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I. INTRODUCTION 

 Algebraic methods were introduced in topology by 

Poincare around 1895. Chronologically, fundamental group 

of topological spaces and homology groups were some of 

important notions that enable us to compute for the 

topological spaces (Analysis Situs, 1895) [7, 9, 12]. As a 

result a separate branch took birth known as algebraic 

topology. Later, we see in the work of Poul Heegard, Barratt 

etc, in the extensive reading of homotopy and their 

equivalence among the spaces M and N. Well, there algebraic 

methods enhanced the scope of the classification themes 

among topological spaces.  

Next to these algebraic notions, we have certain 

aspect of associations not necessarily a algebraic structure 

with topological space, namely the notion homotopy 

equivalence classes over space of all continuous function 

from a space to space. Deformations being standard idea in 

topology which in a way converts one space into anther space 

without losing its qualitative property. Homotopy 

equivalence classis set [M, N] was first systemically studied 

by M.G. Barratt in 1955 [9]. The issue of characterization of 

homeomorphic topological spaces has partially solved by 

help of homotopy. The problems of classification of 

topological spaces according to their homotopy properties are 

also take important role in classification theory. But 

homotopy equivalence of spaces not necessarily topological 

equivalence. Homotopy equivalence is a weaker relation than 

topological equivalence, hence its class is bigger. Therefore 

homotopy equivalence has prominent role than 

homeomorphism. Deformation is a standard idea in topology, 

as morphisms can do so. The deformation is a notion that 

converts one space into other by the tool of homotopy. Hence 

homotopy theory takes powerful tools for this purpose 

[1,4,8,9]. In geometry, not only homotopy as well homology 

and cohomology are frequently used algebraic association.  

Njastad [3,11] introduced α -open sets in a 

topological space and studied some properties. Further α -

continuous map, and respective open map and closed map in 

topological space is studied by A.S.Mashhour, I.A.Hasanein 

[2]. Semi-homotopy and semi-fundamental groups studied by 

Ayhan Erciyes, Ali Aytek in and Tuncar Sahan [4]. We 

introduce such class of α-homotopy of α-continuous maps, 

same α-homotopy type, α-contractible space, and post and 

pre induced map of a α-continuous map. These have many 

rich consequences concern to contractible space, induced 

map, usual Homotopy and fundamental group. Here we place 

example for few respective results. 

 

II. PRELIMINARIES 

Throughout this paper L, M, N, R  and S  represent the 

topological spaces on which no separation axioms are 

assumed unless otherwise mentioned. Map here mean 

function and for a subset F of topological space M, the  M\F 

denotes the complement of F in M. We recall the following 

definitions. 

Definition 2.1 [3, 11] A subset F of a space M is said to be α-

open set, if F ⊆ Int(Cl(Int(F))). Respectively called α-closed 

set, if M ∖ F is α-open set in M. We denote the set of all α-

open sets in M by αO(M). 

Definition 2.2 [2] A map h: M → N  is said to be α -

continuous map, if h−1(F)  is α-closed set of M , for every 

closed set F of  N. 

Definition 2.3 A map h: M → N  is said to be α -irresolute 

map, if h−1(F) is α-closed set of M, for every α-closed set 

Fof  N. 

Definition 2.4 A bijection h: M → N  is called α -

homeomorphism, if both h and  h−1 are α-continuous. 

Definition 2.5 (Consider) A topological space M is called ηα-

space, if every α-closed set is closed set. 

Theorem 2.6 Every α-irresolute maps are α-continuous. 

 

III. α-HOMOTOPY 

In this section we introduce the notions of α -

homotopy of α -continuous maps, α -relative homotopy, α -

contractible space, α -homotopy type and post and pre 

induced map of a α -continuous map also discuss few 

properties respectively. 

Definition 3.1 Let M and N  be two topological spaces and 

g, h: M → N be two α-continuous maps. Then a α-homotopy 

is a map H: M × I → N (Here, I = [0, 1]) such that, for all t ∈
 I the restrictions of H, Ht: M → N by x → Ht(x) = H(x, t) is 

α -continuous, satisfying H0(x) = H(x, 0) = g(x)  and 

H1(x) = H(x, 1) = h(x) for all x ∈ M. If such H is exist then 

H  is called α -homotopy between them, and g  is called α -

homotopic to h. We denote it by g ≃α h. 

