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Abstract—High Performance Computing (HPC) technology 
addresses computational problems that demand significant 
processing power and resources. The goal of HPC is to reduce 
execution time and accommodate larger and more complicated 
problems particularly in the domains of scientific research and 
engineering. 

Computed Tomography (CT) is a powerful Non-Destructive 
Testing and Evaluation (NDT&E) technique for producing cross-
sectional images of scanned components. CT image 
reconstruction from projection data is computationally intensive 
because large amount of projection data needs to be processed by 
time-consuming processing algorithms. The large computational 
requirement results in large times for CT reconstruction. 
Problem increases with large size multi-plane datasets for 
complete 3D visualizations. Running CT algorithms on 
specialized high-performance hardware Graphics Processing 
Unit (GPU) can reduce the reconstruction time significantly.  

Compute Unified Device Architecture (CUDA) is a software 
development platform that allows us to run computational 
algorithms on the NVIDIA  GPUs.  

This paper presents the reconfigurable design of Filtered 
Back-Projection (FBP) algorithm for parallel CT image 
reconstruction using CUDA compatible GPUs. GPU-based FBP 
implementations have been found to be tremendously faster than 
CPU-based implementations while processing huge volumes of 
data.  

Keywords—High Performance Computing; GPU; CUDA; 
Computed Tomography 

I. INTRODUCTION 
High Performance Computing abbreviated as HPC evolved 

due to increase in demands of processing speed. HPC 
concentrates on combining the power of computing devices, 
networking infrastructure and storage systems using parallel 
hardware, networking and software technology that utilizes 
human expertise to gain optimized and sustained performance 
for solving scientific, engineering, big data and research 
problems including grand challenges like computer modeling, 
simulations and analysis of data. HPC technology focuses on 
developing parallel processing systems, parallel programming 
algorithms and high bandwidth & low latency network by 
incorporating parallel computing techniques. Parallel 
computing refers to simultaneous use of multiple compute 
resources to solve computational problems. HPC systems offer 

parallelism at large scales, with hundreds and thousands of 
tasks running concurrently. Many complex algorithms have 
been developed over the years, to work on highly parallel, 
specialized hardware platforms. With the rapid progress of 
parallel hardware, suitably high performance is now available 
in commodity computers.  

In the present study we have utilized the computational 
power of GPU (Graphics Processing Unit) for the purpose of 
CT (Computed Tomography) reconstruction which is known to 
be extremely computationally demanding. We focus on the 
FBP (Filtered Back-Projection) algorithm for CT 
reconstruction [1,2,3]. The parallel processing capabilities of 
the GPUs allows it to divide complex computing tasks into 
thousands of smaller tasks that can be run concurrently. The 
proposed algorithm has been implemented using high 
performance computing framework CUDA (Compute Unified 
Device Architecture). CUDA provides a fairly simple, 
minimalist abstraction of parallelism and inherits all the well-
known semantics of C, it lets programmers develop massively 
parallel programs with relative ease [4]. 

II.  GPU COMPUTING 
With the ever-increasing demand for more computing 

performance, the HPC industry is moving toward a hybrid 
computing model, where GPUs and CPUs work together to 
perform general purpose computing tasks. GPUs were 
originally designed for processing graphics and generating 
good quality games and videos, but the increase of 
performance in these units is a perfect fit for scientific 
computing. Today, GPUs have become an integral part of 
almost every computing device like desktops, smart phones, 
tablet computers and ultra-books. The wide availability of such 
devices and their multiprocessing capabilities are proving to be 
a cost-effective solution in the development of compute-
intensive applications [5].  

GPU computing is the use of a GPU together with a CPU to 
accelerate general-purpose scientific and engineering 
applications. NVIDIA revolutionized GPU computing world in 
2006-2007 by introducing its massively parallel architecture 
called 'CUDA', allowing applications to offload their compute 
intensive tasks to GPU, instead of the CPU. CPU + GPU is a 
powerful combination because CPUs consist of a few cores 
optimized for serial processing, while GPUs consist of 
thousands of smaller, more efficient cores designed for parallel 
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performance. Serial portions of the code run on the CPU while 
parallel portions run on the GPU.  All NVIDIA GPUs—
GeForce, Quadro, and Tesla— support GPU computing and 
the CUDA parallel programming model. 

III. GPU ARCHITECTURE & EXECUTION MODEL 
GPUs have many parallel cores that can run 

simultaneously. Each core can run several threads. Problems 
with data-parallel computation can be accelerated with millions 
of threads available on a GPU. A General Purpose GPU 
(GPGPU) is a modified form of stream (data) processor which 
transforms a modern graphic accelerator into a general purpose 
computing device. Modern GPUs are very efficient due to their 
highly parallelized architecture and devote more resources for 
computations as compared to CPUs (Fig.1). 

