Homomorphic EncryptionUsingRNSTheorem

Shishir Kumar Choudhary andAnkit Gupta,
8"sem, CSE, YDIT, Bengaluru.
Email: shishirkundan@gmail.comand greamsx@gmail.com

ABSTRACT

The prospect of outsourcing an increasing amount of
data storage and management to cloud services
raises many new privacy concerns for individuals
and businesses alike. Theprivacy concerns can be
satisfactorily addressed if users encrypt the data they
send to the cloud. If the encryptionscheme is
homomorphic, the cloud can still perform meaningful
computations on the data, even though it is
encrypted.In fact, we now know a number of
constructions of fully homomorphic encryption
schemes that allow arbitrary computation on
encrypted data. In the last two years, solutions
forfully homomorphic encryption schemes have been
proposedand improved upon, but it is hard to ignore
the elephant inthe room, namely efficiency { can
homomorphic encryption ever be efficient enough to
be practical? Certainly, it seemsthat all known fully
homomorphic encryption schemes havea long way to
go before they can be used in practice. Given this
state of affairs, our contribution is two-fold.First, we
exhibit a number of real-world applications, in the
medical, financial, and the advertising domains,
whichrequire only that the encryption scheme is
\somewhat" homomorphic. Somewhat homomorphic
encryption schemes,which support a limited number
of homomorphic operations,can be much faster, and
more compact than fully homomorphic encryption
schemes.Secondly, we show a proof-of-concept
implementation of the recent somewhat homomorphic
encryption scheme ofBrakerskiand Vaikuntanathan
whose security relies on the ring learning with
errors"(Ring LWE) problem. The scheme is very
efficient, and has reasonably short ciphertexts. Our
unoptimized implementation in magma enjoys
comparable efficiency to even optimized pairing-
based schemes with the same level of security and
homomorphic capacity. We also show a number of
application-specific optimizations to the encryption
scheme, most notably the ability to efficiently convert
between different message encodings in a cipher-text.

Keywords: FHE, cloud storage homomorphic
encryption scheme, SHE

1. INTRODUCTION

The development of cloud storage and computing
platforms allows users to outsource storage and
computationson their data, and allows businesses to
offload the task of maintaining data-centers.
However,concerns over loss ofprivacy and business
value of private data is an overwhelming barrier to
the adoption of cloud services by consumersand
businesses alike. An excellent way to assuage these
privacy concerns is to store all data in the cloud
encrypted, andperform computations on encrypted

data. To this end, we need an encryption scheme that
allows meaningful computation on encrypted data,
namely a homomorphic encryption scheme.
Homomorphic encryption schemes that allow simple
computations on encrypted data have been known for
a long time. For example, the encryption systems of
Goldwasserand Micali [GM82], EI Gamal [EI-84]
and Paillier [Pai99] support either adding or
multiplying encrypted ciphertexts,but not both
operations at the same time. Boneh, Goh and Nissim
[3] were the first to construct a scheme capable of
performing both operations at the same time
{theirscheme handles an arbitrary number of
additions and justone multiplication. More recently,
in a breakthrough work,Gentry [Gen09, Genl0]
constructed a fully homomorphic encryption scheme
(FHE) capable of evaluating an arbitrary number of
additions and multiplications (and thus, computeany
function) on encrypted data.The main point of this
paper is to show to what extent current schemes can
actually be used to compute functionsof practical
interest on encrypted data. Since the appearance of
Gentry's scheme, there has been much informal
discussion in the industry as to whether fully
homomorphicencryption is implementable and
practical. While the initial solution may not have
been practical, subsequent developments produced
other schemes [DGHV10, SV10, SS10] leading up to
the most recent solutions of Brakerski and
aikuntanathan [BV11b, BV11a], an implementation
of which weconsider in this paper. The scheme is
efficient and simple,produces short ciphertexts, and
its security is based on thering learning with errors"
(Ring LWE) problem [LPR10].While the