And If g  is α -homotophic to a constant map 

( i. e. g ≃α cy , where  cy: M → N, cy(x) = y  for some y ∈ N) 

then g is called α-nullhomotopic. 

Example 3.2 Let g, h: (ℝ, ηu) → (ℝ, ηu)  be g(x) = 5x , 

h(x) = x + 2 and ηube usual topology on ℝ, then obviously 

map g is become α-homotopic to h, quite simple that one can 
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check H(x, t) = (1 − t) ∙ 5x + t ∙ (x + 2)  is a α -homotopy, 

because we know every continuous maps are α-continuous. 

Theorem 3.3 Every homotopy is α -homotopy (Every 

homotopy between continuous maps is α-homotopy between 

same α-continuous maps.). 

Proof: It fallowed from the fact, every continuous map is α-

continuous map. 

Theorem 3.4 [1,6,8] The relation α -homotopic is an 

equivalence relation on the set α-C(M, N) of all α-continuous 

maps from topological space M to N. 

Proof: Let M and N be two topological spaces then, 

Reflexivity: If g ∈ α-C(M, N)  i.e. g: M → N  is α -continuous 

map. Define H: M ×  I →  N by H(x, t) = g(x) for all x ∈ M 

and all t ∈ I, then H become α-homotopy between g and g. 

Hence g ≃α g. 

Symmetry: Suppose g, h ∈ α-C(M, N)  and g ≃α h  implies 

there is a α-homotopy map H: M × I → N such that, for all t ∈
I the restrictions of H, Ht: M → N by x → Ht(x) = H(x, t)  is 

α -continuous, satisfying H(x, 0) = g(x)  and H(x, 1) = h(x) 

for all x ∈ M . Define F: M ×  I → N , by F(x, t) =

H(x, (1 − t)) , obviously for all t ∈ I  the restrictions of F , 

Ft: M → N  by x → Ft(x) = H(x, (1 − t)) = H(x, t0) = Ht0
 

for some t0 ∈  I , hence it is α -continuous, satisfying 

F(x, 0) = h(x)  and F(x, 1) = g(x)  and become α -homotopy 

between h and g, implies h ≃α g. 

Transitivity: Suppose g, h, k ∈ α-C(M, N)  with g ≃α h  and 

h ≃α k implies there are α- homotopies, H: M × I → N such 

that, for all t ∈  I  the restrictions of H , Ht: M → N  by x →
Ht(x) = H(x, t)  is α -continuous, satisfying H(x, 0) = g(x) 

and H(x, 1) = h(x)  for all x ∈ M . And F: M × I → N  such 

that, for all t ∈ I  the restrictions of F , Ft: M → N  by x →
Ft(x) = F(x, t)  is α -continuous, satisfying with F(x, 0) =
h(x)  and F(x, 1) = k(x)  for all x ∈ M . Define map G: M ×
I → N by, 

 G(x, t) = {
H(x, 2t)          if t ∈ [0,1/2]

F(x, 2t − 1)   if t ∈ [1/2,1]
. Obvious G become α-

homotopy between g  and k , because Gt(x) = G(x, t) =
Ht0

or Ft0
 for some t0 ∈ I, hence it is α-continuous, satisfying 

G(x, 0) = g(x) and F(x, 1) = k(x) and become α-homotopy, 

implies g ≃α k. Therefore ≃α is an equivalence relation. 

Equivalence of α -homotopy on α-C(M, N)  gives following 

notions. 

Definition 3.5 Let M and N  be two topological spaces and 

g: M → N  be α -continuous map. Then the set of all α -

continuous maps from M to N which are α-homotopic to g is 

called homotopy equivalence class of g. It is denoted by [g]α 

or α-Eg. 

i.e. [g]α = {h ∈ α-C(M, N) ∶ g ≃α h}. 

Definition 3.6 Let M and N be two topological spaces, then 

the set of all α-homotopy equivalence classes over α-C(M, N) 

is called α -homotopy equivalence classes over α-C(M, N) . 

This is denoted by  
α-C(M, N)

≃α
⁄  or [M, N]α . That is 

α-C(M, N)
≃α

⁄ = {[g]α ∶ g ∈ α-C(M, N)}. 

