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Abstract- In this paper, we introduce the term of a-homotopy of
«a-continuous maps, a-homotopy equivalence classes and their
consequences, same a-homotopy type, a-contractible spaces,
and few properties. Also we present induced map and their
properties, and consequences respect to some notions.
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I.  INTRODUCTION

Algebraic methods were introduced in topology by
Poincare around 1895. Chronologically, fundamental group
of topological spaces and homology groups were some of
important notions that enable us to compute for the
topological spaces (Analysis Situs, 1895) [7, 9, 12]. As a
result a separate branch took birth known as algebraic
topology. Later, we see in the work of Poul Heegard, Barratt
etc, in the extensive reading of homotopy and their
equivalence among the spaces M and N. Well, there algebraic
methods enhanced the scope of the classification themes
among topological spaces.

Next to these algebraic notions, we have certain
aspect of associations not necessarily a algebraic structure
with topological space, namely the notion homotopy
equivalence classes over space of all continuous function
from a space to space. Deformations being standard idea in
topology which in a way converts one space into anther space
without losing its qualitative property. Homotopy
equivalence classis set [M, N] was first systemically studied
by M.G. Barratt in 1955 [9]. The issue of characterization of
homeomorphic topological spaces has partially solved by
help of homotopy. The problems of classification of
topological spaces according to their homotopy properties are
also take important role in classification theory. But
homotopy equivalence of spaces not necessarily topological
equivalence. Homotopy equivalence is a weaker relation than
topological equivalence, hence its class is bigger. Therefore
homotopy  equivalence has prominent role than
homeomorphism. Deformation is a standard idea in topology,
as morphisms can do so. The deformation is a notion that
converts one space into other by the tool of homotopy. Hence
homotopy theory takes powerful tools for this purpose
[1,4,8,9]. In geometry, not only homotopy as well homology
and cohomology are frequently used algebraic association.

Njastad [3,11] introduced o -open sets in a
topological space and studied some properties. Further a-
continuous map, and respective open map and closed map in
topological space is studied by A.S.Mashhour, I.A.Hasanein
[2]. Semi-homotopy and semi-fundamental groups studied by
Ayhan Erciyes, Ali Aytek in and Tuncar Sahan [4]. We

T Venkatesh
Department of Mathematics,
Rani Channamma University, Belagavi-591 156,
Karnataka, India.

introduce such class of a-homotopy of a-continuous maps,
same a-homotopy type, a-contractible space, and post and
pre induced map of a a-continuous map. These have many
rich consequences concern to contractible space, induced
map, usual Homotopy and fundamental group. Here we place
example for few respective results.

Il. PRELIMINARIES

Throughout this paper L,M,N,R and S represent the
topological spaces on which no separation axioms are
assumed unless otherwise mentioned. Map here mean
function and for a subset F of topological space M, the M\F
denotes the complement of F in M. We recall the following
definitions.
Definition 2.1 [3, 11] A subset F of a space M is said to be a-
open set, if F € Int(Cl(Int(F))). Respectively called a-closed
set, if M \ F is a-open set in M. We denote the set of all a-
open sets in M by aO(M).
Definition 2.2 [2] A map h: M —> N is said to be o -
continuous map, if h™(F) is a-closed set of M, for every
closed set F of N.
Definition 2.3 A map h: M — N is said to be a-irresolute
map, if h=2(F) is a-closed set of M, for every a-closed set
Fof N.
Definition 2.4 A bijection h:M—-> N is called o -
homeomorphism, if both h and h™* are a-continuous.
Definition 2.5 (Consider) A topological space M is called 1-
space, if every a-closed set is closed set.
Theorem 2.6 Every a-irresolute maps are a-continuous.

. a-HOMOTOPY

In this section we introduce the notions of a -
homotopy of a-continuous maps, a-relative homotopy, o-
contractible space, a -homotopy type and post and pre
induced map of a a -continuous map also discuss few
properties respectively.
Definition 3.1 Let M and N be two topological spaces and
g,h: M — N be two a-continuous maps. Then a a-homotopy
isamap H:M x 1 — N (Here, I = [0, 1]) such that, for all t €
[ the restrictions of H, H::M — N by x - H((x) = H(x,t) is
a -continuous, satisfying Hy(x) = H(x,0) = g(x) and
H;(x) = H(x,1) = h(x) for all x € M. If such H is exist then
H is called a-homotopy between them, and g is called a-
homotopic to h. We denote it by g =, h.

