

Horizontal Aggregations in SQL using CASE,

PIVOT and SPJ Methods for Data Mining

Analysis

1
 A. E. Shewale,

2
P. P. Chouthmal,

3
K. V. Sonkamble,

4
S. N. Deshmukh

1,2,3,4.
 Department of CS and IT, Dr. BAMU, Aurangabad (M.S), India

Abstract-Data mining is process of automatically discovering

useful information in large data repositories. It is widely used

domain for extracting the useful information from large

historical data. Data sets used by enterprises can’t be directly

used for the data mining. That is data sets are to be prepared for

real world database to make them suitable for data mining

operations. Preparing a data set for analysis is generally the

most time consuming task in a data mining project which

requires many complex SQL queries with sub queries,

aggregating columns, complex joins. Existing SQL aggregation

produces the single result per column which result improved by

the proposed horizontal aggregation. Horizontal aggregation

defines the new class function. It also generates the SQL code

and produces the number of output per row. It performs various

operations such as CASE, SPJ, and PIVOT. Here, PIVOT

operation perform row to column transformation; SPJ is the

standard relational algebra operators; CASE method exploring

the programming.

Keywords--SQL Cod; PIVOT; Horizontal aggregation;

Preparation of data

I. INTRODUCTION

Aggregation is normally associated with data reduction in
relational databases. The aggregate functions available in SQL
are MIN, MAX, AVG, SUM and COUNT. These functions
returns a single number as output. This aggregation called as a
vertical aggregation [1], [3]. The output of vertical
aggregations is helpful in calculations and computations. Most
of data mining operations require a data set with horizontal
layout with many tuples and one variable or dimension per
column. This is the case with many data mining algorithms
such as regression, classification, PCA and clustering.

A. Motivation

In a relational database, normalized tables a significant
effort is required to prepare a summary data set. Every
research area uses different terminology to describe a data sets.
In data mining common terms are point-dimensions. Statistics
literature uses observation variable. Machine learning research
uses instance-feature [2]. Here, we are introducing a new class
of aggregate functions that can be used to prepare data sets in a
horizontal layout for automating SQL query writing and
extending SQL capabilities.

Data aggregation is a process in which information is
gathered and expressed in a summary form, and which is used
for purposes such as statistical analysis. Horizontal
aggregations helps building answer sets in tabular form, which

in standard form needed by most data mining algorithms. In
horizontal aggregation, a new class of aggregations has similar
behaviour to SQL standard aggregations, but which produce
tables with a horizontal layout. In contrast, standard SQL
aggregations that is vertical aggregations which produce tables
with a vertical layout. Horizontal aggregations just require a
small syntax extension to aggregate functions called in a
SELECT statement.

B. Advantages

Horizontal aggregations provide several unique features
and advantages [1]: First, they represent a template to generate
SQL code from a data mining tools. Such SQL code automates
writing SQL queries, optimizing them and testing them for
correctness. Second, since SQL code is automatically
generated it is more efficient than SQL code written by an end
user. For instance, a person who doesn’t know SQL well or
someone who is not much familiar with the database schema.
Third, the data sets can be created in the less time. Fourth, the
data sets can be created entirely inside the DBMS [1].

II. EXISTING SYSTEM

Vertical Aggregations

The aggregate functions supported by SQL are SUM,

MIN, MAX, COUNT and AVG. These functions produce

single value output. These are known as vertical aggregations

[3]. This is because each function operates on the values of a

domain vertically and produces a single value result. The

result of vertical aggregations is useful in calculations or

computations. However, they can’t be directly used in data

mining operations further. To overcome the disadvantages of

vertical aggregations horizontal aggregations are used.

III. Proposed System

Horizontal Aggregations
Here, a new class of aggregations introduces that have

similar behaviour to SQL standard aggregations, but which
produce tables with a horizontal layout. In contrast, we call
standard SQL aggregations vertical aggregations since they
produce tables with a vertical layout [1]. Horizontal
aggregations just require a small syntax extension to aggregate
functions called in a SELECT statement.