Theorem 3.7 If topological space M  is ηα -space then 

α-C(M, N) = C(M, N)  (Here C(M, N  denotes the set of all 

continuous maps from M to N). 

Proof: Open sets and α-open sets are same in ηα-space. 

Theorem 3.8 If g ∈ C(M, N)  then [g] ⊂ [g]α  where [g]  is 

homotopy equivalence class of g . But 
C(M, N)

≃⁄   

and 
α-C(M, N)

≃α
⁄ are not nessasarly comparable. 

Proof: Since every continuous map is α -continuous and 

converse need not hold. 

Lemma 3.9 [9] If g, h: M → N  are α -continuous maps, 

g ≃α h and k: N → R is continuous then kog ≃α koh. 

Proof: The g ≃α h , of g, h: M → N  α -continuous maps 

guarantee that there is a α-homotopy H: M × I → N such that, 

for all t ∈ I the restrictions of H, Ht: M → N by x → Ht(x) =
H(x, t)  is α -continuous, satisfying H(x, 0) = g(x)  and 

H(x, 1) = h(x)  for all x ∈ M . Now define the map F =
koH: M ×  I → R  clearly, for all t ∈ I  the restrictions of F , 

Ft: M → N  by x → Ft(x) = koH(x, t) = koHt(x)  is α -

continuous because H is α-continuous and k continuous. Also 

satisfying F(x, 0) = kog(x) and F(x, 1) = koh(x) for all x ∈
M. Hence the result. 

Theorem 3.10 If N is ηα-space, g, h: M → N are α-continuous 

maps, g ≃α h  and k: N → R  is α -continuous then 

kog ≃α koh. 

Proof: Similar to lemma 3.9. 

Theorem 3.11 If N is ηα-space, g, h: M → N are α-irresolute 

maps,  g ≃α h  and k: N → R  is α -continuous then 

kog ≃α koh. 

Proof: Refer lemma 3.9. 

Lemma 3.12 [9] If N  is ηα -space g, h: N → R  are α -

continuous maps, and g ≃α h and f: M → N  is α-continuous 

then gof ≃α hof. 
Proof: Hypothesis is g, h: N → R are α-continuous maps, and 

g ≃α h. This implies there is α-homotopy H: N × I → R such 

that, for all t ∈ I  the restrictions of H , Ht: N → R  by y →
Ht(y) = H(y, t)  is α -continuous satisfying H0(y) =
H(y, 0) = g(y)  and H1(y) = H(y, 1)  = h(y)  for all y ∈ N . 

Define F: M × I → R  by F(x, t) = H(f(x), t) , this is well 

define map and F0(x) = H(f(x), 0) =  gof(x)  and F1(x) =
H(f(x), 1) =  hof(x)  for all x ∈ M . Also for all t ∈ I  the 

restrictions of F  is, Ft: M → R  by x → Ft(x) = H(f(x), t) =

Ht(f(x)) = Htof(x)  which is α-continuous because of N is 

ηα-space and f: M → N is α-continuous. 

Theorem 3.13 If N is ηα-space, g, h: N → R are α-irresolute 

maps, g ≃α h and f: M → N is α-continuous then gof ≃α hof. 
Proof: Since every α-irresolute map is α-continuous map. 

Lemma 3.14 [9] If N is ηα-space, f, g: M → N and h, k: N → R 

are α-continuous maps and f ≃α g,  h ≃α k then hof ≃α kog. 

Proof: Hypothesis is f, g: M → N and h, k: N → R  are α -

continuous maps and f ≃α g, h ≃α k. This implies there is α-

homotopy H(x, t) between f and g, such that, for all t ∈ I the 

restrictions of H , Ht: M → N  by x → Ht(x) = H(x, t)  is α -

continuous maps satisfying H0(x) = H(x, 0) =  f(x)  and 

H1(x) = H(x, 1) = g(x)  for all x ∈  M . Also there is α -

homotopy G(y, t) between h and k, such that, for all t ∈ I the 

restrictions of G , Gt: M → N  by y → Gt(y) = G(y, t)  is α -

continuous map satisfying G0(y) = G(y, 0)  = h(y)  and 

G1(y) = G(y, 1) = k(y) for all y ∈ N. Define F: M × I → R as 

F(x, t) = G(H(x, t), t) , which become map and F(x, 0) =
G(H(x, 0), 0) = hof(x) , F(x, 1) = G(H(x, 1), 1) = kog(x) . 

