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ABSTRACT 

 
The prospect of outsourcing an increasing amount of 

data storage and management to cloud services 

raises many new privacy concerns for individuals 

and businesses alike. Theprivacy concerns can be 

satisfactorily addressed if users encrypt the data they 

send to the cloud. If the encryptionscheme is 

homomorphic, the cloud can still perform meaningful 

computations on the data, even though it is 

encrypted.In fact, we now know a number of 

constructions of fully homomorphic encryption 

schemes that allow arbitrary computation on 

encrypted data. In the last two years, solutions 

forfully homomorphic encryption schemes have been 

proposedand improved upon, but it is hard to ignore 

the elephant inthe room, namely efficiency { can 

homomorphic encryption ever be efficient enough to 

be practical? Certainly, it seemsthat all known fully 

homomorphic encryption schemes havea long way to 

go before they can be used in practice. Given this 

state of affairs, our contribution is two-fold.First, we 

exhibit a number of real-world applications, in the 

medical, financial, and the advertising domains, 

whichrequire only that the encryption scheme is 

\somewhat" homomorphic. Somewhat homomorphic 

encryption schemes,which support a limited number 

of homomorphic operations,can be much faster, and 

more compact than fully homomorphic encryption 

schemes.Secondly, we show a proof-of-concept 

implementation of the recent somewhat homomorphic 

encryption scheme ofBrakerskiand Vaikuntanathan 

whose security relies on the ring learning with 

errors"(Ring LWE) problem. The scheme is very 

efficient, and has reasonably short ciphertexts. Our 

unoptimized implementation in magma enjoys 

comparable efficiency to even optimized pairing-

based schemes with the same level of security and 

homomorphic capacity. We also show a number of 

application-specific optimizations to the encryption 

scheme, most notably the ability to efficiently convert 

between different message encodings in a cipher-text. 

 

Keywords: FHE, cloud storage homomorphic 

encryption scheme, SHE 

. 
 
 

 

1. INTRODUCTION 

 
The development of cloud storage and computing 

platforms allows users to outsource storage and 

computationson their data, and allows businesses to 

offload the task of maintaining data-centers. 

However,concerns over loss ofprivacy and business 

value of private data is an overwhelming barrier to 

the adoption of cloud services by consumersand 

businesses alike. An excellent way to assuage these 

privacy concerns is to store all data in the cloud 

encrypted, andperform computations on encrypted  

 

 

 

data. To this end, we need an encryption scheme that 

allows meaningful computation on encrypted data, 

namely a homomorphic encryption scheme. 

Homomorphic encryption schemes that allow simple 

computations on encrypted data have been known for 

a long time. For example, the encryption systems of 

Goldwasserand Micali [GM82], El Gamal [El-84] 

and Paillier [Pai99] support either adding or 

multiplying encrypted ciphertexts,but not both 

operations at the same time. Boneh, Goh and Nissim 

[3]  were the first to construct a scheme capable of 

performing both operations at the same time 

{theirscheme handles an arbitrary number of 

additions and justone multiplication. More recently, 

in a breakthrough work,Gentry [Gen09, Gen10] 

constructed a fully homomorphic encryption scheme 

(FHE) capable of evaluating an arbitrary number of 

additions and multiplications (and thus, computeany 

function) on encrypted data.The main point of this 

paper is to show to what extent current schemes can 

actually be used to compute functionsof practical 

interest on encrypted data. Since the appearance of 

Gentry's scheme, there has been much informal 

discussion in the industry as to whether fully 

homomorphicencryption is implementable and 

practical. While the initial solution may not have 

been practical, subsequent developments produced 

other schemes [DGHV10, SV10, SS10] leading up to 

the most recent solutions of Brakerski and 

aikuntanathan [BV11b, BV11a], an implementation 

of which weconsider in this paper. The scheme is 

efficient and simple,produces short ciphertexts, and 

its security is based on thering learning with errors" 