And If g is a -homotophic to a constant map
(i.e.g =4 cy, where c,:M - N, c,(x) =y for some y € N)
then g is called a-nullhomotopic.
Example 3.2 Let gh:(R,n,) - (R,n,) be gx) =5x,
h(x) = x + 2 and n,be usual topology on R, then obviously
map g is become a-homotopic to h, quite simple that one can
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check H(x,t) = (1 —t) - 5x+t- (x+2) is a a-homotopy,
because we know every continuous maps are a-continuous.
Theorem 3.3 Every homotopy is a -homotopy (Every
homotopy between continuous maps is a-homotopy between
same a-continuous maps.).

Proof: It fallowed from the fact, every continuous map is a-
continuous map.

Theorem 3.4 [1,6,8] The relation o -homotopic is an
equivalence relation on the set a-C(M, N) of all a-continuous
maps from topological space M to N.

Proof: Let M and N be two topological spaces then,
Reflexivity: If g € a-C(M,N) i.e. g:M — N is a-continuous
map. Define H:M X I - N by H(x,t) = g(x) for all x e M
and all t € I, then H become a-homotopy between g and g.
Hence g =, g.

Symmetry: Suppose g, h € a-C(M,N) and g =, h implies
there is a a-homotopy map H: M X I — N such that, for all t €
I the restrictions of H, H: M — N by x = H(x) = H(x,t) is
a-continuous, satisfying H(x,0) = g(x) and H(x,1) = h(x)
for all xeM . Define F:MXx >N, by F(xt)=
H(x, (1 —1t)), obviously for all t €1 the restrictions of F,
FeM—->N by x- F(x)=H(x,(1-1)=H(xty) =H,,
for some t, € I, hence it is a -continuous, satisfying
F(x,0) = h(x) and F(x,1) = g(x) and become o-homotopy
between h and g, impliesh =, g.

Transitivity: Suppose g h,k € a-C(M,N) with g =, h and
h =, k implies there are a- homotopies, H: M x I — N such
that, for all t € I the restrictions of H, H:M —= N by x =
H.(x) = H(x,t) is a-continuous, satisfying H(x,0) = g(x)
and H(x,1) = h(x) for all xe M. And F: M X1 — N such
that, for all t €1 the restrictions of F, F:M - N by x -
Fi(x) = F(x,t) is o -continuous, satisfying with F(x,0) =
h(x) and F(x,1) = k(x) for all x € M. Define map G: M x

I - N by,

H(x, 2t) ift € [0,1/2]
G0 = {F(x, 2t—1) ifte[1/21]
homotopy between g and k, because G.(x) = G(x,t) =
Hg,or Fy for some t, € I, hence it is a-continuous, satisfying
G(x,0) = g(x) and F(x,1) = k(x) and become a-homotopy,
implies g =, k. Therefore = is an equivalence relation.
Equivalence of a-homotopy on a-C(M, N) gives following
notions.
Definition 3.5 Let M and N be two topological spaces and
g:M — N be a-continuous map. Then the set of all a-
continuous maps from M to N which are a-homotopic to g is
called homotopy equivalence class of g. It is denoted by [g],
or a-Eg.
ie. [gle ={h €a-C(M,N):g=,h}.
Definition 3.6 Let M and N be two topological spaces, then
the set of all a-homotopy equivalence classes over a-C(M, N)
is called a-homotopy equivalence classes over a-C(M,N).

This is denoted by a—C(M,N)/:a or [M,N], . That is

CCMN)/L = (gl : g € a-CM, )Y,

Theorem 3.7 If topological space M is m, -space then
a-C(M,N) = C(M,N) (Here C(M,N denotes the set of all
continuous maps from M to N).

Proof: Open sets and a-open sets are same in n,-space.

. Obvious G become a-

Theorem 3.8 If g€ C(M,N) then [g] < [g], where [g] is
of g . But C(M, N)/z
and ©C(M, N) /=~ are not nessasarly comparable.

Proof: Since every continuous map is o -continuous and
converse need not hold.

Lemma 3.9 [9] If gh:M — N are a -continuous maps,
g =, hand k: N — R is continuous then kog =, koh.