Since Ht  and Gt  are α -continuous map and N  is ηα -space 

gives GtoHt is α -continuous map and GtoHt(x) =
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Gt(Ht(x)) = G(H(x, t), t) = Ft(x) = F(x, t). Hence for all t ∈
I the restrictions of F, Ft: M → R by x → Ft(x) = F(x, t) is α-

continuous map. Therefore F is α-homotopy between hof and 

kog. 

Corollary 3.15 [9] If N is ηα-space p: N → R is α-continuous 

and for all f ∈ α-C(M, N) then there exist map p∗: [M, N]α →
[M, R]α by p∗([f]α) = [pof]α, (call pre induced map). 

Proof: Here N is ηα-space p: N → R is α-continuous. Defined 

p∗: [M, N]α → [M, R]α  by p∗([f]α) = [pof]α , is clearly well 

defined because, ∀θ ∈ [M, N]α  implies θ = [f]α  for some 

f: M → N  α -continuous. This gives pof: M → R  is α -

continuous, implies[pof]α = p∗([f]α) ∈ [M, R]α. 

Also suppose for θ ∈ [M, N]α  such that θ = [f]α = [g]α , 

implies f ≃α g  by theorem 3.10 pof ≃α pog , so [pof]α =
[pog]α and p∗([f]α) = p∗([g]α). Hence p∗ is well defined. 

Theorem 3.16 If N, R are ηα-spaces, p: N → R, q: R → S are 

α -continuous maps and for all ∀θ ∈ [M, N]α  then 

(qop)∗(θ) = q∗op∗(θ). 

Proof: N, R are ηα -space and  p: N → R , q: R → S  are α -

continuous maps implies qop: N → S  is α -continuous. 

Therefore each map induce p∗: [M, N]α → [M, R]α , 

q∗: [M, R]α → [M, S]α  and (qop)∗: [M, N]α → [M, S]α , hence 

q∗op∗ possible also q∗op∗ and (qop)∗ have same domain and 

codamain. 

Also ∀θ ∈ [M, N]α implies θ = [f]α for some f: M →
N α-continuous. Consider, 

(qop)∗(θ) = (qop)∗([f]α) 

     = [(qop)of]α 

 = [qo(pof)]α 

     = q∗([pof]α) 

     = q∗op∗([f]α) 

 = q∗op∗(θ) 

 

Theorem 3.17 If N  is ηα -space, IdN: N → N  defined as 

IdN(x) = x  and for all f ∈ α-C(M, N)  then (IdN)∗([f]α) =
Id[M,N]α

([f]α), ∀[f]α ∈ [M, N]α. 

Proof: Here N is ηα-space, IdN: N → N defined as IdN(x) = x 

is α -continuous. This implies pre induced map become, 

(IdN)∗: [M, N]α → [M, N]α  by (IdN)∗([f]α) = [IdNof]α =
[f]α = Id[M,N]α

([f]α), ∀[f]α ∈ [M, N]α. Hence the proof. 

Corollary 3.18 [9] If N is ηα-space q: M → N is α-continuous 

and for all f ∈ α-C(N, R) then there exist map q#: [N, R]α →
[M, R]α by q#([f]α) = [foq]α (call post induced map). 

Proof: Here Nis ηα-space, q: M → N is α-continuous. Defined 

q#: [N, R]α → [M, R]α   by q#([f]α) = [foq]α , is clearly well 

defined because, ∀θ ∈ [N, R]α  implies θ = [f]α  for some 

f: N → R  α -continuous. This gives foq: M → R  is α -

continuous, implies [foq]α = q#([f]α) ∈ [M, R]α. 

Also suppose for θ ∈ [N, R]α  such that θ = [f]α =
[g]α, implies f ≃α g by lemma 3.12 foq ≃α goq, so [foq]α =
[goq]α and q#([f]α) = q#([g]α). Hence q# is well defined. 

Theorem 3.19 If M, N are ηα-space, p: L → M, q: M → N are 

α -continuous maps and for all ∀θ ∈ [N, R]α  then  

(qop)#(θ) = p#oq#(θ). 