As horizontal aggregations are capable of producing data
sets that can be used for real world data mining activities. In
this project simple, yet powerful, methods is use to generate
SQL code to return aggregated columns in a horizontal tabular

1558

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20877

layout, returning a set of numbers instead of one number per
row.

A. Methods

Horizontal aggregation is evaluated using three
fundamental methods: case, SPJ (Select Project Join) and pivot
[1], [3].

1) CASE Method: Two basic strategies to compute

horizontal aggregations: The first strategy is to compute

directly from input table. The second approach is to compute

vertical aggregation and save the results into temporary table.

Then that table is further used to compute horizontal

aggregations.

Fig. 1. Example of F, FV and FH

Fig. 1 [1] gives an example showing the input table F, a
traditional vertical sum () aggregation stored in FV and a
horizontal aggregation stored in FH [1].

Here, the fact table F is used to perform vertical and
horizontal aggregation by using the CASE method code is as
follows (computed from Fv):

INSERT INTO FV

SELECT D1,D2,SUM(A)

FROM F

GROUP BY D1,D2

ORDER BY D1,D2;

INSERT INTO FH

SELECT

D1,

SUM

(

CASE WHEN D2='X' THEN A ELSE NULL END) AS

D2_X,

SUM

(

CASE WHEN D2='Y' THEN A ELSE NULL END) AS

D2_Y

FROM FV

GROUP BY D1;

SELECT * FROM FH

We can compute FH from either F or FV, but we use F to

make code more compact.

The CASE method code is as follows (computed from F):

INSERT INTO FH

SELECT

D1,

SUM

 (

CASE WHEN D2=’X’ THEN A ELSE NULL END) AS

D2_X,

SUM

 (

CASE WHEN D2=’Y’ THEN A

ELSE NULL END) AS D2_Y

FROM F

GROUP BY D1;

2) SPJ Method: This method is based on the relational

operators only. In this method one table is created with vertical

aggregation for each column. Then all such tables are joined in

order to generate a table containing horizontal aggregations.

This method performs Select, Project and Join operation on

the fact table.
The SPJ method code is as follows (computed from F):

INSERT INTO F1

SELECT D1, SUM (A) AS A

FROM F

WHERE D2=’X’

GROUP BY D1;

INSERT INTO F2

SELECT D1, SUM (A) AS A

FROM F

WHERE D2=’Y’

GROUP BY D1;

INSERT INTO FH

SELECT F1.D1, F1.A AS D2_X, F2.A AS D2_Y

FROM F1

LEFT OUTER JOIN F2 ON F1.D1=F2.D1;

3) PIVOT Method: The pivot operator is a built-in

operator which transforms row to columns. It internally needs

to determine how many columns are needed to store the

transposed table and it can be combined with the GROUP BY

clause.
The PIVOT method code is as follows (computed from F):

INSERT INTO FH

SELECT

D1,

[X] AS D2_X,

[Y] AS D2_Y,

FROM

(

SELECT D1, D2, A FROM F

) as p

PIVOT

(

SUM (A) FOR D2 IN ([X], [Y])

) AS pvt;

1559

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20877

B. Work Flow of Horizontal Aggregation

1) Previous Work Flow

Fig. 2. Main Steps of Methods Based on F (unoptimized)

In above Fig. 2 [1], it shows the flow of the horizontal

aggregation in which R1,……..,Rk are columns which are

used to perform the operations such as SPJ, CASE and PIVOT

for d dimensionality. In this diagram, CASE method performs

one scan operation. Here it computes aggregation directly

from input table. But it gives unoptimized solution.

2) Proposed Work Flow

Fig. 3. Main Steps of Methods Based on FV (optimized)

In above Fig. 3 [1], it shows the flow of the horizontal
aggregation in which R1,……..,Rk are columns which are
used to perform the operations such as SPJ, CASE and PIVOT
for d dimensionality. In this diagram, CASE method performs
two scan operations.

