
 High Speed 64 point FFT/IFFT module for IEEE standard 802.11

Joshi Ravindra Sharad

Assistant Professor

Dept : Electronics and Telecommunication Engineering ,

KC College of Engineering and Management Studies and

Research. Thane , India.

email : joshi_ravindra_s@yahoo.co.in

Poornima Talwai

Associate Professor

Dept : Electronics.

Ramrao Adik Institute of Technology

Navi Mumbai, India

email : poornima . talwai@gmail.com

Abstract— In this paper a 64 point FFT/ IFFT module for IEEE

standard 802.11.a. is presented. IEEE standard 802.11.a

requires OFDM ie Orthogonal Frequency Divisional

Multiplexing . It requires a 64 point FFT / IFFT module as one

of its basic building blocks. As per the standards it is expected

that the 64 point FFT/ IFFT computation should be done in 3.2

us. In this module mixed radix algorithm is being used. The 64

point FFT is decomposed into an 8x8. The eight point FFT is

implemented using radix2. The arithmetic chosen is fixed point

arithmetic as it helps in realizing smaller and simpler circuitry.

Here a grid based approach is considered which makes the

overall circuitry simple.

Keywords— VHDL, FFT, Signal processing, Ramgrid.

I. INTRODUCTION

 FFT or Fast Fourier Transform finds wide range of

applications in the Engineering field. FFT or Fast Fourier

Transform is an algorithm by which we can reduce the

mathematical computations which may be too large as in the

case of DFT . The algorithm also called Cooley Tukey

algorithm reduces the number of operations involved from

N2 to Nlog2N [10][11]. It finds many applications in

communications. Various signal processing applications can

be Spectrum Analyzers,. Harmonic analyzers, Sonography

equipments, MPEG audio coding, MRI equipments,

Accoustic Engineering, Direction finding systems, Radars,

Medical Imaging etc.

FFT architectures

In FFT implementations as the no of points increases

the no of two point butterflies to be computed also increases,

similarly the number of complex multiplications to be

performed also increase. Depending on the speed desired and

resources available various types of architectures have been

implemented in the past and are being implemented. The

architectures can be broadly classified into software based

architectures, DSP processor based architectures or application

specific Integrated Processors or Algorithmic type

architectures. some of the algorithmic type architectures are

fully parallel FFT , Column FFT and Pipelined FFT, non

pipelined. There are still many more type of

architectures.Non pipelined type architectures generally do the

processing in a sequential manner the data is stored in a RAM

then a chunk of data for a operation is fetched an operation ie

2 point FFT or complex multiplication is performed on the

data then the data is stored back in to the RAM as per the

logic. These type of architectures utilize very less resources.

the limitation being the speed. To increase the speed generally

mixed radix algorithm based architectures can be broadly

used as they decrease the total number of complex

multiplications. The other type of architectures is the pipelined

architectures generally used in real time systems in which

when one data sample goes inside the system a processed data

sample comes outside. The various types of pipelined

architectures are described ahead,

R2MDC – Radix 2 Multipath delay commutator Architecture

[18] In this architecture delay and commutator elements are

used . Here the input sequence is broken into two parallel

datastreams flowing foreward with correct distance. The

distance is maintained with the help of delays and

commutators. In this type of logic the utilization of butterflies

and multipliers is 50%. R2SDF Radix- 2 single path Delay

Feedback architecture[19][23] This type of architecture

utilizes the feedback elements in a more efficient manner. . It

requires less memory compared to R2MDC. R4SDF Radix –

4 Single Path delay feedback architecture [20] It is a radix -4

version of R2SDF employing (CORDIC) coordinate

Rotational Digital computer iterations. It is highly

complicated as it utilizes a radix -4 butterfly.R4MDC Radix

-4 Multipath Delay Commutator architecture [18] . It suffers

from low utilization of all components. R4SDC Radix – 4

single Path Delay Commutator architecture [21] This

architecture improves the utilization of butterfly elements by

modifying the butterfly elements. It uses a modified radix -4

algorithm with programmable ¼ radix – 4 butterflies. Design

of butterfly and delay commutator elements becomes

complicated due to programmability requirement. R2
2
 SDF

Radix 22 single path delay feed back architecture [22] In this

type of architecture one radix -4 butterfly operation is broken

into two radix – 2 butterfly operations with trivial

multiplications of + or – 1 and + or – j. with feedback

mechanism. The memory is fully utilized as with R2SDF and

R4SDF. Most of the FFT architectures generally tend to be

modifications of the above type of architectures. when

designing circuitry for any of these architectures the

commutator elements or feed back elements have to be

designed separately for each stage again logic has to be

established for proper transfer of data from one stage to

another so each stage has to be designed seperately. Again a

proper synchronization has to be made between all the stages.