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

performance of the state-of-the art FHE
implementations is itself a question of interest (and
has indeedbeen considered recently in, e.g., [GH11,
SV11]), our focus here is on describing concrete
practicalapplications andconcrete useful functions to
be computed, most of which require only a limited
number of multiplications of ciphertexts(as well as a
possibly very large number of additions of cipher
texts). For these applications, it is enough to
consideran implementation of a somewhat
homomorphic encryption” (SHE) scheme, namely,
one which allows a fixed number of multiplications
of ciphertexts. These SHE schemesare building
blocks for the FHE schemes of, e.qg.,
[Gen09,DGHV10, BV1lb, BV1la], and provide
much better efficiency guarantees than their fully
homomorphic counter-parts.

1.1 Practical Applications of Homomorphic
Encryption
We describe a number of concrete applications and
functions to be implemented to provide cloud
services in themedical, financial, and advertising
sectors. (We provide asketch of the applications here,
and refer the reader to Section 2 for detailed
descriptions).For a cloud service managing electronic
medical records(EMR), consider a futuristic scenario
where devices continuously collect vital health
information, and stream them toa server who then
computes some statistics (over these measurements,
and over the course of time) and presumablydecides
on the course of treatment (e.g., whether the dosageof
medicine should be changed). The volume of the
datainvolved is large, and thus, the patient
presumably does notwant to store and manage all this
data locally; she may prefer to use cloud storage and
computation. To protect patientprivacy, all the data is
uploaded in encrypted form, and thusthe cloud must
perform operations on the encrypted data inorder to
return (encrypted) alerts, predictions, or summariesof
the results to the patient.We describe scenarios such
as the above, which requirecomputing simple
statistical functions such as the mean,standard
deviation, as well as logistical regressions that
aretypically used for prediction oflikehoods of certain
desirable or undesirable outcomes. For these
functions, it suffices to have a somewhat
homomorphic encryption system whichcomputes
many additions and a small number of multiplications
on ciphertexts: for example, averages require no
multiplications, standard deviation requires one
multiplication,and predictive analysis such as
logistical regression requiresa few multiplications
(depending on the precision required).Other
applications we describe in the financial and
advertising sector use similar functions, except that in

those sectors,the function itself may also be private or
proprietary.

2. CLOUD SERVICES

Adoption of cloud services by consumers and
businessesis limited by concerns over the loss of
privacy or businessvalue of their private data. In this
section we will describeconcrete and valuable
applications of Fully HomomorphicEncryption which
can help preserve customer privacy whileoutsourcing
various kinds of computation to the cloud. Inall of
these scenarios, we imagine a future of streaming
datafrom multiple sources, uploaded in encrypted
form to thecloud, and processed by the cloud to
provide valuable services to the content owner. There
are two aspects of thecomputation to consider: the
data itself, and the functionto be computed on this
data. We consider cases where oneor both of these
are private or proprietary and should notbe shared
with the cloud.In all of these applications, we
consider a single content owner, who is the consumer
for the cloud service. All datathat is encrypted and
sent to the cloud is public-key encrypted to the
content-owner's public key, using the semantically
secure somewhat homomorphic encryption
schemefrom [5] described later in this paper.

2.1 Medical Applications: Private data
andPublic functions

In [6] , a private cloud medical records storage
system (Patient Controlled Encryption) was
proposed, in whichall data for a patient's medical
record is encrypted by thehealthcare providers before
being uploaded to the patient'srecord in the cloud
storage system. The patient controlssharing and
access to the record by sharing secret keys
withspecific providers (features include a hierarchical
structureof the record, ability to search the encrypted
data, and various choices for how to handle key
distribution). Howeverthis system does not provide
for the cloud to do any computation other than search
(exact keyword match, or possiblyconjunctive
searches). With our FHE implementation, weadd the
ability for the cloud to do computation on the
encrypted data on behalf of the patient. Imagine a
futurewhere monitors or other devices may be
constantly streaming data on behalf of the patient to
the cloud. With FHE,the cloud can compute functions
on the encrypted data andsend the patient updates,
alerts, or recommendations basedon the received
data.The functions to be computed in this scenario
may includeaverages, standard deviations or other
statistical functionssuch as logistical regression
which can help predict the likelihood of certain

