
Proceedings of International Conference “ICSEM’13”

A.Ramachandran, V.Vimala Dheeksh
813

Heterogeneous Request Process in Large
Scale Cloud Environment

A.RAMACHANDRAN, V.VIMALA DHEEKSH

Assistant Professor, Dept of IT, PG Student M.E(CSE)
Srinivasan Engineering College, Perambalur Srinivasan Engineering College, Perambalur
msg2chandran@gmail.com vimaladheekshanya@gmail.com

Abstract— The components of the middleware
layer run on every processing node of the cloud
environment in a decentralized design. To
achieve scalability, it envisions that all key tasks
of the middleware layer, including estimating
global states, placing site modules and
computing policies for request forwarding are
based on distributed algorithms. Further, it
relies on a global directory for routing requests
from users on the Internet to access points to
particular sites inside the cloud. A gossip
protocol P*, executes in a middleware platform
and meets the design goals. It provides an
optimal solution for a simplified version of the
resource allocation problem and an efficient
heuristic for the hard problem. The protocol
proposed continuously executes, while it’s input
and consequently its output dynamically
changes. Hence to reduce the demand, a time
and cost based slot mechanism have been
implemented to convert the application into a
business oriented application for cloud
providers which will be efficient for cloud
providers and consumers to minimize the cost of
accessing the cloud applications. It will reduce
the waiting time of the consumer for accessing
the resource in cloud at traffic less environment
with efficient cost.

Key Terms— Middleware platform, Heuristic
solution, Resource allocation, gossip protocol.

I.INTRODUCTION

Cloud computing is a popular trend in
current computing which attempts to provide
cheap and easy access to make the computational
resources. Compared to previous paradigms, cloud
computing focuses on treating computational
resources as measurable and billable utilities. From
the clients point of view, cloud computing provides
an abstraction of the underlying hardware
architecture. This abstraction saves them the costs
of design, setup and maintenance of a data center to
host their Application Environments (AE).
Whereas for cloud providers, the arrangement
yields an opportunity to profit by hosting many

AEs. This economy of scale provides benefits to
both parties, but leaves the providers in a position
where they must have an efficient and cost
effective data center. This approach centers around
a decentralized design whereby the components of
the middleware layer run on every processing node
of the cloud environment. To achieve scalability, it
is envisioned that all key tasks of the middleware
layer, including estimating global states, placing
site modules and computing policies for request
forwarding are based on distributed algorithms.

The core contribution is a gossip protocol
P*, which executes in a middleware platform and
meets the design goals outlined above. The
protocol has two innovative characteristics. First,
while gossip protocols for load balancing in
distributed systems have been studied before, has
no results are available for cases that consider
memory constraints and the cost of reconfiguration,
which makes the resource allocation problem hard
to solve (memory constraints alone make it NP-
hard). An optimal solution is provided for a
simplified version of the resource allocation
problem and an efficient heuristic for the hard
problems. Second, the protocol proposed is
continuously executes, while its input and
consequently its output dynamically changes. Most
gossip protocols that have been proposed to date
are used in a different way. They assume static
input and produce a single output value.

The benefit of a single, continuous
execution vs. a sequence of executions with restarts
is that in which global synchronization can be
avoided and that the system can continuously adapt
to changes in local input. On the other hand, its
drawback is that the behavior of a protocol with
dynamic input is more difficult to analyze. Also,
the cost of the system to react to a high rate of
change in local output can potentially be higher
than implementing a set of changes after each
synchronized run. Based on the work thus far, it is
believed that, for a gossip protocol running in
large-scale dynamic environments, the advantages

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

of continuous execution with dynamic input
outweigh its potential drawbacks.

II.SYSTEM MODEL

Fig 1.SYSTEM DESIGN

A cloud environment spans sev
interconnected by an internet. Each
datacenters contains a large number
that are connected by a high-
Users access sites hosted
environment through the public Internet.
typically accessed through a URL
to a network address through a
service, such as DNS. A request to
through the Internet to a machine
datacenter that either processes the
forwards it. In this paper, we restrict oursel
cloud that spans a datacenter containing a single
cluster of machines and leave for
the extension of our contri
environment including multiple datacenters.