105

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

ICONECT' 14 Conference Proceedings

Three are still many pipelind implementations . Our main

objective is to achieve a speed of 3.2 us for a 64 point

FFT/IFFT module. [24] have implemented a ASIC version.

We have implemented a 64 point FFT architecture in a

different way . Here we utilize only one RAM and only one

eight point FFT. The detailed description can be understood

ahead.

II. MATHEMATICAL BACKGROUND

 Mathematical Analysis of Mixed Radix Algorithm

The mathematical analysis of the system can be

understood from the analysis of the mixed radix algorithm, in

depth analysis of the algorithm can be obtained from Hayes

[13]. Here the no of points N can be expressed as a product,

of

 (1)

 In equation (1) N is divided into an array of N1 columns and

N2 rows .The index maps for n and k are defined in

equation(2) and equation(3) the sequence becomes an array

given by equation(4)

 (2)

 (3)

 (4)

The N point DFT can be expressed as given by equation

(5)and equation (6).

 (5)

 .(6)

Simplifying equation(6) we get (7), (8)

 (7)

 (8)

is the N1 point DFT of the sequence x(N2n1 + n2) which is the

row n2 of the two dimensional array given in expression (4).

After computing N1 point DFT of each row of the array it

produces another array consisting of complex numbers G(n2,

k1) here in place computation is done and the data is stored in

the same row of the array. The next step in the evaluation of

X(k) is to multiply by twiddle factors .

 (9)

We can prepare an array for the twiddle factors

 (10)

The next step is to do point to point multiplication between

G(n2, k1) array and twiddle factor array and store the data back

in the original location to realize the desired result.The final

step is to compute N2 point DFT of the columns of the array

G1(n2, k1)

 (11)

The DFT coefficients are than read row wise from the two

dimensional array

 (12)

To perform IDFT a complex conjugate of the twiddle factors

is taken in all the stages and then divide by N operation is

performed on all the data points in the last stage.In our module

we are decomposing 64 points into 8x8. Instead of DFT we

are using FFT. The 8 point FFT is further decomposed using a

radix of 2.

 III SYSTEM ARCHITECTURE

A. MAIN SYSTEM

The sytem block diagram is shown in figure 1 it consists of

a RAMGRID, and modules M1, M2, M3, M4 and a control

unit. The various signals are a input bus of 36 bits for giving

106

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

ICONECT' 14 Conference Proceedings

input data. A output bus of 36 bit to receive output data. The

data input and out put is in complex format. The clk signal is

present here we utilize a clk of 200MHz. To write data to the

RAM we have ramwen signal, to read data from the RAM

we have the ramren signal. The gpr signal helps us to identify

whether the ram is going to be accessible externally as

sequential RAM or as a RAMGRID internally. The adrkey is

mapped to the RAM for feeding the data in natural order as

well as retrieving the data in natural order. There are status

signal for input and output. In depth description of each

module is provided ahead.

Fig 1 Main System

B. RAMGRID

The RAMGRID is organised as a set of registers. These

can work as set of rows or set of columns, there are control

signals r/c, rcnum, gp, ramren, ramwren, etc. When gpr = 1

then RAM (RAMGRID) is accessed as a general purpose

RAM array with every register given an addresses. If gp = 0

then RAM is accessed as an array of rows and column

registers accessible row wise or column wise. The row or

column can be accessed by the rcnum signal ie row or column

number. When r/c = 1 the entire RAM is accesed in the form

of rows there are 8 separate input buses connected to the input

of registers and there are 8 seperate output buses connected to

the o/p of registers. Depending on the row no given that

respective row is connected to input bus or o/p bus depending

on read or write operation. If r/c = 0 the the entire RAM is

accesed in the form of columns when the column no is

specified the respective registers in the column are available

for read or write operation.the ramgrid is shown in figure 2

Fig 2. RAMGRID

Fig 3. Split Bank Twiddle factor ROM

C. SPLIT BANK TWIDDLE FACTOR ROM

 In this module the ROM is split into 8 banks so that the

coefficients for 8 elements of the row can be obtained

simultaneously just by specifying the row number shown in

the figure 3. If DITFFT = 1 one set of twiddle factors is

107

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

ICONECT' 14 Conference Proceedings

obtained across the output data buses , if it is IDITFFT the

complex conjugate set of twiddle factors is obtained.

