International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ETRASCT" 14 Conference Proceedings

High Performance Computing for Tomography
Visualizations

Neelam Khatri, Nisheet Saxena
Defence Research and Development Organization
Defence Laboratory, Jodhpur, Rajasthan, India
nisheets@dl.drdo.in

Abstract—High Performance Computing (HPC) technology
addresses computational problems that demand significant
processing power and resources. The goal of HPC is to reduce
execution time and accommodate larger and more complicated
problems particularly in the domains of scientific research and
engineering.

Computed Tomography (CT) is a powerful Non-Destructive
Testing and Evaluation (NDT&E) technique for producing cross-
sectional images of scanned components. CT image
reconstruction from projection data is computationally intensive
because large amount of projection data needs to be processed by
time-consuming processing algorithms. The large computational
requirement results in large times for CT reconstruction.
Problem increases with large size multi-plane datasets for
complete 3D visualizations. Running CT algorithms on
specialized high-performance hardware Graphics Processing
Unit (GPU) can reduce the reconstruction time significantly.

Compute Unified Device Architecture (CUDA) is a software
development platform that allows us to run computational
algorithms on the NVIDIA GPUs.

This paper presents the reconfigurable design of Filtered
Back-Projection (FBP) algorithm for parallel CT image
reconstruction using CUDA compatible GPUs. GPU-based FBP
implementations have been found to be tremendously faster than
CPU-based implementations while processing huge volumes of
data.

Keywords—High Performance Computing; GPU; CUDA;
Computed Tomography

. INTRODUCTION

High Performance Computing abbreviated as HPC evolved
due to increase in demands of processing speed. HPC
concentrates on combining the power of computing devices,
networking infrastructure and storage systems using parallel
hardware, networking and software technology that utilizes
human expertise to gain optimized and sustained performance
for solving scientific, engineering, big data and research
problems including grand challenges like computer modeling,
simulations and analysis of data. HPC technology focuses on
developing parallel processing systems, parallel programming
algorithms and high bandwidth & low latency network by
incorporating parallel computing techniques. Parallel
computing refers to simultaneous use of multiple compute
resources to solve computational problems. HPC systems offer

parallelism at large scales, with hundreds and thousands of
tasks running concurrently. Many complex algorithms have
been developed over the years, to work on highly parallel,
specialized hardware platforms. With the rapid progress of
parallel hardware, suitably high performance is now available
in commodity computers.

In the present study we have utilized the computational
power of GPU (Graphics Processing Unit) for the purpose of
CT (Computed Tomography) reconstruction which is known to
be extremely computationally demanding. We focus on the
FBP (Filtered Back-Projection) algorithm for CT
reconstruction [1,2,3]. The parallel processing capabilities of
the GPUs allows it to divide complex computing tasks into
thousands of smaller tasks that can be run concurrently. The
proposed algorithm has been implemented using high
performance computing framework CUDA (Compute Unified
Device Architecture). CUDA provides a fairly simple,
minimalist abstraction of parallelism and inherits all the well-
known semantics of C, it lets programmers develop massively
parallel programs with relative ease [4].

1. GPU COMPUTING

With the ever-increasing demand for more computing
performance, the HPC industry is moving toward a hybrid
computing model, where GPUs and CPUs work together to
perform general purpose computing tasks. GPUs were
originally designed for processing graphics and generating
good quality games and videos, but the increase of
performance in these units is a perfect fit for scientific
computing. Today, GPUs have become an integral part of
almost every computing device like desktops, smart phones,
tablet computers and ultra-books. The wide availability of such
devices and their multiprocessing capabilities are proving to be
a cost-effective solution in the development of compute-
intensive applications [5].

GPU computing is the use of a GPU together with a CPU to
accelerate general-purpose scientific and engineering
applications. NVIDIA revolutionized GPU computing world in
2006-2007 by introducing its massively parallel architecture
called 'CUDA\, allowing applications to offload their compute
intensive tasks to GPU, instead of the CPU. CPU + GPU is a
powerful combination because CPUs consist of a few cores
optimized for serial processing, while GPUs consist of
thousands of smaller, more efficient cores designed for parallel

www.ijert.org

151

performance. Serial portions of the code run on the CPU while
parallel portions run on the GPU. All NVIDIA GPUs—
GeForce, Quadro, and Tesla— support GPU computing and
the CUDA parallel programming model.