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

dangerous health episodes. Encrypted inputto the
functions could include blood pressure or heart
monitor or blood sugar readings, for example, along
with information about the patient such as age,
weight, gender, andother risk factors. The functions
computed may not need tobe private in this case since
they may be a matter of publichealth and thus public.
2.2 Financial Applications: Private data
andPrivate functions

In the financial industry there is a potential
applicationscenario in which both the data and the
function to be computed on the data is private and
proprietary.As an example, data about corporations,
their stock priceor their performance or inventory is
often relevant to making investment decisions.

Figure 1 below show how hommomorphic
encryption is done in banking system. Data may even
be streamed on a continuous basis reflecting the most
up-to-date information necessary for making

decisions for trading purposes. Functions which do
computations on this data may be proprietary, based
on new predictive models for stock price
performance and these models may be the product of
costly research done by financial analysts, so a
company may want to keep these models private to
preserve their advantage and their investment. With
FHE, some functions can be evaluated privately as
follows. The customer uploads an encrypted version
of the function to the cloud, for example a program
where some of the evaluations involve encrypted
inputs which are specified .The streaming data is
encrypted to the customer's public key and uploaded
to the cloud. The cloud service evaluates the private
function by applying the encrypted description of the
program to the encrypted inputs it receives. After
processing, the cloud returns the encrypted output to
the customer.

Confirmation
Officer Details =
_ Admin
Admin
User Details
Cloud Dretails
Confirmation
Bank Balance A User
User Status
Loan HORNS
R "
System Total Bank Ealance
Fequest For Total Bank Balance Confirmation
Loan Approval Status \
Officer ¥ Y Officer
Cloud Cloud Cloud
Storage 1 Storage 2 Storage N

Figure 1 - High level diagram of homomorphic encryption for banking system

2.3 Advertising and Pricing

Imagine an advertiser, for example a cosmetics
company,who wants to use contextual information to
target advertising to potential customers. The
consumer uses a mobilephone as a computing device,
and the device constantly uploads contextual
information about the consumer, includinglocation,
the time of day, information from email or browsing
activity such as keywords from email or browser
searches.In the future, imagine that information is
uploaded potentially constantly from video devices:
either pictures of objects of interest such as brands or
faces which are automatically identified, or from a
video stream from a camera onthe body which is
identifying context in the room (objects,people,
workplace vs. home vs. store). When contextual

information is uploaded to the cloud server and made
accessible to the cosmetics company, the
companycomputes somefunction of the contextual
data and determine.This targeted advertisement to
send back to the consumer’s phone.Some examples
of where context is important for advertising or
providing targeted coupons: beer commercials
duringsports events, or, you are near a Starbucks in
the morning and a coffee discount coupon for the
Starbucks nearby issent to your phone, or, cosmetics
companies market differentproducts for different
times of day (e.g. Friday night goingout vs. Sunday
morning hanging out with the family), advisor
coupons for shows if you are in New York near
Broadwayin the evening. Other (private) contextual
data might be:your income, your profession, your

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

purchasing history, yourtravel history, your address,
etc.Encrypted version: The problem with these
scenarios is theinvasion of privacy resulting from
giving that much detailedinformation about the
consumerto the server or to the advertising company.
Now, imagine an encrypted version ofthis entire
picture. All the contextual data is encryptedand then
uploaded to the server; the advertiser uploads
encrypted ads to the server; the server computes a
functionon the encrypted inputs which determines
which encryptedad to send to the consumer; this
function could be eitherprivate/proprietary or not. All
contextual data and all adsare encrypted to the
consumer's public key. Then the cloudcan operate
and compute on this data, and the consumercan
decrypt the received ad. As long as the cloud
serviceprovider does not collude with the advertisers,
and semantically secure FHE encryption is employed,
the cloud andthe advertisers don't learn anything
about the consumer'sdata.