Proof: M, N are ηα -space and  p: L → M , q: M → N  are α -

continuous maps implies qop: L → N  is α-continuous. 

Therefore each map induce p#: [M, R]α → [L, R]α , 

q#: [N, R]α → [M, R]α  and (qop)#: [N, R]α → [L, R]α , hence 

p#oq#  possible also p#oq#  and (qop)#  have same domain 

and codamain. 

Also ∀θ ∈ [N, R]α  implies θ = [f]α  for some f: N →
R α-continuous. Consider, 

 (qop)#(θ) = (qop)#([f]α) 

 = [fo(qop)]α 

 = [(foq)op]α 

 = p#([foq]α) 

     = p#oq#([f]α) 

 = p#oq#(θ) 

 

Theorem 3.20 If M is ηα -space,  IdM: M → M  defined as 

IdM(x) = x  and for all f ∈ α-C(M, N)  then (IdM)#([f]α) =
Id[M,N]α

([f]α), ∀[f]α ∈ [M, N]α. 

Proof: Here M is ηα-space, IdM: M → M defined as IdM(x) =
x  is α -continuous. This implies post induced map, 

(IdM)#: [M, N]α → [M, N]α  become (IdM)#([f]α) =
[(foIdM)]α = [f]α = Id[M,N]α

([f]α), ∀[f]α ∈ [M, N]α.  Hence 

the proof. 

Definition 3.21 Let M and N be two topological spaces A ⊂
M  and g, h: M → N  be two α -continuous maps. Then a α -

relative homotopy respect to A is a map H: M × I → N such 

that, for all t ∈  I  the restrictions of H , Ht: M → N  by x →
Ht(x) = H(x, t)  is α -continuous, satisfying  H0(x) =
H(x, 0) = g(x) , H1(x) = H(x, 1) = h(x)  for all x ∈  M  and 

H(a, t) = g(a) = h(a), ∀a ∈ A, ∀t ∈  I. If such H is exist then 

H is called α-relative homotopy between them, and g is called 

α -relative homotopic to h  respect to A . We denote it by 

g ≃α(A) h. 

Example 3.22 Let g, h: ℝ → ℝ be g(x) = x and  

h(x) = {
0        if x ≤ 0
x   if x ∈ [0,1]

1        if x ≥ 1

 then g ≃α(A) h, where A = [0,1]. 

Theorem 3.23 Every relative homotopy respect to A  is α-

relative homotopy respect to A. 

Proof: Refer theorem 3.3. 

Theorem 3.24 α -relative homotopy respect to A  is an 

equivalence relation on set of all α-continuous maps from  M 

to N. 

Proof: Refer theorem 3.4. 

Theorem 3.25 [9] If N is ηα-space, f, g: M → N are α-relative 

homotopy respect to A ⊂ M , and h, k: N → R  are α -relative 

homotopy respect to B ⊂ N  and f(A) ⊂ B  then 

hof ≃α(A) kog. 

Proof: Hypothesis f, g: M → N  and, h, k: N → R  are α -

continuous maps and f ≃α(A) g,  h ≃α(B) k. This implies there 

is α-relative homotopy H(x, t) respect to A, between f and g, 

such that, for all t ∈  I  the restrictions of H, Ht: M → N by 

x → Ht(x) = H(x, t)  is α -continuous maps satisfying 

H0(x) = H(x, 0) = f(x) , H1(x) = H(x, 1) = g(x)  for all x ∈
M and H(a, t) = f(a) = g(a), ∀a ∈ A, ∀t ∈ I. Also there is α-

relative homotopy G(y, t) respect to B, between h and k, such 

that, for all t ∈ I  the restrictions of G , Gt: M → N  by y →
Gt(y) = G(y, t)  is α -continuous map satisfying G0(y) =
G(y, 0) = h(y) , G1(y) = G(y, 1) = k(y)  for all y ∈ N  and 

G(b, t) = h(b) = k(b), ∀b ∈ B, ∀t ∈  I.  
Define F: M × I → Ras F(x, t) = G(H(x, t), t)become 

map and F(x, 0) = G(H(x, 0), 0) = hof(x) , F(x, 1) =
G(H(x, 1), 1) = kog(x)  and F(a, t) = G(H(a, t), t) =
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G(f(a), t) = hof(a) = kof(a) = kog(a), ∀a ∈ A, ∀t ∈ I. Since 

Ht  and Gt  are α -continuous map and N  is ηα -space gives 

GtoHt is α -continuous map and GtoHt(x) = Gt(Ht(x) =
G(H(x, t), t) = Ft(x) = F(x, t) . Hence for all t ∈ I  the 

restrictions of F , Ft: M → R  by x → Ft(x) = F(x, t)  is α -

continuous map. Therefore F is α-relative homotopy respect 

to A between hof and kog . 