Each site manager handles
a particular site. It has two important components:
a demand profiler and request
demand profiler estimates the resource demand
each module of the site based
statistics, QoS targets, etc This
forwarded to all machine managers
instances of modules belonging
Similarly, the request forwarder
requests for processing to instances
belonging to this site. Request
decisions take into account the resource allocation
policy and constraints such as
Figure shows the components of
and how they relate to machine
remainder of this paper focuses
functionality of the resource manager

Proceedings of International Conference “ICSEM’13”

A.Ramachandran, V.Vimala Dheeksh

of continuous execution with dynamic input

II.SYSTEM MODEL

Fig 1.SYSTEM DESIGN

veral datacenters
internet. Each of these

number of machines
-speed network.
by the cloud

Internet. A site is
 that is translated
 global directory
to a site is routed

machine inside a
processes the request or

restrict ourselves to a
datacenter containing a single

for further work
contribution to an

datacenters.

manager handles user requests to
important components:

 forwarder. The
resource demand of

 on the request
This estimate is

machine managers that run
belonging to this site.

der sends user
instances of modules
Request forwarding

the resource allocation
 session affinity.

of a site manager
machine managers. The

focuses on the
manager component.

III. FORMALIZING TH
RESOURCE ALLOCATIO
CLOUD MIDDLEWAR E

The specific problem addressed

placing modules (more
instances of modules) on machines and
cloud resources to these modules,
cloud utility is maximized under constraints. As
cloud utility we choose
generated by any site, which
minimum utility of its module
formulate the resource allocation
of maximizing the cloud utility
memory constraints. The
problem is a configuration
the module scheduler and request
components. At discrete
occur, such as load changes, addition and
of site or machines, etc. In
event, the opti- mization problem is
in order to keep the cloud
add a secondary objectiv
problem, which states that
from the current configuration
configuration must be minimized.

A.THE MODEL

 We model the cloud as
of sitesS and a set of machines
sites. Each site s � S is
modules denoted by Ms .We
may run more than one instance
each on a different machine, in which
CPU demand is divided among
demand ωn,m (t) of an instance of
machine n is given by ωn,m
(t), where

n�N αn,m (t) = 1 and α

I t i s c a l l e d t h a t the matrix
αn,m (t) the configuration
(matrix) of the system. A is

with 1T A = 1T

A machine n � N in the

CPU capacity Ωn and a memory
We use Ω and Γ to denote
and memory capacities of
system. An instance of module
machine n demands ωn,m
γm memory resource
allocates to module m the CPU
(which may be different from
memory capacity γm . We
(t) generated by an instance of

Proceedings of International Conference “ICSEM’13”

814

THE PROBLEM OF
TION BY THE
E

specific problem addressed is that of
(more precisely: identical

machines and allocating
these modules, such that a

maximized under constraints. As
 the minimum utility

which we define as the
module instances. We

allocation problem as that
utility under CPU and

constraints. The solution to this
configuration matrix that controls

and request forwarder
 points in time, events

changes, addition and removal
In response to such an

problem is solved again,
 utility maximized. We
ve to the optimization

that the cost of change
current configuration to the new

configuration must be minimized.

as a system with a set
machines N that run the

 composed of a set of
e consider a system that

one instance of a module m,
machine, in which case its

among its instances. The
instance of m run- ning on

n,m (t) = αn,m (t)ωm

αn,m (t) ≥ 0.

matrix A with elements

is a non-negative matrix

the cloud has a

memory capacity Γn .
to denote the vectors of CPU

 allthe machines in the
module m running on

n,m (t) CPU resource and
 from n. Machine n
CPU capacity ω̂n,m (t)

from ωn,m (t)) and the
 define the utility un,m

instance of module m on

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

A.Ramachandran, V.Vimala Dheeksh
815

machine n as the ratio of the allocated CPU
capacity to the demand of the instance on that
particular machine. Wefurther define the utility of
a module m as

 um (t) =minn�N { un,m (t)}

and that of a site as the minimum of utility of its
modules. Finally, the utility of the cloud

U c is the minimum of the utilities of the sites
it hosts. As a consequence, the utility of the cloud
becomes the minimum utility of any module
instance in the system.

B.THE OPTIMIZATION PROBLEM

For the above model, we consider a cloud
with CPU capacity Ω, memory capacity Γ, and
demand vectors ω, γ . We first discuss a
simplified version of the problem. It consists of
finding a configuration A that maximizes the

cloud utility U c.