 

Fig. 1. CPU & GPU Architectures 

GPUs are designed to provide massive parallelism by 
hosting and managing hundreds of light weight threads. These 
threads, execute -- in parallel -- the same set of instructions on 
the provided data set, providing data parallelism. This approach 
is called SIMT (Single Instruction Multiple Threads). A GPU 
also uses various optimization techniques like 'batch execution 
of group of threads', to improve throughput and reduce 
bandwidth. Key components of GPU execution model are:  

 Kernel -- A set of instructions to be executed in 
parallel, written as a C function.  

 Thread -- Also called 'work-item', is nothing but a 
single instance of a kernel function that will get 
executed in parallel.  

 Thread-block -- Also called 'work- group', is a group of 
threads that executes kernel instance, by sharing GPU 
resources. All the threads to be executed in parallel are 
divided into blocks of the same size.  

 Stream multi-processor -- Executes one or more thread 
blocks/work groups concurrently (logical parallelism).  

 Stream-processor -- Executes one or more 
threads/work-items in parallel (physical parallelism). 

IV. CUDA PARALLEL COMPUTING 
Compute Unified Device Architecture (CUDA) is 

NVIDIA’s parallel computing architecture that enables 

dramatic increase in computing performance by harnessing the 
power of the GPUs.  CUDA provides the ability to use high-
level languages such as C with few extensions to develop 
applications that take advantage of the high level performance 
and scalability that the GPU's architecture offers [6]. CUDA 
programming paradigm is a combination of serial and parallel 
executions. The simple C code runs serially on CPU also called 
the host. Parallel execution is expressed by the kernel function 
that is executed on a set of threads in parallel on GPU also 
called the device. The number of thread blocks, and the number 
of threads within those blocks that execute this kernel in 
parallel are given explicitly when this function is called. 

The CUDA platform is accessible to software developers 
through CUDA SDK (Fig.2). The CUDA Toolkit includes 
CUDA-accelerated libraries, compiler directives, and 
extensions to standard programming languages. CUDA 
compiler (nvcc) takes the input files and separates the GPU 
code and the CPU code. Then GPU code is executed in parallel 
with CPU code. 

The CUDA-accelerated libraries such as cuFFT, cuBLAS, 
etc., allow users to leverage the floating-point power and 
parallelism of the GPU without having to develop a custom, 
CUDA implementation. In our implementation we used cuFFT 
library to compute the fourier transforms in FBP algorithm for 
CT reconstruction.  

 

Fig. 2. CUDA Software Development 

On running CUDA's compiled code, its primary execution 
takes place in CPU. When kernel call is made, the relevant 
segment is transferred to the GPU for processing but the 
application continues to execute the non-kernel functions on its 
CPU. At the same time the kernel function does its execution 
on the GPU. Thus, computation is processed in parallel 
between the CPU and the GPU. As the kernel function runs on 
the device, memory must be allocated on device in advance 
before kernel function invocation and if the kernel function has 
to execute on some data then the data must be copied from the 
host memory to the device memory. Similarly, after the 
execution of kernel function, data from device memory must be 
copied back to host memory in order to get results. Keeping all 
this in view the processing flow is as shown in Fig.3. 
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Fig. 3. CUDA Parallel Execution Flow 

Like any other parallel programming model, CUDA 
computing also comes with a few challenges as below: 

 Identifying concurrency/parallelism in the given 
functionality,  

 Grouping of parallel tasks,  
 Finding the optimal number of threads and blocks that 

will keep the GPU fully utilized, 
 Data transformation and transportation,  
 Synchronization among the tasks,  
 Test & Measure performance in target environment. 

V.  COMPUTED TOMOGRAPHY PRINCIPLES  
Computed Tomography is an advanced Non-Destructive 

Testing and Evaluation technique. CT refers to the cross-
sectional imaging of an object from its projection data. The 
technique of tomography consists of passing a series of rays at 
multiple points through an object and measuring the 
attenuation in these rays by placing a series of detectors on the 
receiving side of the object. These measurements are called 
projections. This data is collected at various angles typically 
from 0 to 180 degrees. Specialized algorithms are used to 
reconstruct 2D cross-sectional images from projection data. 
The property that is actually computed is the linear attenuation 
coefficient of that object, at various points in the object's cross-
section. If this process is repeated at various heights along the 
object, we obtain several 2D cross-sectional images, which can 
then be stacked one on the top of another to get complete 
internal 3D volume visualization of the object.  