2.4 Functions to be computed with FHE

We can compute the following functions with a
somewhathomomorphic encryption scheme:_
Average of n terms fcig: as a pair (Pi=1;::n ci;
n),where m =Pi=1;:::n cin is the average. Standard
deviation:q(Pi=1;:::n cillm)2n , returned as apair
which is the numerator and denominator of
theexpression, before taking the square root.-
Logistical regression: x =Pi=1;:::n _ixi , where_i
isthe weighting constant or regression coefficient for
thevariable xi, and the prediction is f(x) = ex1+exA
couple of remarks are in order. First, we set the
parameter choices for the encryption system based on
the expectednumber of multiplication operations to
be done to computethe given functions. These
parameter choices determine theefficiency and
security of the system. Thus parameters forthe system
need to be changed as the functions to be computed
change.Secondly, so far we do not have a way to
efficiently dodivisions of real numbers or square
roots. Thus in the abovecomputations, numerators
and denominators need to be returned as separate
encryptions.3If the cloud and the advertiser collude,
then the cloud maybe able to learn some information
about whether the userlikes the ad or not, which
reveals information about his preferences. This
constitutes a form of CCA attack, which
mightendanger the security of the FHE.

3. THE ENCRYPTION SCHEME

We describe the ring learning with errors (Ring
LWE)assumption of [LPR10] in Section 3.1, and present
the\some What" homomorphic encryption scheme of
Brakerski andVaikuntanathan [5] based on Ring

LWE in Section 3.2.We then report on an
instantiation of the parameters, as wellas the running-
times and sizes of the keys and ciphertextin Section 5

3.1 The Ring LWE Assumption

In this section, we describe a variant of the ring
learning with errors assumption of Lyubaskevsky,
Peikert and Regev In the RLWE assumption, we
consider ringsfor some degree n integer polynomial
and a prime integer the ring of degree‘n’ polynomials
modulo f(x) with coefficients in Zq. Addition in these
rings is done component-wise in their coefficients
(thus, their additive group is isomorphic to Zn
andZngrespectively). Multiplication is simply
polynomial multiplication modulo (and also g, in the
case of the ringRq).Thus an element can be viewed as
a degree‘n’polynomial over. One can represent such
anelement using the vector of its coefficients. For an
element we let note its "1 norm.The RLWETF ring
assumption is parameterized by an integer
polynomial of degree n (which defines thei), a prime
integer g and an errordistribution over R, and is
defined as follows. Let s $ Rgbe a uniformly random
ring element. The assumption isthat given any
polynomial number of samples of the form, where ai
is-.uniformly random is drawn from the error
distribution the bi's arecomputationally
indistinguishable from uniform in Rg. Asshown in
this is equivalent to a variantwhere the secret is
sampled from the noise distribution rather than being
uniform in Rq. It is also easy to see thatthe
assumption is equivalent to a variant where the noise
eiare multiples of some integer t that is relatively
prime to We consider the RLWE problem for specific
choices of thepolynomial f(x) and the error
distribution _. Namely,we set f(x) to be the
cyclotomic polynomial xn + 1for n a power of two. In
addition to many other usefulproperties, the fact that
means thatmultiplication of ring elements does not
increase theirnorm by too much (see Lemma 3.2
below).The error distribution is the discrete Gaussian
distribution for sample from thisdistribution defines
a polynomial .We present some elementary facts
about the Gaussian error distribution, and
multiplication over the ring.The result fact bounds
the(Euclidean and therefore, the “1)length of a vector
drawfrom a discrete Gaussian of standard deviation
byn. The second fact says that multiplication in the
ring Z[x]= hxn + 1i increases the norm ofthe
constituent elements only by a modest amount.