Definition 3.26 Let M and N be two topological spaces and 

g: M → N be α-continuous map if there is α-continuous map 

h: M → N such that hog ≃α IdM  and goh ≃α IdN . Then h is 

called α-homotopy equivalence to g, or α-homotopy inverse 

of g. Here g, h are called α-homotopy equivalences between 

M and N. 

Definition 3.27 Let M  and N  be two topological spaces, if 

there is a α-homotopy equivalences between them, then M 

and N  are called α -homotopy equivalent to each other or 

same α-homotopy type. 

Example 3.28 The cylinder and circle are same α-homotopy 

type. It will follow by theorem 3.29. 

Theorem 3.29 Same homotopy type spaces are also same α-

homotopy type spaces. Converse need not hold. 

Proof: Fallowed by the theorem 3.3.  

Note 3.30 Generally composition of two α-continuous maps 

are need not α-continuous. Therefore same α-homotopy type 

relation even thou reflexive, symmetric but not transitive, so 

it will not induce equivalence relation. Therefore our 

intuition, partition of topological space under same α -

homotopy type is not possible. Since every α-irresolute map 

are α-continuous map and composition of two α-irresolute 

maps are α-irresolute, also confining set of all topological 

spaces are ηα-spaces on which the relation same α-homotopy 

type become equivalence relation as fallow. 

Theorem 3.31 [9] The relation same α -homotopy type is 

equivalence relation on set of ηα- topological spaces. 

Proof: Reflexive: for every ηα- space M, obvious IdM, IdM is 

a α-homotopy equivalences. 

Symmetric: Let M, N and R are ηα-spaces, suppose M and N 

are same α -homotopy type, implies there is g, h  a α -

homotopy equivalences. Obvious h, g  gives α -homotopy 

equivalences between N and M. 

Transitive: Let M, N and R are ηα-spaces and M, N are same 

α-homotopy type and N, R are same α-homotopy type. This 

implies there exist a α-homotopy equivalences f, g between M 

and N, that is gοf ≃α IdMand fοg ≃α IdN via a α-homotopy. 

Also there exist a α -homotopy equivalences h, k  between 

N and R , such that kοh ≃α IdN  and hοk ≃α IdR  via a α -

homotopy. It is true that hοf: M → R and gοk: R → M become 

α-homotopy equivalences between M and R. Because since 

the hypothesis kοh ≃α IdN and fact f ≃α f, and by the lemma 

3.14 we have kοhοf ≃α IdNοf again by lemma 3.14 we can 

have gοkοhοf ≃α gοIdNοf , this implies 

gοkοhοf ≃α gοIdNοf ≃α IdM  by hypothesis. Similarly 

hοfοgοk ≃α IdR . Therefore hοf and gοk  are α -homotopy 

equivalences between M  and  R . Hence same α -homotopy 

type is equivalence relation. 

Theorem 3.32 [9, 12] If N, R are ηα-space then,  

i) If p: N → R is a α-homotopy equivalence and for any space 

M then p∗: [M, N]α → [M, R]α is bijective. 

ii) If p: N → R  is α -homeomorphism and for any space M 

then p∗: [M, N]α → [M, R]α is bijective. 

 

Proof: i) Here p: N → R is α-homotopy equivalence implies 

existence of its α-homotopy inverse say q: R → N such that 

poq ≃α IdR and qop ≃α IdN  . For any space M , since 

p∗: [M, N]α → [M, R]α  is well defined function, suppose 

p∗([f]α) = p∗([g]α)  for [f]α, [g]α ∈ [M, N]α , gives [pof]α =
 [pog]α which implies pof ≃α pog. The hypothesis q: R → N 

is α-continuous, R is ηα-space and pre composition theorem 

3.10 implies qopof ≃α qopog  equivalently f ≃α g  so 

[f]α = [g]α, therefore p∗ is injective. 