(Ring LWE) problem [LPR10].While the 
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performance of the state-of-the art FHE 

implementations is itself a question of interest (and 

has indeedbeen considered recently in, e.g., [GH11, 

SV11]), our focus here is on describing concrete 

practicalapplications andconcrete useful functions to 

be computed, most of which require only a limited 

number of multiplications of ciphertexts(as well as a 

possibly very large number of additions of cipher 

texts). For these applications, it is enough to 

consideran implementation of a somewhat 

homomorphic encryption" (SHE) scheme, namely, 

one which allows a fixed number of multiplications 

of ciphertexts. These SHE schemesare building 

blocks for the FHE schemes of, e.g., 

[Gen09,DGHV10, BV11b, BV11a], and provide 

much better efficiency guarantees than their fully 

homomorphic counter-parts. 

 

1.1 Practical Applications of Homomorphic 

Encryption 
We describe a number of concrete applications and 

functions to be implemented to provide cloud 

services in themedical, financial, and advertising 

sectors. (We provide asketch of the applications here, 

and refer the reader to Section 2 for detailed 

descriptions).For a cloud service managing electronic 

medical records(EMR), consider a futuristic scenario 

where devices continuously collect vital health 

information, and stream them toa server who then 

computes some statistics (over these measurements, 

and over the course of time) and presumablydecides 

on the course of treatment (e.g., whether the dosageof 

medicine should be changed). The volume of the 

datainvolved is large, and thus, the patient 

presumably does notwant to store and manage all this 

data locally; she may prefer to use cloud storage and 

computation. To protect patientprivacy, all the data is 

uploaded in encrypted form, and thusthe cloud must 

perform operations on the encrypted data inorder to 

return (encrypted) alerts, predictions, or summariesof 

the results to the patient.We describe scenarios such 

as the above, which requirecomputing simple 

statistical functions such as the mean,standard 

deviation, as well as logistical regressions that 

aretypically used for prediction oflikehoods of certain 

desirable or undesirable outcomes. For these 

functions, it suffices to have a somewhat 

homomorphic encryption system whichcomputes 

many additions and a small number of multiplications 

on ciphertexts: for example, averages require no 

multiplications, standard deviation requires one 

multiplication,and predictive analysis such as 

logistical regression requiresa few multiplications 

(depending on the precision required).Other 

applications we describe in the financial and 

advertising sector use similar functions, except that in 

those sectors,the function itself may also be private or 

proprietary. 

 

2. CLOUD SERVICES 

 
Adoption of cloud services by consumers and 

businessesis limited by concerns over the loss of 

privacy or businessvalue of their private data. In this 

section we will describeconcrete and valuable 

applications of Fully HomomorphicEncryption which 

can help preserve customer privacy whileoutsourcing 

various kinds of computation to the cloud. Inall of 

these scenarios, we imagine a future of streaming 

datafrom multiple sources, uploaded in encrypted 

form to thecloud, and processed by the cloud to 

provide valuable services to the content owner. There 

are two aspects of thecomputation to consider: the 

data itself, and the functionto be computed on this 

data. We consider cases where oneor both of these 

are private or proprietary and should notbe shared 

with the cloud.In all of these applications, we 

consider a single content owner, who is the consumer 

for the cloud service. All datathat is encrypted and 

sent to the cloud is public-key encrypted to the 

content-owner's public key, using the semantically 

secure somewhat homomorphic encryption 

schemefrom [5]  described later in this paper. 

 