3.2 Somewhat Homomorphic Encryption

The somewhat homomorphic encryption scheme
SHE =(SH:Keygen; SH:Enc; SH:Add; SH:Mult;
SH:Dec) is associatedwith a number of parameters:

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

the dimension n, which is a power of 2, the
cyclotomic polynomial f(x) = xn + 1, the modulus q,
which is a prime such that q _ 1(mod 2n),Together, n;
g and f(x) de_ne the rings R , Z[x]= hf(x)l and Rq ,
R=gR = Zq[x]= hf(x)i. the error parameter, which
defines a discrete Gaussian error distribution with
standard deviation a prime t < g, which defines the
message space ofthe scheme as Rt = Zt[x]= hf(X)i,
the ring of integerpolynomials modulo f(x) and t,
and_ a number D >0, which defines a bound on the
maximum number of multiplications that can be
performedcorrectly using the scheme.These
parameters will be chosen (depending on the
securityparameter) in such a way as to guarantee
correctness andsecurity of the scheme.

3.2.1 The Scheme

Keygen sample a ring element sand definethe secret
key, Sample a uniformly random ringelement al Rq
and an error e and compute thepublic key.Publish pk
and keep secret. Recall that our message space is Rt.
Namely,we encode our message as a degree
npolynomial with coefficients in Zt.Given the public
key pk = (a0; al) and a message m 2 Rq,the
encryption algorithm samples andcomputes the
ciphertext. We now show how to computethe
addition and multiplication operations
homomorphically.To compute an arbitrary function f
homomorphically, weconstruct an arithmetic circuit
for f (made of addition andmultiplication operations
over Zt), and then use Mult to iteratively compute f
on encrypted inputs.Although the cipher texts
reduced by SH:Enc containstwo ring elements, the
homomorphic operations (in particular,
multiplication) increases the number of ring
elementsin the ciphertext. In general, the SH:Add and
multoperations get as input two ciphertexts and The
output of SH:Add containsmax) ring elements,
whereas the output of SH:Multi contains ring
elements. Assume that otherwise pad the shorter
ciphertext with zeroes.Homomorphic addition is done
by simple component-wiseaddition of the ciphertexts.
Namely, compute and outputcteither of the
ciphertexts with zero.Let v be a symbolic variable
and consider the expression.

.3.2.2 Correctness and Security

We show the correctness of decryption and
homomorphicevaluation in the following lemmas.
The statement of thelemma also serves as the setting
of the modulus g (in termsof _; t; n and D) that
ensures that the scheme can performD multiplications
and A additions.Lemma 3.3. The encryption scheme
SHE is correct, andcan compute D multiplications
followed by A additions, Proof First, note that the
ciphertext canbe written in the polynomial where

eachco-efficient has at most with over-whelming
probability. This is because e; u; f; s and g areall
polynomials whose co-efficient are drawn from a
discrete. Gaussian with standard deviation and
multiplyingtwo such polynomials (mod xn + 1)
produces a polynomialwhose coefficients are of size
at mostwith overwhelming probability (by the
Central Limit theorem). Our experiments show that
this number is in factsmaller, and is of the order of
2.Before we prove correctness of the homomorphic
operations, we state an invariant that holds for all
ciphertextsproduced either by the encryption
algorithm, or as a resultof a homomaorphic evaluation.
The invariant is that for aciphertext where s is the
secret keysmall errorand m is the message.Clearly,
the invariant holds for a fresh ciphertext produced by
SH:Enc (by the calculation above), assuming that.
Furthermore, if the invariant holds, thenthe
decryption algorithm succeeds. This is because the
decryption algorithm outputs fct(s) (mod t) which is
indeedthe message, assuming the bound on the error.
The boundon the error essentially ensures that the
quantity) that the decryption algorithm recovers does
notwrap around mod g".Correctness of homomorphic
addition is easy to see. Wehave two ciphertexts and
that satisfy the invariants, the sum of the two
ciphertextsis ctwhere the addition is done
componentwise.This satisfies the invariant as well,
assuming that the largererror t(e + €0) is smaller than
g. In general, adding A ciphertexts with error at most
each results in error at most In practice, as our
experiments show, this is likely tobe smaller, namely
of the order of 2pA.