Also for any [h]α ∈  [M, R]α  implies h: M → R  is α -

continuous map, and hypothesis q: R → N is α-continuous, R 

is ηα-space guarantee qoh: M → N is α-continuous. Therefore  

[qoh]α ∈ [M, N]α  such that p∗([qoh]α) = [poqoh]α = [h]α , 

hence surjective. 

ii) p: N → R is α-homeomorhism then p and p−1  become α-

homotopy equivalences. 

Theorem 3.33 [9,12] If N, M are ηα-space then, 

i) q: M → N is a α-homotopy equivalence and for any space R 

then q#: [N, R]α → [M, R]α is bijective. 

ii) q: M → N  is α-homeomorhism and for any space R  then 

q#: [N, R]α → [M, R]α is bijective. 

Proof: i) Here q: M → N  is α-homotopy equivalence implies 

existence of its α-homotopy inverse say p: N → M such that 

poq ≃α Id M  and qop ≃α IdN . For any space M , since 

q#: [N, R]α → [M, R]α  is well defined function, suppose 

q#([f]α) = q#([g]α)  for [f]α, [g]α ∈ [N, R]α , gives [foq]α =
 [goq]α which implies foq ≃α goq. The hypothesis p: N → M 

is α-continuous, Mis ηα-space and post composition lemma 

3.12 implies foqop ≃α goqop  equivalently f ≃α g  so 

[f]α = [g]α, therefore q# is injective. 

Also for any [h]α ∈ [M, R]α  implies h: M → R is α-

continuous map, and hypothesis p: N → M is α-continuous, M 

is ηα-space guarantee hop: N → R is α-continuous. Therefore 
[hop]α ∈ [N, R]α  such that q#([hop]α) = [hopoq]α = [h]α , 

hence surjective. 

ii) q: N → R  is α-homeomorhism then q  and q−1  become α-

homotopy equivalences. 

Definition 3.34 A topological space M  is called α -

contractible if IdM is α-null homotophic. 

Theorem 3.35 Every contractible space is α-contractible. 

Proof: Since every homotopy is α-homotopy. 

Example 3.36 Every star convex space is α-contractible. 

Theorem 3.37 If M  is α -contractible then it is same α -

homotopy type to a point space in M. 

Proof: Let M be a α-contractible space, implies identity map 

IdM on M is α-null homotopic. That is there exist cx0
: M → M 

by cx0
(x) = x0, such that IdM ≃α cx0

. Define h: {x0} → M by 

h(x) = x0, and g: M → {x0} by g(x) = x0. Then hog: M → M 

become hog(x) = x0 = cx0
, so hog = cx0

≃α IdM , also 

goh: {x0} → {x0}  become goh(x) = x0 = Id{x0} , so 

goh(x) ≃α Id{x0} (x) . Therefore {x0}  and M  are same α  -

homotopy type. 

Theorem 3.38 Every α -contractible space is same α -

homotopy type of a point space. 

Proof: Let M be a α-contractible space, and {∗} be any point 

space. By theorem 3.37 there exist a point space {x0} in M 
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such that {x0} and M are same α-homotopy type. Since {x0} 

and {∗}  are homeomorphic space, hence same α-homotopy 

type. Here transivity works by same α -homotopy type 

relation gives M is same α-homotopy type of point space {∗}. 

Theorem 3.39 If N  is α-contractible ηα -space and for any 

space M then [M, N]α is singleton. 

Proof: Consider any g, h ∈ α-C(M, N) , implies g, h ∶ M → N 

are α -continuous maps. Hypothesis is N  is α -contractible 

space implies IdM ≃α cx0
, where IdM, cx0

∶ N → N by lemma 

3.12 IdMog ≃α cx0
og implies g ≃α kx0

, where kx0
= cx0

og ∶

M → N  a constant map. Similarly IdMoh ≃α cx0
oh 

implies h ≃α kx0
. Transitivity of α-homotopy gives g ≃α h, 

hence ≃α  is universal relation. There fore [M, N]α  is 

singleton. 
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