Maximize U c(A,�) OP(1)

subject to A ≥ 0, 1T A = 1T (a)

Ω̂ (A, ω)1 Ω (b)

 Our concept of utility is max-min fairness and
our goal is to achieve fairness among sites. This
means that we want to maximize the minimum
utility of all sites, which we achieve by
maximizing the minimum utility of all module
instances.
Constraint (a) of OP(1) relates to dividing into
shares the CPU demand of each module into
the demand of its instances. The constraint
expresses that all shares are non-negative and
add up to 1 for each module.

maximize U c (A(t + 1), ω(t + 1))

minimize c�(A(t), A(t + 1))
subject to

 A(t + 1) ≥ 0, 1T A(t + 1) = 1T

Ω̂ (A(t + 1), ω(t + 1))1 Ω

sign(A(t + 1))γ Γ.
 (OP(2))

This optimization problem has prioritized objectives
in the sense that, among all configurations A that
maximize the cloud utility, we select one that
minimizes the cost function c. While this paper
considers only events in form of changes in
demand, OP(2) allows us to express (and solve)
the problem of finding a new allocation after other
events, including adding or removing sites or
machines.

IV. THE PROTOCOL FOR DISTRIBUTIVE
RESOURCE ALLOCATION

 In this section, we present a protocol P, which
is a heuristic algorithm for solving OP(2) and
which represents our proposed protocol for
resource allocation in a cloud environment. P is a
gossip protocol and has the structure of a round-
based distributed algorithm (whereby round-based
does not imply that the protocol is synchronous).
When exe- cutting a round-based gossip protocol,
each node selects a subset of other nodes to interact
with, whereby the selection function is often
probabilistic. Nodes interact via ‘small’ messages,
which are processed and trigger local state changes.
In this work, node interaction follows the so-called
push-pull paradigm, whereby two nodes exchange
state information, process this information and
update their local states during a round.

P runs on all machines of the cloud. It is
invoked at discrete points in time, in response to a
load change. The output of the protocol, the
configuration matrix A, is distributed across the
machines of the system. A controls the start and
stop of module instances and determines the
control policies for module schedulers and request
forwarders. The protocol executes in the resource
manager components of the middleware
architecture. A set of candidate machines to
interact with is maintained by the overlay
manager component of the machine manager. We
assume that the time it takes for P to compute a
new configuration A is small compared to the
time between events that trigger consecutive runs
of the protocols. At the time of initialization, P
reads as input a feasible configuration of the
system (see below). At later invocations, the
protocol reads as input the configuration matrix
produced during the previous run.

A. Functionalities the protocol P Uses

a) Random selection of machines: P relies
on the ability of a machine to select another
machine of the cloud uniformly at random. In this
work, we approximate this ability by using
CYCLON, an overlay protocol that produces a
time-varying network graph with properties of a
random network [3].

b) Resource allocation and module
scheduling policy.
c) Computing a feasible configuration: P

requires a feasible configuration as input during
its initialization phase. A simple greedy algorithm
can be used for this purpose, which we present in
[4] due to space limitation.

B. Protocol P’: An Optimal Solution to OP(1)
We developed the protocol P’, which is a
distributed solution to OP(1). P’ is a gossip
protocol that produces a sequence of configuration
matrices

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

A.Ramachandran, V.Vimala Dheeksh
816

 A(r), r = 1, 2, . . .,

such that the series of cloud utilities U c (A(r), ω)
con- verges exponentially fast to the optimal
utility. Due to space limitation, P’ is described and
its properties proved in [4]. We would encourage
the reader to look up this protocol, as it is quite
simple and enables a better understanding of P,
which can be seen as an extension of P’. During
each round of P’, two machines perform an
equalization step whereby CPU demand is moved
from one machine to another machine in such a
way that their relative demands are equalized.

C. Protocol P: A Heuristic Solution to OP(2)

OP(2) differs from OP(1) in that memory

constraints of individual machines are considered
and a secondary objective is added for the
purpose of minimizing the cost of adapting the
system from the current to a new configuration
that maximizes the utility for the new demand.
Introducing local memory constraints to the
optimization problem turns OP(1), which we
showed can be efficiently solved for many
practical cases [4], into an NP-hard problem [2].