2.1 Medical Applications: Private data 

andPublic functions 
In [6] , a private cloud medical records storage 

system (Patient Controlled Encryption) was 

proposed, in whichall data for a patient's medical 

record is encrypted by thehealthcare providers before 

being uploaded to the patient'srecord in the cloud 

storage system. The patient controlssharing and 

access to the record by sharing secret keys 

withspecific providers (features include a hierarchical 

structureof the record, ability to search the encrypted 

data, and various choices for how to handle key 

distribution). Howeverthis system does not provide 

for the cloud to do any computation other than search 

(exact keyword match, or possiblyconjunctive 

searches). With our FHE implementation, weadd the 

ability for the cloud to do computation on the 

encrypted data on behalf of the patient. Imagine a 

futurewhere monitors or other devices may be 

constantly streaming data on behalf of the patient to 

the cloud. With FHE,the cloud can compute functions 

on the encrypted data andsend the patient updates, 

alerts, or recommendations basedon the received 

data.The functions to be computed in this scenario 

may includeaverages, standard deviations or other 

statistical functionssuch as logistical regression 

which can help predict the likelihood of certain 
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dangerous health episodes. Encrypted inputto the 

functions could include blood pressure or heart 

monitor or blood sugar readings, for example, along 

with information about the patient such as age, 

weight, gender, andother risk factors. The functions 

computed may not need tobe private in this case since 

they may be a matter of publichealth and thus public. 
 

2.2 Financial Applications: Private data 

andPrivate functions 
In the financial industry there is a potential 

applicationscenario in which both the data and the 

function to be computed on the data is private and 

proprietary.As an example, data about corporations, 

their stock priceor their performance or inventory is 

often relevant to making investment decisions. 

Figure 1 below show how hommomorphic 

encryption is done in banking system. Data may even 

be streamed on a continuous basis reflecting the most 

up-to-date information necessary for making 

decisions for trading purposes. Functions which do 

computations on this data may be proprietary, based 

on new predictive models for stock price 

performance and these models may be the product of 

costly research done by financial analysts, so a 

company may want to keep these models private to 

preserve their advantage and their investment. With 

FHE, some functions can be evaluated privately as 

follows. The customer uploads an encrypted version 

of the function to the cloud, for example a program 

where some of the evaluations involve encrypted 

inputs which are specified .The streaming data is 

encrypted to the customer's public key and uploaded 

to the cloud. The cloud service evaluates the private 

function by applying the encrypted description of the 

program to the encrypted inputs it receives. After 

processing, the cloud returns the encrypted output to 

the customer.  
 

 

 
 

Figure 1 - High level diagram of homomorphic encryption for banking system 
 

 

2.3 Advertising and Pricing 
Imagine an advertiser, for example a cosmetics 

company,who wants to use contextual information to 

target advertising to potential customers. The 

consumer uses a mobilephone as a computing device, 

and the device constantly uploads contextual 

information about the consumer, includinglocation, 

the time of day, information from email or browsing 

activity such as keywords from email or browser 

searches.In the future, imagine that information is 

uploaded potentially constantly from video devices: 

either pictures of objects of interest such as brands or 

faces which are automatically identified, or from a 

video stream from a camera onthe body which is 

identifying context in the room (objects,people, 

workplace vs. home vs. store). When contextual 

information is uploaded to the cloud server and made 

accessible to the cosmetics company, the 

companycomputes somefunction of the contextual 

data and determine.This targeted advertisement to 

send back to the consumer‟s phone.Some examples 

of where context is important for advertising or 

providing targeted coupons: beer commercials 

duringsports events, or, you are near a Starbucks in 

the morning and a coffee discount coupon for the 

Starbucks nearby issent to your phone, or, cosmetics 

companies market differentproducts for different 

times of day (e.g. Friday night goingout vs. Sunday 

morning hanging out with the family), advisor 

coupons for shows if you are in New York near 

Broadwayin the evening. Other (private) contextual 

data might be:your income, your profession, your 

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

35



purchasing history, yourtravel history, your address, 

etc.Encrypted version: The problem with these 

scenarios is theinvasion of privacy resulting from 

giving that much detailedinformation about the 

consumerto the server or to the advertising company. 

Now, imagine an  encrypted version ofthis entire 

picture. All the contextual data is encryptedand then 

uploaded to the server; the advertiser uploads 

encrypted ads to the server; the server computes a 

functionon the encrypted inputs which determines 

which encryptedad to send to the consumer; this 

function could be eitherprivate/proprietary or not. All 

contextual data and all adsare encrypted to the 

consumer's public key. Then the cloudcan operate 

and compute on this data, and the consumercan 

decrypt the received ad. As long as the cloud 

serviceprovider does not collude with the advertisers, 

and semantically secure FHE encryption is employed, 

the cloud andthe advertisers don't learn anything 

about the consumer'sdata.  