Proof: The g=,h, of gh:M - N a -continuous maps
guarantee that there is a a-homotopy H: M X I — N such that,
for all t € I the restrictions of H, H;:M — N by x - H,(x) =
H(x,t) is a -continuous, satisfying H(x, 0) = g(x) and
H(x,1) = h(x) for all x€ M. Now define the map F =
koH: M x I — R clearly, for all t €1 the restrictions of F,
F:M->N by x- F/(x)=koH(x,t) =koH,(x) is a -
continuous because H is a-continuous and k continuous. Also
satisfying F(x, 0) = kog(x) and F(x,1) = koh(x) for all x €
M. Hence the result.

Theorem 3.10 If N is n,-space, g,h: M — N are a-continuous
maps, g=,h and kiN->R is « -continuous then
kog =, koh.

Proof: Similar to lemma 3.9.

Theorem 3.11 If N is n,-space, g, h:M — N are a-irresolute
maps, g=~,h and k:N—->R is a -continuous then
kog =~ koh.

Proof: Refer lemma 3.9.

Lemma 3.12 [9] If N is n, -space g, h:N - R are o -
continuous maps, and g =, h and f: M — N is a-continuous
then gof ~, hof.

Proof: Hypothesis is g, h: N — R are a-continuous maps, and
g =, h. This implies there is a-homotopy H: N X I — R such
that, for all t €I the restrictions of H, H: N>R by y —»
H.(y) = H(y,t) is a -continuous satisfying Hy(y) =
H(y,0) = g(y) and H,(y) = H(y,1) =h(y) for all ye N.
Define F:M x1 - R by F(x,t) = H(f(x),t) , this is well
define map and F,(x) = H(f(x),0) = gof(x) and F,(x) =
H(f(x),1) = hof(x) for all x€ M. Also for all t €I the
restrictions of F is, Fu M —» R by x - F.(x) = H(f(x),t) =
Ht(f(x)) = H,of(x) which is a-continuous because of N is
Ne-Space and f: M — N is a-continuous.

Theorem 3.13 If N is n,-space, g, h: N —= R are a-irresolute
maps, g =, h and f: M — N is a-continuous then gof =, hof.
Proof: Since every a-irresolute map is a-continuous map.
Lemma 3.14 [9] If N is n,-space, f,g:M - Nand h,k:N - R
are a-continuous maps and f ~, g, h =, k then hof =, kog.
Proof: Hypothesis is f,g:M - N and h,k:N - R are o -
continuous maps and f =, g, h =, k. This implies there is a-
homotopy H(x, t) between f and g, such that, for all t € I the
restrictions of H, H:M — N by x - H.(x) = H(x,t) is a-
continuous maps satisfying Hy(x) = H(x,0) = f(x) and
H;(x) = H(x,1) = g(x) for all x € M. Also there is a-
homotopy G(y, t) between h and k, such that, for all t € I the
restrictions of G, Gz M = N by y = G.(y) = G(y,t) is a-
continuous map satisfying Gy(y) = G(y,0) = h(y) and
G,(y) = G(y,1) = k(y) forall y € N. Define F:M X I - R as
F(x,t) = G(H(x,t),t) , which become map and F(x,0) =
G(H(x,0),0) = hof(x) , F(x,1) = G(H(x,1),1) = kog(x) .
Since H; and G, are a-continuous map and N is n, -space
gives GioH, is a -continuous map and G.oH.(x) =

homotopy equivalence class
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G.(H(x)) = G(H(x,t),t) = F(x) = F(x,t). Hence forall t €
I the restrictions of F, F: M - Rby x - F,(x) = F(x,t) is a-
continuous map. Therefore F is a-homotopy between hof and
kog.
Corollary 3.15 [9] If N is n,-space p: N - R is a-continuous
and for all f € a-C(M, N) then there exist map p.: [M, N], =
[M, R], by p.([fle) = [pofl, (call pre induced map).
Proof: Here N is n,-space p: N - R is a-continuous. Defined
p.: [M,N]q = [M,R] by p.([f]o) = [pofls, is clearly well
defined because, V0 € [M,N], implies 6 = [f], for some
f:M - N a -continuous. This gives pof M >R is a -
continuous, implies[pof], = p.([fl) € [M,R],.
Also suppose for 6 € [M,N], such that 8 = [f], = [gl. .
implies f =, g by theorem 3.10 pof =, pog, so [pof], =
[pogl, and p.([flo) = p.([gle). Hence p, is well defined.
Theorem 3.16 If N, R are n,-spaces, p:N - R, q:R = S are
a -continuous maps and for all v6 e [M,N], then
(qop).(8) = q.o0p.(8).
Proof: N,R are n, -space and p:N >R, q:R— S are a-
continuous maps implies qop:N — S is « -continuous.
Therefore each map induce p,:[M,N], - [M,R], ,
q.:[M,R] = [M,S], and (qop).:[M,N], = [M,S],, hence
g.op. possible also q.op, and (qop). have same domain and
codamain.
Also V0 € [M, N],, implies 6 = [f], for some f: M —
N a-continuous. Consider,
(qop).(8) = (qop).([f]o)