D. OTHER MODULES

There are four modules M1, M2, M3, M4, module M1, M2 ,

M3 together help us to realize an 8 point FFT operation .

module M4 helps us to perform twiddle factor multiplications

on an entire row of registers. The external interfaces of all the

four modules viz M1, M2, M3, M4 are all of the same type

there is a difference in their internal structures. They operate

in a pipelined manner with overlapped states decreasing the

overall processing time.

M1 module In this module there are two radix 2 four point

FFT blocks the input data across 8 buses are given to the 8

respective inputs by appropriate reordering the o/p is obtained

across the 8 o/p buses.

M2 module For M2 module we have two complex

multipliers for performing multiplication by twiddle factors

as well as there is logic for doing multiplication by –j or +j .

M3 module For M3 module contains four radix 2, 2 point

FFT blocks the 8 input points are fed across 8 input data bus

then they are appropriately reordered and fed to the 2 point

FFT modules the data is obtained across the o/p data buses .

M4 module Module M4 this module is a optional module

and comes into play only in case of row operations the o/p

from M3 is fed to this module . Here there are 7 complex

multipliers. One input to the complex multipliers is from the

split bank twiddle factor ROM the other input is the input

data to be multiplied by. The entire row of data can be

multiplied by the twiddle factor coefficients for the respective

row so 7 complex multiplications can be performed in a single

shot. The four modules M1, M2, M3, M4 can be in one of

the four states

00 loading, 01 ---processing, 10 ----unloading(transfer)

11—halt/ wait state. .

E. ARITHMETIC DETAILS

 In our design we are using the Fixed point arithmetic

[5],[6]. This leads to a considerable saving in the number of

logical cells and chip area it also tends to be faster than the

floating point arithmetic. A new data format is chosen. In this

format there are 18 bits for real and 18 bits for imaginary.

Using this type of data format helps us to be in tune with the

18X18 multipliers. Due to this only 1 18X18 multiplier is

required for a fixed point multiplication .In this system only

four 18X18 multipliers are required for implementing one

complex multiplier so activity is faster. The input data which

may be of 8 bits or 10 bits has to be converted to our new data

format before proceeding for processing. Here two cases were

analyzed

Case1 Format for data Here D35 to D18 represents the real

portion and D17 to D0 represents the imaginary portion.Here

the data is considered to be of 10 bits with no padding at the

Least significant bits and 7 bits for overflow, 1 sign bit. D35 is

the sign bit for real D17 is the sign bit for imaginary. The

input data of 10 bits for real portion is inserted at locations

D18 to D27 and D0 to D9 for imaginary all other locations are

padded with zeroes.

Format for twiddle factors.Here D35 to D18 represents the

real portion and D17 to D0 represents the imaginary portion.

Here there is 1 sign bit and 17 bit fraction .D35 is sign bit for

real, D17 is sign bit for imaginary. D18 to D34 is the

fractional portion of the real part of twiddle factor. D0 to D16

is the fractional portion of imaginary part of the twiddle factor.

Case 2 In this case the input data is considered to be of 8

bits with padding of two zeroes at the Least significant bits

and 7 bits for overflow both in the real portion and in the

imaginary portion. Here again D35 and D17 are sign bits for

real and imaginary part respectively. Input data of 8 bits is

placed at locations D2 to D9 for imaginary and D20 to D27

for real. All other locations are padded with zeroes. The

format for twiddle factors is the same as the above case.

 In the chosen dataformat fixed point adders , fixed point

substractors and fixed point multipliers were designed using

VHDL and tested.