3.2.3 An Optimization to Reduce Ciphertext
Size

The homomorphic multiplication operation described
aboveincreases the number of ring elements in a
ciphertext. Brakerski and Vaikuntanathan [BV11a]
describe a transformation called re-linearizationthat
reduces theciphertextback to two ring elements. We
describe this optimization below, implement it and
report on the performance numbers.Essentially, the
idea is the following: assume that we runSH:Mult on
two ciphertexts (each containing two ring elements)
produced by the encryption algorithm. The resulting
ciphertext ctmlt contains three ring elements that
satisfythe "invariant"fctmlt (s) = ¢2s2 + cls + ¢0 =
temult + mmOQThis is a quadratic equation in s, and
thus, SH:Mult turnedtwo \linear ciphertexts" into a
\quadratic ciphertexts". Thegoal of re-linearization is
to bring this back down to a linearciphertext.To this
end, we publish some homomorphism keys" toaid re-
linearization. This could be thought of as part ofthe
public key, but the homomorphism key is only used
forre-linearization (following an SH:Multoperation).

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

The homomorphism key hk is computed. In a sense,
quasi-encryptions these are They are not real
encryptions since ti s2 may not lie in themessage
space of the encryption scheme, namely Rt.The
homomorphic multiplication generates a
ciphertextctmlt = (cO; cl; c2), starting from two 2-
element ciphertexts.Re-linearization is performed
after every homomorphic multiplication, and
proceeds as follows.On the one hand, re-linearization
reduces the length of theciphertext considerably. On
the ip side, the public parameters become much
larger. They now consist of an additionallogt g ring
elements, totaling to logt ¢ _ n Ig t = n(lg q)2= Ig
thits. Re-linearization also affects the running time of
the homomorphic multiplication. In particular, one
needs to additionally perform roughly logt ¢
polynomial multiplicationsand additions. These side
effects are most pronouncedfor small t, where our
experiments indicate considerableoverhead. Quite
encouragingly, though, the benefits of re-linearization
seem to dominate the side-effects for large t(see
Section 5 for more details).The security of the
encryption scheme given the homomorphism keys
relies on the circular security of the
encryptionscheme when encrypting quadratic
functions of the secretkey.

4. MESSAGE ENCODING TECHNIQUES

The ease of performing homomorphic operations
dependscrucially on the specific message-encoding
used in the cipher texts. Consider the following two
examples._ If we wish to compare two encrypted
integers x; y 2 Zt homomorphically then it seems best
to encrypt them4The summation runs fromi=0to i
= dlogt ge [1. Weomit the indices for brevity
Bitwiserather than as an elements of Zt. The former
approach translates to computing a polynomial
ofdegree Ig t over the encrypted bits, whereas the
latterseems to require a polynomial of degree O(t)._
If we wish to compute the mean of Kk integers, thenit
seems most natural to encode them as elements ofZt
(for a large enough t). Computing the mean
homomorphically then involves only cheap
homomorphicadditions over Zt On the other hand, if
the numbersare encrypted bit-wise, then addition
requires computation of expensive \carry" operations
that involve homomorphic multiplication over Z2.We
describe two tricks for encoding messages. The first
trickshows how to efficiently encode integers in a
ciphertext so as to enable efficient computation of
their sums and productsover the integers. This is
useful in computing the mean, thestandard deviation
and other private statistics efficiently.The second
trick shows how to \pack" n encryptions of bitsinto a
single encryption of the n-bit string. Some

homomorphic operations, e.g., comparison of
integers or privateinformation retrieval, seem to
require bit-wise encryptionsof the input. Once the
answers are computed, though, theycan be packed
into a single encryption using this trick.