 

2.4 Functions to be computed with FHE 
We can compute the following functions with a 

somewhathomomorphic encryption scheme:_ 

Average of n terms fcig: as a pair (Pi=1;:::n ci; 

n),where m =Pi=1;:::n cin is the average. Standard 

deviation:q(Pi=1;:::n ci�m)2n , returned as apair 

which is the numerator and denominator of 

theexpression, before taking the square root._ 

Logistical regression: x =Pi=1;:::n _ixi , where _i 

isthe weighting constant or regression coefficient for 

thevariable xi, and the prediction is f(x) = ex1+exA 

couple of remarks are in order. First, we set the 

parameter choices for the encryption system based on 

the expectednumber of multiplication operations to 

be done to computethe given functions. These 

parameter choices determine theefficiency and 

security of the system. Thus parameters forthe system 

need to be changed as the functions to be computed 

change.Secondly, so far we do not have a way to 

efficiently dodivisions of real numbers or square 

roots. Thus in the abovecomputations, numerators 

and denominators need to be returned as separate 

encryptions.3If the cloud and the advertiser collude, 

then the cloud maybe able to learn some information 

about whether the userlikes the ad or not, which 

reveals information about his preferences. This 

constitutes a form of CCA attack, which 

mightendanger the security of the FHE. 

 

3. THE ENCRYPTION SCHEME 

 
We describe the ring learning with errors (Ring 

LWE)assumption of [LPR10] in Section 3.1, and present 

the\some What" homomorphic encryption scheme of 

Brakerski andVaikuntanathan [5]  based on Ring 

LWE in Section 3.2.We then report on an 

instantiation of the parameters, as wellas the running-

times and sizes of the keys and ciphertextin Section 5 

. 

3.1 The Ring LWE Assumption 
In this section, we describe a variant of the ring 

learning with errors assumption of Lyubaskevsky, 

Peikert and Regev In the RLWE assumption, we 

consider ringsfor some degree n integer polynomial 

and a prime integer the ring of degree„n‟ polynomials 

modulo f(x) with coefficients in Zq. Addition in these 

rings is done component-wise in their coefficients 

(thus, their additive group is isomorphic to Zn 

andZnqrespectively). Multiplication is simply 

polynomial multiplication modulo (and also q, in the 

case of the ringRq).Thus an element can be viewed as 

a degree„n‟polynomial over. One can represent such 

anelement using the vector of its coefficients. For an 

element we let note its `1 norm.The RLWEf ring   

assumption is parameterized by an integer 

polynomial  of degree n (which defines thei), a prime 

integer q and an errordistribution over R, and is 

defined as follows. Let s $ Rqbe a uniformly random 

ring element. The assumption isthat given any 

polynomial number of samples of the form, where ai 

is uniformly random is drawn from the error 

distribution the bi's arecomputationally 

indistinguishable from uniform in Rq. Asshown in  

this is equivalent to a variantwhere the secret is 

sampled from the noise distribution rather than being 

uniform in Rq. It is also easy to see thatthe 

assumption is equivalent to a variant where the noise 

eiare multiples of some integer t that is relatively 

prime to We consider the RLWE problem for specific 

choices of thepolynomial f(x) and the error 

distribution _. Namely,we set f(x) to be the 

cyclotomic polynomial xn + 1for n a power of two. In 

addition to many other usefulproperties, the fact that 

means thatmultiplication of ring elements does not 

increase theirnorm by too much (see Lemma 3.2 

below).The error distribution is the discrete Gaussian 

distribution  for  sample from thisdistribution defines 

a polynomial .We present some elementary facts 

about the Gaussian error distribution, and 

multiplication over the ring.The result fact bounds 

the(Euclidean and therefore, the `1)length of a vector 

drawfrom a discrete Gaussian of standard deviation  

byn. The second fact says that multiplication in the 

ring Z[x]= hxn + 1i increases the norm ofthe 

constituent elements only by a modest amount. 