In the present study, we have implemented the Filtered 
Back Projection algorithm for 2D CT image reconstruction 

from parallel beam projection data. In this algorithm each 
projected sample is filtered and then individual filtered view is 
back-projected. The back-projection is formed by smearing 
each view back through the image in the direction it was 
originally acquired. The final back-projected image is then 
taken as the sum of all back-projected views (Fig.4). 

 

Fig. 4.  CT Image Reconstruction using Filtered Back Projection 

VI. COMPUTATION & RESULTS 
In order to estimate the utility of CUDA, parallel beam FBP 

algorithm for CT imaging has been used. Reconstructions were 
carried out using non-CUDA variants and CUDA variants. 
Execution flow for sequential and parallel implementations is 
shown in Fig.5.   

 

Fig. 5.  Filtered Back-Projection Execution Flow in Serial & Parallel 
Variants 

Projection dataset was simulated for the Shepp-Logan Phantom 
and used for reconstruction using the two implementations. 
Computation times were noted for different datasets. 
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Two different computing environments have been used for 
the study.  

A. System-1 Configuration 
 Processors – Dual AMD Opteron CPU @ 2.6 GHz 
 RAM  – 32GB DDR2 (333MHz) 
 OS – Ubuntu 10.04, 64-bit  
 CUDA driver version – CUDA 3.0  
 Graphics Processer Unit – Nvidia Quadro fx5600 GPU 

(128 cores) 
 Single precision floating point peak performance of 

GPU – 518.4 GFLOPS 
 

Computation times observed in above configuration for 
FBP implementations are shown in TABLE I & II. 

 

 

TABLE I.     NO. OF RAYS = 1022, NO. OF PROJECTIONS = 1200, IMAGE 
GRID = 1022 X 1022 PIXELS 

 Filtering Time  Back-Projection 
Time Total Time 

FBP in C 5.27 secs. 190.63 secs. 196.04 secs. 

FBP in CUDA 1.79 secs. 1.24 secs. 3.22 secs. 

Speed up 2.94 X 153.73 X 60.88 X 

 
 
 

TABLE II.   NO. OF RAYS = 2047, NO. OF PROJECTIONS = 1200, IMAGE 
GRID = 2047 X 2047 PIXELS 

 Filtering Time Back-Projection 
Time Total Time 

FBP in C 9.07 secs. 730.81 secs. 740.57 secs. 

FBP in CUDA 1.83 secs. 4.58 secs. 7.19 secs. 

Speed up 4.95 X 159.56 X 103.00 X 

B. System-2 Configuration 
 Processors – Dual Intel Xeon CPU X5660 @ 2.8 GHz  
 RAM  – 32GB DDR3 (667MHz) 
 OS  – Ubuntu 12.04 LTS, 64-bit 
 CUDA driver version – CUDA 5.5  
 Graphics Processor Unit – Nvidia Quadro 6000 GPU 

(448 cores) 
 Single precision floating point peak performance of 

GPU – 1030.4 GFLOPS 
 Double precision floating point peak performance of 

GPU – 515.2 GFLOPS 
 

Computation times observed in above configuration for 
FBP implementations are shown in TABLE III & IV. 

 

 

TABLE III.  NO. OF RAYS = 1022, NO. OF PROJECTIONS = 1200, IMAGE 
GRID = 1022 X 1022 PIXELS 

 
Filtering Time  Back-Projection  

Time Total Time 

FBP in C 3.01 secs. 116.44 secs. 119.75 secs. 

FBP in CUDA 1.33 secs. 0.23 secs. 1.68 secs. 

Speed up 2.26 X 506.26 X 71.27 X 

 
 
 

TABLE IV.  NO. OF RAYS = 2047, NO. OF PROJECTIONS = 1200, IMAGE 
GRID = 2047 X 2047 PIXELS 

 Filtering Time Back-Projection 
Time Total Time 

FBP in C 5.56 secs. 472.34 secs. 478.33 secs. 

FBP in CUDA 1.37 secs. 0.86 secs. 2.65 secs. 

Speed up 4.04 X 549.23 X 180.50 X 
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Fig.6 shows  reconstructed images of Shepp-Logan 

Phantom from  non-CUDA and CUDA implementations for 
2047 X 2047 grid size and 1200 projections. 

      
               (a)                          (b) 
Fig. 6. CT reconstructed images of Shepp-Logan Phantom using (a) CPU  &  

(b) GPU 

VII. CONCLUSION 
Present study clearly highlights that CUDA provides 

tremendous speed ups depending upon input datasets and 
image grid sizes to be reconstructed. Quality of reconstructed 
image is maintained in CUDA outputs. We conclude that the 
CUDA-enabled GPU is highly suited for delivering high-speed 
reconstructions in CT. We believe that for improving 
performance in the face of increasing complexity and large size 

of data, it is important to consider multiple performance-
improvement techniques. 
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