P employs the same basic mechanism as P’ as
it attempts to equalize the relative demands of
pairs of machines during a protocol round. Due to
the local memory constraints, such a step does
not always succeed.

P uses the following approach to achieve its
objectives. First, pairs of machines that execute an
equalization step are often chosen in such a way
that they run instances of common modules. To
support this concept, we maintain on each
machine n the set Nn of machines in the cloud
that run module instances common with n. To
avoid the

possibility of the cloud being partitioned into
disjoint sets of interacting machines, n is
occasionally paired with a machine outside of
the set Nn to execute an equalization step.
This dual approach keeps low the need for
starting new module instances and thus keeps
the cost low. Second, during an equalization
step, P attempts to reduce the difference in
relative demand between two machines, in case it
cannot equalize the demand. Further, P attempts to
execute an equalization step in such a way that
the demand for a specific module is shifted to
one machine only. This concept aims at
increasing the probability that an equalization step
succeeds in equalizing the relative demands, thus
increasing the cloud utility.

The pseudo code of P is given in Algorithm 1.
To keep the presentation simple, we omit thread
synchronization primitives which prevent
concurrent machine to machine interactions. Note

that setting αn,m = 0 implies stopping module
m on machine n.

During the initialization of machine n, the
algorithm reads the CPU demand vector, the CPU
and memory capacity vectors, and the row of the
configuration matrix for n. (For an efficient
implementation, n must only read those vector
components that refer to itself and its module
instances.) Then, it starts two threads: an active
thread, in which the machine periodically executes
a round, and a passive thread that waits for
another machine to start an interaction.

Algorithm 1 Protocol P computes a heuristic
solution for OP(2) and returns a configuration
matrix A

Initialization
1: read ω, Ω, Γ, rown (A), Nn ;
2: start the passive and active
threads
active thread
3: for r = 1 to rmax do
4: if rand(0..1) < p then

5: choose n0 at random from Nn ;
6: else

7: choose n0 at random from N −
Nn ;

8: send(n0 , rown (A));
rown0 (A)

=receive(n0);

9: equalizeWith(n0 , rown0 (A));
10: sleep(roundDuration);
11: write rown (A);
passive thread
12: while true do

13: rown0 (A)=receive(n0);

send(n0 , rown
(A));

14: equalizeWith(n0 , rown0 (A));

proc equalizeWith(j, rowj (A))

1: l = arg max{ vn , vj } ; l0 = arg min{ vn , vj
} ;
2: if j � Nn then

3: moveDemand1(l, rowl (A), l0 , rowl0 (A));
4: else

5: moveDemand2(l, rowl (A), l0 , rowl0 (A));

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

A.Ramachandran, V.Vimala Dheeksh
817

γ

proc moveDemand1(l, rowl (A), l0 , rowl0 (A))
1: compute ∆ω such that

 1 P 1 P

Ωl (m ωl,m − ∆ω) = Ωl0 (m ωl0

,m + ∆ω)
2: let mod be an array of all
modules

that run on both l and l0 ,
sorted by increasing ωl,m

3: for i = 1 to |mod| do
4: m = mod[i]; δω = min(∆ω, ωl,m);

5: ∆ω − = δω; δα = αl,m δω ;

ωl,
m

αl0 ,m + = δα; αl,m
− = δα;

proc moveDemand2(l, rowl (A), l0 , rowl0 (A))
1: compute ∆ω such that

 1 (
P

ωl,m − ∆ω) = 1 (
P

ωl0 ,m
+ ∆ω)
Ωl m Ωl0 m

2: let mod be an array of all
modules

that run on l, sorted by
decreasing
ωl,m

γm ;
3: for i = 1 to |mod| do
4: m = mod[i]; δω = min(∆ω, ωl,m);

5: if γm +
P

i|α >0 γi ≤ Γl0

then
l0
,i

6: ∆ω − = δω; δα = αl,m δω ;

ωl,m
αl0 ,m + = δα; αl,m

− = δα;

The active thread executes rmax rounds.

In each round, n chooses a machine n0

uniformly at random from the set Nn with
probability p and from the set N − Nn with
probability 1 − p. Then n sends its state (i.e., rown

(A)) to n0 , receives n0’s state as a response, and
calls the procedure equalizeWith(), which
performs the equalization step. The passive thread
executes in a continuous loop. Whenever n receives

the state from another machine n0, it responds by

sending its own state to n0 and performing an
equalization step by invoking equalizeWith().