 

3.2 Somewhat Homomorphic Encryption 

 
The somewhat homomorphic encryption scheme 

SHE =(SH:Keygen; SH:Enc; SH:Add; SH:Mult; 

SH:Dec) is associatedwith a number of parameters: 
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the dimension n, which is a power of 2, the 

cyclotomic polynomial f(x) = xn + 1, the modulus q, 

which is a prime such that q _ 1(mod 2n),Together, n; 

q and f(x) de_ne the rings R , Z[x]= hf(x)I and Rq , 

R=qR = Zq[x]= hf(x)i. the error parameter, which 

defines a discrete Gaussian error distribution with 

standard deviation a prime t < q, which defines the 

message space ofthe scheme as Rt = Zt[x]= hf(x)i, 

the ring of integerpolynomials modulo f(x) and t, 

and_ a number D >0, which defines a bound on the 

maximum   number of multiplications that can be 

performedcorrectly using the scheme.These 

parameters will be chosen (depending on the 

securityparameter) in such a way as to guarantee 

correctness andsecurity of the scheme.  
 

3.2.1 The Scheme 
Keygen sample a ring element sand definethe secret 

key, Sample a uniformly random ringelement a1   Rq 

and an error e   and compute thepublic key.Publish pk 

and keep secret. Recall that our message space is Rt. 

Namely,we encode our message as a degree 

npolynomial with coefficients in Zt.Given the public 

key pk = (a0; a1) and a message m 2 Rq,the 

encryption algorithm samples andcomputes the 

ciphertext. We now show how to computethe 

addition and multiplication operations 

homomorphically.To compute an arbitrary function f 

homomorphically, weconstruct an arithmetic circuit 

for f (made of addition andmultiplication operations 

over Zt), and then use Mult to iteratively compute f 

on encrypted inputs.Although the cipher texts 

reduced by SH:Enc containstwo ring elements, the 

homomorphic operations (in particular, 

multiplication) increases the number of ring 

elementsin the ciphertext. In general, the SH:Add and 

multoperations get as input two ciphertexts and The 

output of SH:Add containsmax) ring elements, 

whereas the output of SH:Multi contains ring 

elements. Assume that otherwise pad the shorter 

ciphertext with zeroes.Homomorphic addition is done 

by simple component-wiseaddition of the ciphertexts. 

Namely, compute and outputcteither of the 

ciphertexts with zero.Let v be a symbolic variable 

and consider the expression. 
 

.3.2.2 Correctness and Security 
We show the correctness of decryption and 

homomorphicevaluation in the following lemmas. 

The statement of thelemma also serves as the setting 

of the modulus q (in termsof _; t; n and D) that 

ensures that the scheme can performD multiplications 

and A additions.Lemma 3.3. The encryption scheme 

SHE is correct, andcan compute D multiplications 

followed by A additions, Proof First, note that the 

ciphertext  canbe written in the polynomial where 

eachco-efficient has at most with over-whelming 

probability. This is because e; u; f; s and g areall 

polynomials whose co-efficient are drawn from a 

discrete. Gaussian with standard deviation and 

multiplyingtwo such polynomials (mod xn + 1) 

produces a polynomialwhose coefficients are of size 

at mostwith overwhelming probability (by the 

Central Limit theorem). Our experiments show that 

this number is in factsmaller, and is of the order of 

2.Before we prove correctness of the homomorphic 

operations, we state an invariant that holds for all 

ciphertextsproduced either by the encryption 

algorithm, or as a resultof a homomorphic evaluation. 

The invariant is that for aciphertext where s is the 

secret keysmall errorand m is the message.Clearly, 

the invariant holds for a fresh ciphertext produced by 

SH:Enc (by the calculation above), assuming that. 