1. GPU ARCHITECTURE & EXECUTION MODEL

GPUs have many parallel cores that can run
simultaneously. Each core can run several threads. Problems
with data-parallel computation can be accelerated with millions
of threads available on a GPU. A General Purpose GPU
(GPGPU) is a modified form of stream (data) processor which
transforms a modern graphic accelerator into a general purpose
computing device. Modern GPUs are very efficient due to their
highly parallelized architecture and devote more resources for
computations as compared to CPUs (Fig.1).

Control AW AW

AU AU

CPU GPU

Fig. 1. CPU & GPU Architectures

GPUs are designed to provide massive parallelism by
hosting and managing hundreds of light weight threads. These
threads, execute -- in parallel -- the same set of instructions on
the provided data set, providing data parallelism. This approach
is called SIMT (Single Instruction Multiple Threads). A GPU
also uses various optimization techniques like 'batch execution
of group of threads, to improve throughput and reduce
bandwidth. Key components of GPU execution model are:

Kernel -- A set of instructions to be executed in
parallel, written as a C function.

Thread -- Also called 'work-item', is nothing but a
single instance of a kernel function that will get
executed in parallel.

Thread-block -- Also called 'work- group', is a group of
threads that executes kernel instance, by sharing GPU
resources. All the threads to be executed in parallel are
divided into blocks of the same size.

Stream multi-processor -- Executes one or more thread
blocks/work groups concurrently (logical parallelism).

Stream-processor -- Executes one or more
threads/work-items in parallel (physical parallelism).

IV. CUDA PARALLEL COMPUTING

Compute Unified Device Architecture (CUDA) is
NVIDIA’s parallel computing architecture that enables

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181

ETRASCT' 14 Conference Proceedings

dramatic increase in computing performance by harnessing the
power of the GPUs. CUDA provides the ability to use high-
level languages such as C with few extensions to develop
applications that take advantage of the high level performance
and scalability that the GPU's architecture offers [6]. CUDA
programming paradigm is a combination of serial and parallel
executions. The simple C code runs serially on CPU also called
the host. Parallel execution is expressed by the kernel function
that is executed on a set of threads in parallel on GPU also
called the device. The number of thread blocks, and the number
of threads within those blocks that execute this kernel in
parallel are given explicitly when this function is called.

The CUDA platform is accessible to software developers
through CUDA SDK (Fig.2). The CUDA Toolkit includes
CUDA-accelerated libraries, compiler directives, and
extensions to standard programming languages. CUDA
compiler (nvcc) takes the input files and separates the GPU
code and the CPU code. Then GPU code is executed in parallel
with CPU code.

The CUDA-accelerated libraries such as cuFFT, cuBLAS,
etc., allow users to leverage the floating-point power and
parallelism of the GPU without having to develop a custom,
CUDA implementation. In our implementation we used cuFFT
library to compute the fourier transforms in FBP algorithm for
CT reconstruction.

Optimized libraries:
math.h, BLAS, FFT

Integrated CPU and
GPU source code

CUDA C Compiler (nvec)
Machine independent
assembly (PTX) CPU Host Code
Standard C compiler
[=]

Fig. 2. CUDA Software Development

CUDA
Driver

Debugger
Profiler

On running CUDA's compiled code, its primary execution
takes place in CPU. When kernel call is made, the relevant
segment is transferred to the GPU for processing but the
application continues to execute the non-kernel functions on its
CPU. At the same time the kernel function does its execution
on the GPU. Thus, computation is processed in parallel
between the CPU and the GPU. As the kernel function runs on
the device, memory must be allocated on device in advance
before kernel function invocation and if the kernel function has
to execute on some data then the data must be copied from the
host memory to the device memory. Similarly, after the
execution of kernel function, data from device memory must be
copied back to host memory in order to get results. Keeping all
this in view the processing flow is as shown in Fig.3.

www.ijert.org

152

Fig. 3. CUDA Parallel Execution Flow

Like any other parallel programming model, CUDA
computing also comes with a few challenges as below:

Identifying concurrency/parallelism in the given
functionality,

Grouping of parallel tasks,

Finding the optimal number of threads and blocks that
will keep the GPU fully utilized,

Data transformation and transportation,
Synchronization among the tasks,
Test & Measure performance in target environment.