The procedure equalizeWith() attempts to
equal- ize the relative demands of machines

n and n0. It first identifies the machine l
with the larger (or equal) relative demand and

the machine l0 with the lower relative demand.

Then, if n0 belongs to Nn and thus runs at
least one common module instance, procedure
moveDemand1() is invoked. Otherwise
moveDemand2() is invoked.
moveDemand1() equalizes (or reduces the
differ- ence) of the relative demands of the two
machines, by shifting demand from the
machine l with the larger relative demand to

the machine l0 with the smaller relative
demand. It starts by computing the demand ∆ω

that needs to be shifted from l to l0 (step 1). Then,
from the set of modules that run on both
machines, taking an instance with the smallest
demand on l, it proceeds to shift the demand from

l to l0, until a total of ∆ω demand is shifted, or it
has exhausted the set of modules.
moveDemand2() equalizes (or reduces the
differ- ence) of the relative demands of the
two machines, by moving demand from the
machine with larger rel- ative demand to the
machine with smaller relative de- mand. Unlike
moveDemand1(), moveDemand2() starts one
or more module instances at the destination
machine, to move demand from the source
machine to the destination, if sufficient memory
at the destination machine is available. Finding a
set of instances at the source that equalize the
relative demands of the partic- ipating machines
while observing the available memory of the
destination is a Knapsack problem. A method
called greedy approximation is applied,
whereby the module m with the largest value of
ωl,m is moved first, followed m by the
second largest, etc., until the relative demands are
equalized or the set of candidate modules is
exhausted.

 V. PRICE AND TIME -SLOT NEGOT
IATIONS

 The PTN mechanism consists of the following:
1) an aggregated utility function; 2) negotiation
strategies; and 3) a negotiation protocol.

A. Utility Functions

A utility function U(x) represents an agent’s level
of satisfaction for a negotiation outcome x. Since

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

A.Ramachandran, V.Vimala Dheeksh
818

each Cloud participant has different preferences for
different prices and time slots, a price utility
function, a time-slot utility function, and an
aggregated utility function are used to model the
preference ordering of each proposal and each
negotiation outcome.

B. Negotiation Strategy

This work considers bilateral negotiations between
a consumer and a provider, where both agents are
sensitive to time and adopt a time-dependent
concession-making strategy for PTNs. Since both
agents negotiate on both price and time slot,
generating a counterproposal can be making either
a concession or a tradeoff between price and time
slot. Hence, an agent’s strategy for multi-issue
negotiation is implemented using both the
following: 1) a tradeoff algorithm and 2) a
concession making algorithm.

C. Negotiation Protocol

The negotiation protocol of the PTN mechanism
follows, Rubinstein’s alternating offers protocol in
which agents make counteroffers to their opponents
in alternate rounds. Both agents generate
counteroffers and evaluate their opponent’s offers
until either an agreement is made or one of the
agents’ deadline is reached. If a counterproposal is
accepted, both agents found a mutually acceptable
price and time slot. If one of the agents’ deadline
expires before the yreach an agreement, the
negotiation fails.

VI.RELATEDWORK

The problem of application placement in the
context of resource management for datacenters
has been studied before (e.g., [2], [7]), and
solutions are already available in middleware
products [8]. While these product solu- tions
allow for a fair resource allocation in a similar
way as our scheme does, they rely on centralized
archi- tectures, which do not at all scale to system
sizes we consider in this paper.

 Distributed load balancing algorithm have
been extensively studied for homogeneous as well
as hetero- geneous systems, for both divisible and
indivisible demands. These algorithms typically fall
into two classes: diffusion algorithms (e.g., [11])
and dimension exchange algorithms (e.g., [12]).
Convergence results for different network
topologies and different norms (that measure the
distance between the system state and the optimal
state) have been reported, and it seems to us that
the problem is well understood today. The key
difference to the problem addressed in this paper is
that these algorithms do not take into account
memory constraints. Considering memory
constraints makes the problem NP- hard and does
require a new approach.