Furthermore, if the invariant holds, thenthe 

decryption algorithm succeeds. This is because the 

decryption algorithm outputs fct(s) (mod t) which is 

indeedthe message, assuming the bound on the error. 

The boundon the error essentially ensures that the 

quantity) that the decryption algorithm recovers does 

notwrap around mod q".Correctness of homomorphic 

addition is easy to see. Wehave two ciphertexts  and 

that satisfy the invariants, the sum of the two 

ciphertextsis ctwhere the addition is done 

componentwise.This satisfies the invariant as well, 

assuming that the largererror t(e + e0) is smaller than 

q. In general, adding A ciphertexts with error at most 

each results in error at most In practice, as our 

experiments show, this is likely tobe smaller, namely 

of the order of 2pA. 

 

3.2.3 An Optimization to Reduce Ciphertext 

Size 
The homomorphic multiplication operation described 

aboveincreases the number of ring elements in a 

ciphertext. Brakerski and Vaikuntanathan [BV11a] 

describe a transformation called re-linearizationthat 

reduces theciphertextback to two ring elements. We 

describe this optimization below, implement it and 

report on the performance numbers.Essentially, the 

idea is the following: assume that we runSH:Mult on 

two ciphertexts (each containing two ring elements) 

produced by the encryption algorithm. The resulting 

ciphertext ctmlt contains three ring elements that 

satisfythe "invariant"fctmlt (s) = c2s2 + c1s + c0 = 

temult + mm0This is a quadratic equation in s, and 

thus, SH:Mult turnedtwo \linear ciphertexts" into a 

\quadratic ciphertexts". Thegoal of re-linearization is 

to bring this back down to a linearciphertext.To this 

end, we publish some homomorphism keys" toaid re-

linearization. This could be thought of as part ofthe 

public key, but the homomorphism key is only used 

forre-linearization (following an SH:Multoperation). 
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The homomorphism key hk is computed.  In a sense, 

quasi-encryptions  these are They are not real 

encryptions since ti  s2 may not lie in themessage 

space of the encryption scheme, namely Rt.The 

homomorphic multiplication generates a 

ciphertextctmlt = (c0; c1; c2), starting from two 2-

element ciphertexts.Re-linearization is performed 

after every homomorphic multiplication, and 

proceeds as follows.On the one hand, re-linearization 

reduces the length of theciphertext considerably. On 

the ip side, the public parameters become much 

larger. They now consist of an additionallogt q ring 

elements, totaling to logt q _ n lg t = n(lg q)2= lg 

tbits. Re-linearization also affects the running time of 

the homomorphic multiplication. In particular, one 

needs to additionally perform roughly logt q 

polynomial multiplicationsand additions. These side 

effects are most pronouncedfor small t, where our 

experiments indicate considerableoverhead. Quite 

encouragingly, though, the benefits of re-linearization 

seem to dominate the side-effects for large t(see 

Section 5 for more details).The security of the 

encryption scheme given the homomorphism keys 

relies on the circular security of the 

encryptionscheme when encrypting quadratic 

functions of the secretkey. 

 