V. COMPUTED TOMOGRAPHY PRINCIPLES

Computed Tomography is an advanced Non-Destructive
Testing and Evaluation technique. CT refers to the cross-
sectional imaging of an object from its projection data. The
technique of tomography consists of passing a series of rays at
multiple points through an object and measuring the
attenuation in these rays by placing a series of detectors on the
receiving side of the object. These measurements are called
projections. This data is collected at various angles typically
from O to 180 degrees. Specialized algorithms are used to
reconstruct 2D cross-sectional images from projection data.
The property that is actually computed is the linear attenuation
coefficient of that object, at various points in the object's cross-
section. If this process is repeated at various heights along the
object, we obtain several 2D cross-sectional images, which can
then be stacked one on the top of another to get complete
internal 3D volume visualization of the object.

In the present study, we have implemented the Filtered
Back Projection algorithm for 2D CT image reconstruction

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181

ETRASCT' 14 Conference Proceedings
from parallel beam projection data. In this algorithm each
projected sample is filtered and then individual filtered view is
back-projected. The back-projection is formed by smearing
each view back through the image in the direction it was
originally acquired. The final back-projected image is then
taken as the sum of all back-projected views (Fig.4).

F"“li‘tared Viswf-l
e

j Flitered View-3

Using 3 views Using many views

Fig. 4. CT Image Reconstruction using Filtered Back Projection

VI. COMPUTATION & RESULTS

In order to estimate the utility of CUDA, parallel beam FBP
algorithm for CT imaging has been used. Reconstructions were
carried out using non-CUDA variants and CUDA variants.
Execution flow for sequential and parallel implementations is
shown in Fig.5.

Execution Flow - Sequential

.,\

- oy { \\
: [f= p— -
joton | Ry |FT |
Proedion | () ,m, 5 /(U Y | m
/;\i‘\ //// \“"/
o

Data filtering using FFT, Creating matrix of Execute backprojection
sequentially transformed data sequentially

Execution Flow - CUDA

e ! CUDA
:: :: ke;!e;\klw

Pug:gon E _} _> E fprrmamn?n:w ‘
| -1 T ;;rr::n:?se

Data fittering using Creating matrix of Execute backprojection by calling CUDA
CUFFT, Parallely transformed data keme! function on GPU, in parallel

Fig.5. Filtered Back-Projection Execution Flow in Serial & Parallel
Variants

Projection dataset was simulated for the Shepp-Logan Phantom
and used for reconstruction using the two implementations.
Computation times were noted for different datasets.

www.ijert.org 153

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ETRASCT" 14 Conference Proceedings
Two different computing environments have been used for ~ B. System-2 Configuration

the study. * Processors — Dual Intel Xeon CPU X5660 @ 2.8 GHz

A. System-1 Configuration * RAM -32GB DDR3 (667MHz)

* Processors — Dual AMD Opteron CPU @ 2.6 GHz * 0OS -Ubuntu 12.04 LTS, 64-bit
* RAM -32GB DDR2 (333MHz) * CUDA driver version — CUDA 5.5
* OS - Ubuntu 10.04, 64-bit * Graphics Processor Unit — Nvidia Quadro 6000 GPU

(448 cores)

* Single precision floating point peak performance of
GPU - 1030.4 GFLOPS

* Double precision floating point peak performance of
GPU -515.2 GFLOPS

* CUDA driver version — CUDA 3.0

* Graphics Processer Unit — Nvidia Quadro fx5600 GPU
(128 cores)

* Single precision floating point peak performance of
GPU -518.4 GFLOPS

Computation times observed in above configuration for

Computation times observed in above configuration for { |]
FBP implementations are shown in TABLE Il & IV.

