.1 Image Classification 

Semi-supervised approaches have excelled in several image 

classification benchmarks. On CIFAR-10, FixMatch 

matched the performance of fully supervised training, 

achieving 95.7% accuracy with just 250 labeled examples 

(40 per class) comparing to 96.1% [21] on the same task and 

with access to all 50k labels in the dataset. Self-supervised 

pretraining and fine-tuning has become a common practice 

and methods, such as SimCLR or MoCo, give strong 

initialization for downstream tasks [31]. The model and 

method of contrastive pretraining coupled with semi-

supervised fine-tuning is a powerful paradigm that provides 

computational advantages to achieve competitive 

performances, given small labelled data. 

5.2 Object Detection and Segmentation 

In semi-supervised learning tasks these are even more 

difficult in dense prediction problems, because of structured 

outputs. Recent ‘Consistency Regularization’ and pseudo-

labeling methods have been adapted to object detection by 

merely enforcing the consistency of bounding box 

predictions across augmented images [32, 33]. For semantic 

segmentation, MixMatch and FixMatch have been 

generalized to produce pixel-wise pseudo-labels without 

additional annotations with competitive results [30]. 

Self-supervised pretraining has achieved great success, 

particularly in segmentation tasks. Contrastively pretrained 

models on large unlabeled datasets learn representations that 

encode object boundaries and semantic structure, and 

transfer effectively to pixel-level prediction with little 

labeled data [34]. In medical imaging segmentation, using 

few expert annotations, self-supervised pretraining with 

consistency regularization has made it possible to apply 

deep learning models in clinical practice [35]. 

5.3 Medical Imaging 

Medical imaging is a potentiality-rich application domain 

for which semi-supervised learning can alleviate the 

bottleneck of annotations. Annotation of radiological 

images is knowledge-dependent and time-consuming, 

making annotated data highly limited [36]. Pretraining have 

been widely used as standard procedure for pretraining on 

very large non-medical labeled data followed by fine-tuning 

on smaller medical imaging dataset such as tumor 

detection, organ segmentation and disease classification [37, 

35]. 

Special regularization techniques for medical imaging 

adapted to the continuous-discrete nature of the prediction 

space are enforced predictions to remain robust under 

clinically-important transformations, they enhance 

robustness and generalizability [38]. The introduction of 

domain-specific augmentations, contrastive pretraining and 

consistency regularization has allowed semi-supervised 

approaches to approximate supervised performance with 10-

20% fewer labels, democratizing medical AI applications. 

6. APPLICATIONS IN NATURAL LANGUAGE 

PROCESSING 

A number of groundbreaking developments have occurred 

with natural language processing through the use of semi-

supervised and self-supervised learning, radically altering 

the way that models are built for language [39, 40]. 

 

6.1 Pretraining and Transfer Learning 

The prevalence in modern NLP research is pretraining 

models on large text corpora and then fine-tuning them on a 

downstream task with small amounts of labeled data. BERT 

introduced masked language modeling, in which random 

tokens are masked and the model is trained to predict those 

tokens from their contexts [39]. Autoregressive Language 

Modeling: The GPT architectures are based on 

autoregressive language modeling, in which the next token 

is predicted conditionally on the preceding tokens [41, 40]. 

These pretraining objectives empower models to capture 

rich contextual representations of the text, encoding syntax 

and semantics, as well as world knowledge. Transfer 

learning from pretraining a model on downstream tasks 

with virtually no labeled data has become common and 

BERT, in particular, has been able to achieve state-of-the-art 

results across many NLP benchmarks by fine-tuning on 

task-specific examples [39]. The paradigm showcases the 

capacity of self-supervised learning at scale, for which 

models trained on billions of unlabeled tokens develop 

broad capabilities that are transferable to many tasks. 

6.2 Consistency Regularization in NLP 

UDA validated that the consistency regularization is 

effective for text and sequence tasks and they proposed 

domain-specific augmentation methods [19]. Back-

translation can produce paraphrases by translating through 

an intermediate language and back, providing topic-
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equivalent variations on labels. The TF-IDF-based word 

replacement by contextualized embedding from pre-trained 

LMs is another augmentation strategy that preserves the 

meaning. 

The collaboration between pre-trained language models and 

consistency regularization pushes the frontier of low-

resource NLP. On IMDb sentiment classification, UDA 

obtained 95.8% accuracy using only 20 labeled examples 

versus 88.7% for the standard supervised learning [19]. 

These illustrate the strong synergism between consistency-

based semi-supervised learning and pretrained 

representations, which itself enables few-shot learning. 

6.3 Prompt-Based and Few-Shot Learning 

Massive language model pretraining has made few-shot and 

zero-shot learning feasible via prompt-based approaches 

[40, 42]. Pretrained models can be conditioned on well-

crafted prompts to complete a wide variety of tasks with 

little or no task-specific fine-tuning from practitioners. GPT-

3, conditioned with task descriptions or examples as input 

to its prefix [40], has shown impressive few-shot learning on 

a variety of tasks based on 300B tokens of pre-training. 

This is the logical conclusion of semi-supervised learning in 

which massive self-supervised pretraining supplies overall 

competence, and a small number of labeled examples or 

prompts supervise task-specific behavior. Recent work in 

prompt design and in-context learning is investigating how 

to better elicit knowledge from language models, making 

labeled data even less necessary [43]. 

7. CHALLENGES AND FUTURE DIRECTIONS 

Despite this, there are still several challenges. Many of 

these methods are sensitive to hyper-parameters, 

augmentation policies and discrepancy between labeled and 

the unlabeled data distribution [44]. In order to understand 

such insight, the when and why semi-supervised work is 

successful would require theoretical insight into the 

inductive bias of which they introduce [45]. 

Potential future directions would be devising more robust 

methods to cope with distribution shift [46], better 

confidence calibration given pseudo-labeling [47] and 

learning adaptive augmentation strategies [20]. The great 

computational burden of large scale self-supervised 

pretraining has led to efforts towards efficient training 

techniques [48]. Furthermore, combining several semi-

supervised approaches via meta-learning would allow for 

automatic selection of the method in function of the dataset 

[49]. 

8. CONCLUSION 

Hybrid learning frameworks that across supervised and 

unsupervised methods have revolutionized deep learning, 

etc. has led to state-of-the-art performance on several tasks 

despite using a small amount of labeled data. Self-

supervised pretraining methods such as SimCLR [8], BYOL 

[14] & MoCo [12] learn strong representations from 

unlabeled data. Consistency regularization methods enforce 

invariances to improve the generalization [18, 21]. Pseudo-

labeling methods repeatedly enlarge their training sets with 

the help of confident predictions [22; 29]. 

The confluence of these methods is indicative of a trend in 

machine learning. Instead of relying on labeled data as the 

only supervisory signal, recent methods highlight data 

structure, augmentation invariances and model consistency. 

This holistic view allows for the power of vast amounts of 

weakly labeled examples when the labels themselves are 

scarce. As the methodology matures and its theory becomes 

richer, semi supervision will be at the core of many practical 

instantiations and can finally make place for tasks where 

labels are scarce by nature or too expensive to obtain. 
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