= [(qop)of]y

= [qo(pof)]«

= q.([pofle)

= q.op.([fl)

= q.0p.(6)

Theorem 3.17 If N is n, -space, Idy: N = N defined as
Idy(x) = x and for all f€ «-C(M,N) then (Idy).([fl) =
Id[M,N]a([f]a)' v[f](x € [M' N]O('
Proof: Here N is n,-space, Idy: N — N defined as Idy(x) = x
is a-continuous. This implies pre induced map become,
(Idy).: [M,N]g = [M,N], by (1dy).([fle) = [Idyof], =
[fl« = Idmny, ([fle), Y[l € [M, N]. Hence the proof.
Corollary 3.18 [9] If N is n,-Space q: M — N is a-continuous
and for all f € a-C(N, R) then there exist map q4: [N,R], —
[M, R], by q4([f]s) = [foq], (call post induced map).
Proof: Here Nis n,-space, q: M — N is a-continuous. Defined
as: [N, Rlq = [M,R]e by q4([flo) = [foqle, is clearly well
defined because, V0 € [N,R], implies 6 = [f], for some
f:N - R « -continuous. This gives foq:M - R is a -
continuous, implies [foq], = q#([fl,) € [M,R],.

Also suppose for 6 € [N,R], such that 6 = [f],
[g]q implies f ~, g by lemma 3.12 foq =, goq, so [foq],
[goqls and q4([fl) = q4([gl.)- Hence qy4 is well defined.
Theorem 3.19 If M, N are n,-space, p:L - M, q:M — N are
a -continuous maps and for all v6 € [N,R], then
(qop)#(8) = p40q4(6).
Proof: M,N are n,-space and p:L—>M, q:M —> N are a-
continuous maps implies qop:L — N is a-continuous.
Therefore each map induce py:[M,R], = [L,R],
qs: [N,R]l¢ = [M,R], and (qop)s: [N,R]q = [L,R],, hence

ps#0q4 possible also pyoqy and (qop)s have same domain
and codamain.
Also v6 € [N, R], implies 6 = [f], for some f:N —
R a-continuous. Consider,
(qop)(8) = (qop)«([fle)

= [fo(qop)]q

= [(foq)opl,

= py([foq]y)

= pyoqy([fle)

= p40q4(6)

Theorem 3.20 If M is n, -space, Idy: M — M defined as
Idy(x) = x and for all f€ a-C(M,N) then (Idy)«([fl) =
Id[M,N]u([f]a)i V[f]a € [M: N]a-

Proof: Here M is n,-space, Idy: M — M defined as Idy(x) =

x is a -continuous. This implies post induced map,
(Idm)#: [M,N] = [M, N], become (Idw)#([fle) =
[(foldw) ]« = [flo = Id[M,N]a([f]oc)'V[f]o( € [M,N],. Hence

the proof.

Definition 3.21 Let M and N be two topological spaces A c
M and g,h: M — N be two a-continuous maps. Then a a-
relative homotopy respect to A is a map H: M x I - N such
that, for all t € I the restrictions of H, H:M —= N by x =
H.(x) = H(x,t) is o -continuous, satisfying Hy(x) =
H(x,0) = g(x), H;(x) = H(x,1) = h(x) for all x€ M and
H(a,t) = g(a) = h(a),va € A, vt € 1. If such H is exist then
H is called a-relative homotopy between them, and g is called
a-relative homotopic to h respect to A. We denote it by

g =q@) h.