FBP implementations are shown in TABLE | & 1.

TABLE I. NoO. OF RAYS = 1022, NO. OF PROJECTIONS = 1200, IMAGE TABLE Ill. No. OF RAYS = 1022, NO. OF PROJECTIONS = 1200, IMAGE
GRID = 1022 X 1022 PIXELS GRID = 1022 X 1022 PIXELS
_Proiecti I . Back-Projection .
Filtering Time Back-Projection Total Time Filtering Time Ti) Total Time
Time ime
FBPinC 5.27 secs. 190.63 secs. 196.04 secs. FBPinC 3.01 secs. 116.44 secs. 119.75 secs.
FBP in CUDA 1.79 secs. 1.24 secs. 3.22 secs. FBP in CUDA 1.33 secs. 0.23 secs. 1.68 secs.
Speed up 2.94 X 153.73 X 60.88 X Speed up 226X 506.26 X 71.27 X
TABLE II. NO. OF RAYS = 2047, NO. OF PROJECTIONS = 1200, IMAGE TABLE IV. NO. OF RAYS = 2047, NO. OF PROJECTIONS = 1200, IMAGE
GRID = 2047 X 2047 PIXELS GRID = 2047 X 2047 PIXELS
_Proiecti I . Back-Projection .
Filtering Time Back-Projection Total Time Filtering Time Ti) Total Time
Time ime
FBPinC 9.07 secs. 730.81 secs. 740.57 secs. FBPinC 5.56 secs. 472.34 secs. 478.33 secs.
FBP in CUDA 1.83 secs. 4.58 secs. 7.19 secs. FBP in CUDA 1.37 secs. 0.86 secs. 2.65 secs.
Speed up 4.95 X 159.56 X 103.00 X Speed up 4.04 X 549.23 X 180.50 X

www.ijert.org

154

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ETRASCT" 14 Conference Proceedings

Fig.6 shows reconstructed images of Shepp-Logan
Phantom from non-CUDA and CUDA implementations for
2047 X 2047 grid size and 1200 projections.

Fig. 6. CT reconstructed images of Shepp-Logan Phantom using (a) CPU &
(b) GPU

VIlI. CONCLUSION

Present study clearly highlights that CUDA provides
tremendous speed ups depending upon input datasets and
image grid sizes to be reconstructed. Quality of reconstructed
image is maintained in CUDA outputs. We conclude that the
CUDA-enabled GPU is highly suited for delivering high-speed
reconstructions in CT. We believe that for improving
performance in the face of increasing complexity and large size

www.ijert.org

of data, it is important to consider multiple performance-
improvement techniques.

ACKNOWLEDGEMENT

The authors would like to thank Dr. S R Vadera, Director,
Defence Laboratory Jodhpur, for his constant encouragement
and support during this research work. We also thank Mr. G L
Baheti for his guidance.

REFERENCES

[1] G T Herman, "Image Reconstruction from Projections: The
fundamentals of computerised tomography”, Academic Press, New
York, 1980.

[2] A C Kak, M Slaney, "Principles of Computerized Tomographic
Imaging”, IEEE Press, New York, 1988.

[3] N Saxena, G L Baheti, D K Tripathi, K C Songara, L R Meghwal, V L
Meena, "CUDA-based GPU computing for fast tomography
visualizations", Insight - Journal of The British Institute of NDT, Vol 52,
No 5, pp 262-264, May 2010.

[4] ™ Garland, S Le Grand, J Nickolls, J Anderson, J Hardwick, S Morton
et al, "Parallel computing experiences with CUDA", IEEE Micro, Vol
28, No 2, pp 13-27, July-Aug 2008.

[5] Amit Badheka, "Using Graphics Card for Accelerated Computing”, CSI
Communications, Sept. 2013.

[6] "CUDA C Programming Guide", NVIDIA Corporation, 2013.

155