F. SYSTEM WORKING

 The data is fed from the external system into the RAM

(RAMGRID) in serial order one point at a time. Then it is

analyzed for DITFFT or IDITFFT accordingly signal is given

to all the modules. Then r/c is made = 1 the entire ram array

works like a grid operating row wise the data is taken one row

at a time and fed to module M1 after the data from the row is

processed by this module it is transferred to the next module

M2 in M2 module twiddle factor multiplications are

performed on the data.. In the meanwhile the module M1 is

loaded with data from row 2 after the data in M2 is processed

it is shifted to module M3 where four radix 2 2 point FFT

modules perform 2 point FFT computations , the data from

this module is then fed to M4 where twiddle factor

multiplications for the row are performed. The flow for row

operations is RAM –> M1-> M2-> M3 –> M4 -> RAM Since

all the four modules are in different state and operating on a

different data of row this leads to overlap or pipelining and

increasing the speed of operation. This method of pipelining

also helps us to decrease the resources, which would have

been enormous if the desired speed is to be achieved.. A

similar processing sequence can be constructed for value r/c =

0 here the entire ram array works like a column grid. Here

also we can follow the same sequence as above with the

exception that M4 module is disconnected here and data from

M3 after processing is fed to the RAM on the column from

which it was fetched. For column operations the M4 module

is disconnected the data flows from RAM –>M1-�M2�-

M3-�RAM. The flow of data can be understood from figure

4 . After the processing is complete the data is fetched from

the RAM by the external system the addresskey is hardware

mapped so that data is given in natural order as well as

retrieved in natural order. In case of IDITFFT another set of

twiddle factors is used in all the modules. To perform divide

by 64 operation by hardware mapping of the databuses the

divide by 64 operation is performed.

108

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

ICONECT' 14 Conference Proceedings

IV TESTING

A. Validation

 A C ++ program was used for conversion of twiddle factors

from decimal format to fixed point format. To verify the

results a standard test data was generated using a C++

program the data was converted to fixed point format .The

data was given as an input to the module designed by us . the

output was in fixed point format. Another C++ program was

used to convert the o/p data to decimal. The test data was

given as input to the MATLAB FFT command the results

were verified. The module was tested for logic.

Fig 4 . State diagram for internal data flow

B. Test Results

A clock frequency of 200MHz was chosen The module was

tested with a standard data input and results were verified The

required time was verified on Isim simulator. Loading time

into the RAM is 960 ns, unloading time from the RAM is

960 ns. Actual processing time 1280 ns. Total actual time

taken 3.277us which is near to the required processing
time of 3.2us. The logic takes 32 states for row operatons 32

states for column operations total of 64 states for processing

Each state takes a time of 20 ns so 1280 ns is the time for

processing operations. On reducing the no of states or

processing time per state using high speed devices the speed

can be further increased.

C. Synthesis report .

The module was syntehsized for a Spartan 6 LX45 FPGA the

timing results and synthesis results were verified on ISIM

simulator VHDL was used as the programming

language.Xilinx ISE Webpack 13.1 was used for design

synthesis and simulation. . The synrhesis report is given in

table1

V COMPARISON

Module described in paper [24] is an ASIC version ours is a

FPGA version. We can think of increasing the speed when we

put it to ASIC version.Our architecture is a simple

architecture. Similar architectures have been implemented

using [26] [25] ours is a VHDL based architecture and

structure is easy to implement.It is higly pipelined. There are 8

buses across which data flows. Similarly the modules m1, m2,

m3, m4 operate on adifferent set of data in pipelined manner

increasing the speed.We are using fixed point arithmetic so

design of elements is easy. If overflow is to be neglected or

reduced the bit per point can be reduced by 12 bits per point

this can give 24 bits per point a still compact design can be

derived from the basic architecture.If this is done the speed

will increase forther.If we want higher precision then the data

can be inserted midway ie keeping some bits for LSB

trimming error , and some bits for overflow error. None of the

existing designs take into account these considerations. For

error control. Only one 8 point FFT in decomposed manner is

utilized in our design so logic area is compact none of the

designs do it this way. The concept of using only one RAM

for data storage can be extended for radix 4 so 4x4x4 can also

be performed The concept can be elaborated for higher no of

points also.

Table 1 Synthesis Table

Device Utilization Summary (estimated values) [-]

Logic Utilization Used Available Utilization

Number of Slice

Registers
8495 54576 15%

Number of Slice LUTs 12573 27288 46%

Number of fully used

LUT-FF pairs
4524 16544 27%

Number of bonded IOBs 89 218 44%

Number of

BUFG/BUFGCTRLs
4 16 25%

Number of DSP48A1s 36 58 62%

VI CONCLUSION :

The logic utilizing the RAM GRID developed for 64

point DITFFT/IDITFFT can be used for high speed

computations . similar analogous logic can be developed for

larger no of points like 128 and 256 and still larger number of

points . This type of logic utilizes less resources and gives

more speed because of the multiple levels of pipelining and

109

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

ICONECT' 14 Conference Proceedings

processing involved and can be of great use in designing large

calculation high speed computation circuitry.