Example 3.22 Let g, h: R — R be g(x) = x and
0 ifx<0

h(x) = {x ifx € [0,1] then g =4y h, where A = [0,1].
1 ifx=>1

Theorem 3.23 Every relative homotopy respect to A is a-
relative homotopy respect to A.
Proof: Refer theorem 3.3.
Theorem 3.24 o -relative homotopy respect to A is an
equivalence relation on set of all a-continuous maps from M
to N.
Proof: Refer theorem 3.4.
Theorem 3.25 [9] If N is n,-space, f,g: M — N are a-relative
homotopy respect to A € M, and h,k: N - R are a-relative
homotopy respect to Bc N and f(A) B then
hof =) kog.
Proof: Hypothesis f,g:M - N and, h,k:N >R are « -
continuous maps and f =y g, h =, k. This implies there
is a-relative homotopy H(x, t) respect to A, between f and g,
such that, for all t € I the restrictions of H, H;: M — N by
x = Hi(x) = H(x,t) is o -continuous maps satisfying
Ho(x) = H(x,0) = f(x), H;(x) = H(x,1) = g(x) for all x €
M and H(a, t) = f(a) = g(a),va € A, vt € 1. Also there is a-
relative homotopy G(y, t) respect to B, between h and k, such
that, for all t €1 the restrictions of G, G:M - N by y —»
G.(y) = G(y,t) is a -continuous map satisfying G,(y) =
G(y,0) = h(y), G;(y) = G(y,1) = k(y) for all yeN and
G(b,t) = h(b) = k(b),vb € B,vt € I

Define F: M x I - Ras F(x,t) = G(H(x, t), t)become
map and F(x,0) = G(H(x,0),0) = hof(x) , F(x1)=
G(H(x,1),1) = kog(x) and F(a,t) = G(H(a, t),t) =
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G(f(a),t) = hof(a) = kof(a) = kog(a),VvVa € A, Vvt € . Since
H, and G, are a-continuous map and N is n,-space gives
G.0oH; is a -continuous map and G.oH(x) = G,(H,(x) =
G(H(x,t),t) = F,(x) = F(x,t) . Hence for all tel the
restrictions of F, Fu:M - R by x - F,(x) = F(x,t) is a-
continuous map. Therefore F is a-relative homotopy respect
to A between hof and kog .

Definition 3.26 Let M and N be two topological spaces and
g: M — N be a-continuous map if there is a-continuous map
h: M — N such that hog =~, Idy and goh =, Idy. Then h is
called a-homotopy equivalence to g, or a-homotopy inverse
of g. Here g, h are called a-homotopy equivalences between
M and N.

Definition 3.27 Let M and N be two topological spaces, if
there is a a-homotopy equivalences between them, then M
and N are called a-homotopy equivalent to each other or
same a-homotopy type.

Example 3.28 The cylinder and circle are same a-homotopy
type. It will follow by theorem 3.29.

Theorem 3.29 Same homotopy type spaces are also same o-
homotopy type spaces. Converse need not hold.

Proof: Fallowed by the theorem 3.3.

Note 3.30 Generally composition of two a-continuous maps
are need not a-continuous. Therefore same a-homotopy type
relation even thou reflexive, symmetric but not transitive, so
it will not induce equivalence relation. Therefore our
intuition, partition of topological space under same o -
homotopy type is not possible. Since every a-irresolute map
are a-continuous map and composition of two a-irresolute
maps are a-irresolute, also confining set of all topological
spaces are n,-spaces on which the relation same a-homotopy
type become equivalence relation as fallow.

Theorem 3.31 [9] The relation same o-homotopy type is
equivalence relation on set of - topological spaces.

Proof: Reflexive: for every n,- space M, obvious Idy, Idy is
a a-homotopy equivalences.

Symmetric: Let M, N and R are n,-spaces, suppose M and N
are same o -homotopy type, implies there is gh a a -
homotopy equivalences. Obvious h,g gives a -homotopy
equivalences between N and M.

Transitive: Let M, N and R are n,-spaces and M, N are same
a-homotopy type and N, R are same a-homotopy type. This
implies there exist a a-homotopy equivalences f, g between M
and N, that is gof =, Idyand fog =, Idy via a a-homotopy.
Also there exist a a-homotopy equivalences h, k between
Nand R, such that koh =~, Idy and hok =, Idg via a a-
homotopy. It is true that hof: M — R and gok: R - M become
a-homotopy equivalences between M and R. Because since
the hypothesis koh =, Idy and fact f =, f, and by the lemma
3.14 we have kohof =, Idyof again by lemma 3.14 we can
have gokohof =, goldyof , this implies
gokohof =, goldyof =, Idyy by hypothesis.  Similarly
hofogok =, Idg . Therefore hofand gok are a -homotopy
equivalences between M and R. Hence same a-homotopy
type is equivalence relation.