4. MESSAGE ENCODING TECHNIQUES 

 
The ease of performing homomorphic operations 

dependscrucially on the specific message-encoding 

used in the   cipher texts. Consider the following two 

examples._ If we wish to compare two encrypted 

integers x; y 2 Zt homomorphically then it seems best 

to encrypt them4The summation runs from i = 0 to i 

= dlogt qe � 1. Weomit the indices for brevity 

Bitwiserather than as an elements of Zt. The former 

approach translates to computing a polynomial 

ofdegree lg t over the encrypted bits, whereas the 

latterseems to require a polynomial of degree O(t)._ 

If we wish to compute the mean of k integers, thenit 

seems most natural to encode them as elements ofZt 

(for a large enough t). Computing the mean 

homomorphically then involves only cheap 

homomorphicadditions over Zt On the other hand, if 

the numbersare encrypted bit-wise, then addition 

requires computation of expensive \carry" operations 

that involve homomorphic multiplication over Z2.We 

describe two tricks for encoding messages. The first 

trickshows how to efficiently encode integers in a 

ciphertext so as to enable efficient computation of 

their sums and productsover the integers. This is 

useful in computing the mean, thestandard deviation 

and other private statistics efficiently.The second 

trick shows how to \pack" n encryptions of bitsinto a 

single encryption of the n-bit string. Some 

homomorphic operations, e.g., comparison of 

integers or privateinformation retrieval, seem to 

require bit-wise encryptionsof the input. Once the 

answers are computed, though, theycan be packed 

into a single encryption using this trick. 

 

4.1 Efficient Encoding of Integers for 

ArithmeticOperations 
Given a list of integers  if our goal is tocompute their 

sum or product over the integers homomorphically, 

the obvious (and sub-optimal) choice is to 

encryptthem directly. Namely, for every m in the list, 

To ensure that we obtainPi mi over the integers (and 

notmod t), we are forced to choose t to be rather 

large, namelyt >Pi mi, which could be rather 

prohibitive.We show a method of encrypting integers 

more efficientlyby encoding them in the polynomial 

ring, in essence enablinga smaller choice of t and 

better efficiency. In particular, forsmall enough mi < 

2n, we show that it suffices to choose in order to add 

` integers. Being able to work with asmall t in turn 

enables us to choose other parameters, e.g.,q and n to 

be correspondingly smaller.The idea is very simple: 

break each m into (at mostn) bits (m(0); : : : 

;m(n�1)), create a degree-(n-1) polynomialpm(x) =Pj 

m(j)i xj and encrypt m asAdding these encryptions 

now adds up the polynomials pmi(x)coefficient -

wise. Note that each co-efficient was a single bitto 

start with, and a sum ` of them grows to at most `.As 

long as q > t  this does not wrap around modulo t and 

upon decryption, we in fact get the polynomial. Now, 

the result is simplypmadd(2).Extending this idea to 

support multiplication is a bit trickier. The problem 

stems from the fact that multiplying thepolynomials 

pm(x) and pm0(x) increases their degree. Iftheir 

original degree was close to n to start with, we will 

onlybe able to obtain pm(x)pm0(x) (mod xn + 1) 

upon decryption, which loses information about the 

product. The solution is to encode the messages m as 

polynomials of degreeat most n=d, if we anticipate 

performing d multiplications.For our applications 

(e.g., computing standard deviations),this is an 

acceptable tradesince we only anticipate doinga 

single multiplication (or, at most a small number of 

themin the case of computing higher-order regression 

functions). 
 

 
5. EXTENSIONS AND FUTURE WORK 

 
Implementing, Fully Homomorphic Encryption. The 

somewhat homomorphic encryption scheme of [5]  

can beturned into a fully homomorphic encryption 

scheme usingthe re-linearization and the dimension 

reduction techniquesof [BV11a]. We leave the 
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problem of implementing the resulting fully 

homomorphic encryption scheme as animportant 

future work. Implementing bootstrapping could 

alsolead to a number of nice applications of 

homomorphic encryption, for example, to the 

problem of optimizing communication with the cloud 

described below.Optimizing communication with the 

cloud, we present asolution to help mitigate the 

problem of the large ciphertextsize for the Ring-LWE 

based FHE solution. In any of theabove applications, 

a client communicates with the cloudservice and 

uploads its data encrypted under a FHE scheme,and 

the cloud operates on this data and returns 

encryptedoutputs to the client. Each ciphertext has 

size n log(q), andfor functions requiring a large 

number of multiplications, qand n could be very large 

(see the implementation sectionfor sample choices of 

q and n).In short, all the communication over the 

network consistsof short, non-homomorphic 

ciphertexts. At the server's end,the cipher texts are 

first upgraded" to homomorphic cipher texts which 

are then computed on, and finally \downgraded" to 

short nonhomomorphic ciphertexts which are then 

sentto the client. 
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