4.1 Efficient Encoding of Integers for
ArithmeticOperations

Given a list of integers if our goal is tocompute their
sum or product over the integers homomorphically,
the obvious (and sub-optimal) choice is to
encryptthem directly. Namely, for every m in the list,
To ensure that we obtainPi mi over the integers (and
notmod t), we are forced to choose t to be rather
large, namelyt >Pi mi, which could be rather
prohibitive.We show a method of encrypting integers
more efficientlyby encoding them in the polynomial
ring, in essence enablinga smaller choice of t and
better efficiency. In particular, forsmall enough mi <
2n, we show that it suffices to choose in order to add
" integers. Being able to work with asmall t in turn
enables us to choose other parameters, e.g.,q and n to
be correspondingly smaller.The idea is very simple:
break each m into (at mostn) bits (m(0); : : :
;m(n01)), create a degree-(n-1) polynomialpm(x) =Pj
m(j)i xj and encrypt m asAdding these encryptions
now adds up the polynomials pmi(x)coefficient -
wise. Note that each co-efficient was a single bitto
start with, and a sum ~ of them grows to at most ".As
long as q >t this does not wrap around modulo t and
upon decryption, we in fact get the polynomial. Now,
the result is simplypmadd(2).Extending this idea to
support multiplication is a bit trickier. The problem
stems from the fact that multiplying thepolynomials
pm(x) and pmO(x) increases their degree. Iftheir
original degree was close to n to start with, we will
onlybe able to obtain pm(x)pm0(x) (mod xn + 1)
upon decryption, which loses information about the
product. The solution is to encode the messages m as
polynomials of degreeat most n=d, if we anticipate
performing d multiplications.For our applications
(e.g., computing standard deviations),this is an
acceptable tradesince we only anticipate doinga
single multiplication (or, at most a small number of
themin the case of computing higher-order regression
functions).

5. EXTENSIONS AND FUTURE WORK

Implementing, Fully Homomorphic Encryption. The
somewhat homomorphic encryption scheme of [5]
can beturned into a fully homomorphic encryption
scheme usingthe re-linearization and the dimension
reduction techniquesof [BV1la]. We leave the

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

problem of implementing the resulting fully [6] Melissa Chase, Kristin Lauter, Josh Benaloh,
homomorphic encryption scheme as animportant andEric Horvitz.”Patient-controlled encryption
future work. Implementing bootstrapping could
alsolead to a number of nice applications of
homomorphic encryption, for example, to the
problem of optimizing communication with the cloud
described below.Optimizing communication with the
cloud, we present asolution to help mitigate the
problem of the large ciphertextsize for the Ring-LWE
based FHE solution. In any of theabove applications,
a client communicates with the cloudservice and
uploads its data encrypted under a FHE scheme,and
the cloud operates on this data and returns
encryptedoutputs to the client. Each ciphertext has
size n log(q), andfor functions requiring a large
number of multiplications, gand n could be very large
(see the implementation sectionfor sample choices of
g and n).In short, all the communication over the
network consistsof short, non-homomorphic
ciphertexts. At the server's end,the cipher texts are
first upgraded" to homomorphic cipher texts which
are then computed on, and finally \downgraded" to
short nonhomomorphic ciphertexts which are then
sentto the client.

REFERENCES

[1] BennyApplebaum, David Cash,Chris Peikert,
andAmit Sahai. “Fast cryptographic primitives
andcircular-secure encryption based on hard
learningproblems. In Shai Halevi, editor, CRYPTO,
volume5677 of Lecture Notes in Computer Science,
pages595{618. Springer 2009 .

[2] Web Bosma, John Cannon and
CatherinePlayoust. “The Magma algebra system I:
The userlanguage. J. Symbolic Compute, 24(3-
4):235{265,1997. Computational algebra and
number theory(London, 1993)”

[3] Dan Boneh, Eu-Jin Goh, and Kobbi
Nissim.“Evaluating 2-DNFformulas, on ciphertexts.
InTheory of Cryptography - TCC'05, volume 3378
ofLecture Notes in Computer Science, pages
325{341.Springer, 200”5

[4] Zvika Brakerski,and Vinod Vaikuntanathan.
“Efficient fully homomorphic encryption
from(standard) LWE, In Submission 2017 ”.

[5] Zvika BrakerskiandVinod
Vaikuntanathan“Fullyhomomorphic encryption from
ring-LWE andsecurity for key dependent messages.
ToAppear inCRYPTO 2011

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings 39