Theorem 3.32 [9, 12] If N, R are n,-space then,

i) If p: N - R is a a-homotopy equivalence and for any space
M then p,: [M, N], = [M, R], is bijective.

ii) If p:N - R is a-homeomorphism and for any space M
then p.: [M,N], = [M, R], is bijective.

Proof: i) Here p: N — R is a-homotopy equivalence implies
existence of its a-homotopy inverse say q: R — N such that
poq =, Idg and qop =, Idy . For any space M, since
p.:[M,N], = [M,R], is well defined function, suppose
p.([flo) = p.([gla) for [fle, [gla € [M,N]y, gives [pof], =
[pog], which implies pof =, pog. The hypothesis g: R - N
is a-continuous, R is n,-space and pre composition theorem
3.10 implies qopof =, qopog equivalently f= g so
[fl« = [gla, therefore p, is injective.

Also for any [h], € [M,R], implies M >R is « -
continuous map, and hypothesis g: R — N is a-continuous, R
is n,-Space guarantee qoh: M — N is a-continuous. Therefore
[qoh], € [M,N], such that p.([qoh],) = [poqoh], = [h]q,
hence surjective.

ii) p: N - R is a-homeomorhism then p and p~! become a-
homotopy equivalences.

Theorem 3.33 [9,12] If N, M are n,-space then,

i) g: M — N is a a-homotopy equivalence and for any space R
then q4: [N, R], = [M, R], is bijective.

ii) g:M — N is a-homeomorhism and for any space R then
gs: [N, R], = [M, R], is bijective.

Proof: i) Here ¢: M — N is a-homotopy equivalence implies
existence of its a-homotopy inverse say p: N - M such that
poq =, Idy and qop =, Idy . For any space M, since
g#:[N,R]4 = [M,R], is well defined function, suppose
ax([fle) = ax([glo) for [fle [8la € [N,R]y, gives [foq], =
[goq], Which implies foq =, goq. The hypothesis p: N - M
is a-continuous, Mis n,-space and post composition lemma
3.12 implies foqop =, goqop equivalently f=,g so
[fle = [gla, therefore qy is injective.

Also for any [h], € [M,R], implies h:M - R is a-
continuous map, and hypothesis p: N - M is a-continuous, M
iS n-Space guarantee hop: N — R is a-continuous. Therefore
[hop], € [N,R], such that q([hop],) = [hopog], = [h],,
hence surjective.

ii) g:N > R is a-homeomorhism then q and g~ become a-
homotopy equivalences.

Definition 3.34 A topological space M is called o -
contractible if Idy; is a-null homotophic.

Theorem 3.35 Every contractible space is a-contractible.
Proof: Since every homotopy is a-homotopy.

Example 3.36 Every star convex space is a-contractible.
Theorem 3.37 If M is a-contractible then it is same a-
homotopy type to a point space in M.

Proof: Let M be a a-contractible space, implies identity map
Idy on M is a-null homotopic. That is there exist ¢, ;: M — M
by ¢y, (X) = X, such that Idy = cy,. Define h: {x,} > M by
h(x) = xq, and g: M — {x,} by g(x) = X,. Then hog:M - M
become hog(x) =x, = ¢, , SO hog=c, =, Idy , also
goh: {xo} - {xo} become goh(x) =xo=1Idy,; , SO
goh(x) = Idgy (x) . Therefore {x,} and M are same a -
homotopy type.

Theorem 3.38 Every a -contractible space is same o -
homotopy type of a point space.

Proof: Let M be a a-contractible space, and {*} be any point
space. By theorem 3.37 there exist a point space {x,} in M
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such that {x,} and M are same a-homotopy type. Since {x,}
and {*} are homeomorphic space, hence same a-homotopy
type. Here transivity works by same o -homotopy type
relation gives M is same a-homotopy type of point space {*}.
Theorem 3.39 If N is a-contractible n,-space and for any
space M then [M, N],, is singleton.
Proof: Consider anyg h € a-C(M,N), impliesgh: M - N
are a-continuous maps. Hypothesis is N is a-contractible
space implies Idy =~ cy,, where Idy, ¢y, : N = N by lemma
3.12 Idyog = ct,0g implies g =, k, , where k, = ¢, og:
M- N a constant map. Similarly Idyoh =, c, oh
implies h =, k, . Transitivity of a-homotopy gives g =~ h,
hence =, is universal relation. There fore [M,N], is
singleton.
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