Here it computes vertical aggregation first and then
computes horizontal aggregation. It is necessary to compute
vertical aggregation before horizontal aggregation to obtain
optimized solution.

IV. EXPERIMENTAL EVALUATION

A. Data Sets

We evaluated optimization strategies for aggregation
queries with synthetic data sets generated by the TPC-H
generator[5]. In general, we evaluated horizontal aggregation
queries using the fact table transaction Line as input.

The TPC Benchmark™ H (TPC-H) is a decision support
benchmark [5]. It consists of a suite of business oriented ad-
hoc queries and concurrent data modifications. The queries
and the data populating the database have been chosen to have
broad industry-wide relevance while maintaining a sufficient
degree of ease of implementation. This benchmark illustrates
decision support systems that examine large volumes of data;
execute queries with a high degree of complexity.

B. Query Optimization

TABLE I QUERY OPTIMIZATION

n d

CASE SPJ PIVOT

F FV F FV F FV

100k 2 63 15 130 29 100 15

200k 2 123 30 159 56 150 30

Precompute Vertical Aggregation in Fv. Time in Milliseconds

In above table I, n is the cardinality in rows for the input
table and d indicate the no. of dimensions. From table I it is
conclude that if we compute the horizontal aggregation after
vertical aggregation then it require less time than the
horizontal aggregation computed directly by input table.
CASE, PIVOT and SPJ method produced same output but
they required different time span to compute the query. CASE
and PIVOT method require almost same time for both direct
and indirect method. But SPJ method require more time than
other methods.

V. CONCLUSIONS

In this project a new class of extended aggregate functions
introduces which are called as horizontal aggregations which
help preparing data sets for data mining and OLAP cube
exploration.

In this paper, we use the horizontal aggregation methods
CASE, PIVOT and SPJ with direct and indirect method. As
we perform CASE method directly from fact table, then it
make code more compact but it is time consuming process
comparing with indirect CASE evaluation where, horizontal
aggregation is computed after vertical aggregation.

Query optimization is most challenging task in the
horizontal aggregation. We can try to achieve better query
optimization. We can also use the horizontal aggregation for
the further extended for Association Rules by applying Apriori
Algorithm.

ACKNOWLEDGMENT

The authors would like to thank the University Authorities
for providing the infrastructure to carry out the research. This
work is supported by University Grants Commission.

1560

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20877

REFERENCES

[1] Carlos Ordonez, Zhibo Chen. “Horizontal Aggregations in SQL to
Prepare Data Sets for Data Mining Analysis,” IEEE Transactions on
Knowledge and Data Engineering, Digital Object Indentifier
10.1109/TKDE.2011.16, April 2012.

[2] C. Ordonez. “Horizontal aggregations for building tabular data sets.”

In Proc. ACM SIGMOD Data Mining and Knowledge Discovery
Workshop, pages 35–42, 2004.

[3] V. Pradeep Kumar, Dr. R. V. Krishnaiah. “Horizontal Aggregations in

SQL to Prepare Data Sets for Data Mining Analysis,” ISSN: 2278-

0661, ISBN: 2278-8727 Volume 6, Issue 5, PP 36-41,Dec.2012.

[4] C.Ordonez.”Vertical and horizontal percentage aggregations.” In

Proc.ACM SIGMOD Conference, pages 866–871, Oct.2004.

[5] Data sets: http://www.tpc.org/tpch/

[6] G. Bhargava, P. Goel, and B.R. Iyer. “Hypergraph based reordering of

outer join queries with complex predicates.” In ACM SIGMOD
Conference, 1995.

[7] S. Sarawagi, S. Thomas, and R.Agrawal. “Integrating association rule

mining with relational database systems: alternatives and implications.”

In Proc. ACM SIGMOD Conference, pages 343–354, 1998.

[8] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert, A.

Gupta, L. Sheng, and S. Subramanian. Spreadsheets in RDBMS for

OLAP. In Proc. ACM SIGMOD Conference, pages 52–63, 2003.

1561

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20877