 VII CONCLUSION

With this paper, we make a significant
contribution towards engineering a resource
management middleware for a site-hosting cloud
environment. We identify a key component of
such a middleware and present a protocol that
can be used to meet our design goals for
resource management: fairness of resource
allocation with respect to sites, efficient adaptation
to load changes and scalability of the middleware
layer in terms of both the number of machines
in the cloud as well as the number of hosted
sites.

We presented a gossip protocol, that

Computes the heuristic solution to the resource
allocation problem and evaluated its performance.
In all the scenarios we investigated, we observe
that the protocol qualitatively behaves as expected
based on its design. Regarding fairness, the
gossip protocol performs close to an ideal system
for scenarios where the ratio of the total memory
capacity to the total memory demand is large. The
simulations suggest that the protocol is scalable
in the sense that all inves- tigated metrics do
not change when the system size (i.e., the
number of machines) increases proportional to
the external load (i.e., the number of sites).
Note that if we would solve the resource allocation
problem expressed in OP(2) by P in a centralized
system, then the CPU and memory demand for that
resource allocation system would increase linearly

Consumer Agent K

Negotiation Session

Provider Agent K

Consumer Agent K

Cloud Middleware Negotiation Session

Provider Agent K

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

A.Ramachandran, V.Vimala Dheeksh
819

with the system size. Another novelty of this work
is formulating a novel time-slot utility function that
characterizes preferences for different time slots.
These ideas are implemented in an agent based
Cloud testbed. This strongly suggests to us that a
centralized solution for the problem we address in
this paper will not be feasible.

The results reported in this paper are
Building blocks towards engineering a resource
management solution for large-scale clouds.
Pursuing this goal, we plan to address the
following issues in future work: (1) Develop a
distributed mechanism that efficiently places new
sites. (2) Extend the middleware design to
become robust to machine failures. (3) Extend
the middleware design to span several clusters
and several datacenters, while keeping module
instances of the same site “close to each
other”, in order to minimize response times and
communication overhead.

REFRENCES

[1] Adam and R. Stadler, ‘Service middleware for
self-managing large scale systems,’ IEEE Trans.
Network and Service Management, vol. 4, no. 3,
pp. 50–64, Apr. 2008.

[2] C. Tang, M. Steinder, M. Spreitzer, and G.
Pacifici, ‘A scalable application placement
controller for enterprise data centers,’ in 2007.
International Conference on World Wide Web.

[3]D. Carrera, M. Steinder, I. Whalley, J. Torres,
and E. Ayguade, ‘Utility based placement of
dynamic web applications with fairness goals,” in
2008 IEEE Network Operations and Management
Symposium.

[4]E. Loureiro, P. Nixon, and S. Dobson,
‘Decentralized utility maximization for adaptive
management of shared resource pools,’ in 2009
International Conference on Intelligent Networking
and Collaborative Systems.

[5]F. Wuhib, M. Dam, R. Stadler, and A. Clem,
‘Robust monitoring of network-wide aggregates
through gossiping,’ IEEE Trans. Network and
Service Management, vol. 6, no. 2, pp. 95–109,
June 2009.

[6]F. Wuhib, M. Dam, and R. Stadler, ‘A gossiping
protocol for detecting global threshold crossings,’
IEEE Trans. Network and Service Management,
vol. 7, no. 1, pp. 42–57, Mar. 2010.

[7]Fetahi Wuhib, Rolf Stadler, and Mike Spreitzer,
‘A Gossip Protocol for Dynamic Resource
Management in Large Cloud Environments,’ IEEE

transactions on network and service management,
vol. 9, no. 2, June 2012

[8]M. Jelasity, A. Montresor, and O. Babaoglu,
‘Gossip-based aggregation in large dynamic
networks,’ ACM Trans. Computer Syst., vol. 23,
no. 3, pp. 219–252, 2005.

[9] Mark Jelasity, Ozalp Babaoglu, ‘T-Man: Fast
Gossip-based Construction of Large Scale Overlay
Topologies,’ Technical Report UBLCS-2004-7

[10] R. L. Graham, ‘Bounds on multiprocessing
timing anomalies,’ SIAM J. Applied Mathematics,
vol. 17, no. 2, pp. pp. 416–429, 1969.

[11] S. Voulgaris, D. Gavidia, and M. van Steen,
‘CYCLON: inexpensivemembership management
for unstructured p2p overlays,’ J. Network and
Systems Management, vol. 13, no. 2, pp. 197–217,
2005.

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