REFERENCES

[1] Clare Huggett, Kaushik Maharatna, Kolin Paul “ On the Implementation

of 128 - pt FFT/IFFT for High – Performance WPAN” Circuits and Systems

2005 IEEE international Symposium May 2005 vol 6 pp 5513 – 5516.

[2] Ahmed Saeed, M. Elbably, G. Abdelfadeel, and M. I. Eladawy “ Efficient

FPGA Implementation of FFT/IFFT processor.” International Journal of

Circuits Systems and signal Processing Issue 3 Volume 3 2009 pp 103 – 110.

[3] J Greg, Nash, Centar “A High Performance scalable FFT” WCN IEEE

2007 , Wireless Communication And networking conference March 2007 pp

2367 – 2372.
[4] http://www.atmel.com/dyn/resources/prod_documents/doc1132.pdf

[5]http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/FixedPointRepresentatio

nFractionalMath.pdf.

[6] http://www.digitalsignallabs.com/fp.pdf Fixed Point arithmetic an

Introduction. Randy Yates

[7] http://www.ipcores.com/
[8] Sundance multiprocessor technology ltd at site www.sundance.com.

[9] Datasheet DS260, xft_ds260 on www.xilinx.com.

[10] Digital Signal Processing Principles , Algorithms and Applications by

John G Proakis, Dimitris G Manolakis..PHI Edition IV Chapter 8 Pages 511

to 536

[11] Analog and Digital Signal Processing by Ashok Ambardar.
[12] Mentor Graphics VHDL Reference Manual.

[13]Digital Signal Processing by M H HAYES. Tata MacGraw Hill Chapter 7

Pages 7.1 to 7.12

[14] k. Maharatna, E . Grass and U . Jagdhold , “A NOVEL 64-POINT

FFT/IFFT PROCESSOR FOR IEEE 802.11(A) STANDARD” 2003 IEEE

International conference on Accoustics, Speech, Signal Processing. Issue date

6- 10 April 2003. 0-7803-7663-3/03©2003 IEEE PP II321 – II324. Vol2.

[15] Digital Signal Processing M H Hayes . Tata MacGraw Hill Chapter 11

Pages 11.3 to 11.8
[16] http://www.dspguide.com/ The Scientists and Engineers Guide to

Digital Signal Processing by Stewen W Smith Chapter 4 Pages 1 to 6.

[17] http://www.bores.com/courses/intro/chips/6_data.htm

[18] L. R. Rabiner and B. Gold, “Theoryand Application of Digital

SignalProcessing,” Prentice-Hall, 1975.

[19] E. H. Wold and A. M. Despain,“Pipeline and Parallel-pipeline
FFTProcessors for VLSI implementation,”IEEE Trans. Computers, C-33(5),

pp.414-426, 1984.

[20] A. M. Despain, “Fourier Transform Computer Using CORDIC

Iterations,”IEEE Trans. Computers, C-23(10), pp.993-1001, 1974.

[21] G. Bi and E. V. Jones, “A Pipeline FFT Processor for Word-sequential

Data,”IEEE Trans. Acoust. Speech, Signal Processing, Vol. 37(12), pp. 1982-

1985, 1989.

[22] S. He and M. Torkelson, “A NewApproach to Pipeline FFT

Processor,”The 10th International ParallelProcessing Symposium(IPPS), pp.
766 - 770, 1996.

[23] H. L. Groginsky and G. A. Works, “A Pipeline Fast FourierTransform,”
IEEE trans. on Computers, Vol. C–19(11), pp.1015–1019, 1970.

[24] K. Maharatna, E. Grass and U. Jagdhold” A NOVEL 64-POINT

FFT/IFFT PROCESSOR FOR IEEE 802.11(A) STANDARD” ICASSP

2003ppII – 321 to II - 324

[25]Hang Liu, Hanho Lee”High Speed Four Parallel 64 point Radix 24 MDF

FFT/IFFT processor for MIMO –OFDM Systems.” The 23rd International
Technical Conference on Circuits/Systems Computers and Communications

ITC – CSCC 2008 pp 1469 - 1472

[26] T.TIRUMALA KOTESWARA RAO, S. SARATH CHANDRA”
 Implementation of 64-Point FFT Processor Based on Radix-2 Using Verilog”

IJERT vol2 ISSUE 10 OCT 2013pp2811 – 2815.

110

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

ICONECT' 14 Conference Proceedings

