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Abstract— The components of the middleware
layer run on every processing node of the cloud
environment in a decentralized design. To
achieve scalability, it envisions that all key task
of the middleware layer, including estimating
global states, placing site modules and
computing policies for request forwarding are
based on distributed algorithms. Further, it
relies on a global directory for routing requests
from users on the Internet to access points to
particular sites inside the cloud. A gossip
protocol P*, executes in a middleware platform
and meets the design goals. It provides an
optimal solution for a simplified version of the
resource allocation problem and an efficient
heuristic for the hard problem. The protocol
proposed continuously executes, while it's input
and consequently its output dynamically
changes. Hence to reduce the demand, a time
and cost based slot mechanism have been
implemented to convert the application into a
business oriented application for cloud
providers which will be efficient for cloud
providers and consumers to minimize the cost of
accessing the cloud applications. It will reduce
the waiting time of the consumer for accessing
the resource in cloud at traffic less environment
with efficient cost.

Key Terms— Middleware platform, Heuristic
solution, Resource allocation, gossip protocol.

I.INTRODUCTION

Cloud computing is a popular trend in
current computing which attempts to provide
cheap and easy access to make the computational
resources. Compared to previous paradigms, cloud
computing focuses on treating computational
resources as measurable and billable utilitiesmFro
the clients point of view, cloud computing provides
an abstraction of the underlying hardware
architecture. This abstraction saves them the costs
of design, setup and maintenance of a data cemter t
host their Application Environments (AE).
Whereas for cloud providers, the arrangement
yields an opportunity to profit by hosting many
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AEs. This economy of scale provides benefits to
both parties, but leaves the providers in a pasitio
where they must have an efficient and cost
effective data center. This approach centers around
a decentralized design whereby the components of
the middleware layer run on every processing node
of the cloud environment. To achieve scalability, i

is envisioned that all key tasks of the middleware
layer, including estimating global states, placing
site modules and computing policies for request
forwarding are based on distributed algorithms.

The core contribution is a gossip protocol
P* which executes in a middleware platform and
meets the design goals outlined above. The
protocol has two innovative characteristics. First,
while gossip protocols for load balancing in
distributed systems have been studied before, has
no results are available for cases that consider
memory constraints and the cost of reconfiguration,
which makes the resource allocation problem hard
to solve (memory constraints alone make it NP-
hard). An optimal solution is provided for a
simplified version of the resource allocation
problem and an efficient heuristic for the hard
problems. Second, the protocol proposed is
continuously executes, while its input and
consequently its output dynamically changes. Most
gossip protocols that have been proposed to date
are used in a different way. They assume static
input and produce a single output value.

The benefit of a single, continuous
execution vs. a sequence of executions with restart
is that in which global synchronization can be
avoided and that the system can continuously adapt
to changes in local input. On the other hand, its
drawback is that the behavior of a protocol with
dynamic input is more difficult to analyze. Also,
the cost of the system to react to a high rate of
change in local output can potentially be higher
than implementing a set of changes after each
synchronized run. Based on the work thus far, it is
believed that, for a gossip protocol running in
large-scale dynamic environments, the advantages
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of continuous execution with dynamic inf
outweigh its potential drawbacks.

I.SYSTEM MODEL
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Fig 1.SYSTEM DESIGI

A cloud environment spans\&zal datacenters
interconnected by arinternet. Eac of these
datacenters contains a largambe of machines
that are connected by a higheed network.
Users access sites hostetty the cloud
environment through the publlaternet A site is
typically accessed through a URhat is translated
to a network address throughgéobal directory
service, such as DNS. A requésta site is routed
through the Internet to amachine inside a
datacenter that eitheprocesses tl request or
forwards it. In this paper, westrict ourseves to a
cloud that spans datacenter containing a sin
cluster of machines and leaYer further work
the extension of our contrbution to an
environment including multipldatacenters

Each sitemanager handl user requests to
a particular site. It has twimportant component
a demand profiler and requestrwarder. The
demand profiler estimates thesource demai of
each module of the site basesh the request
statistics, QoS targets, etdhis estimate is
forwarded to all machine manage that run
instances of moduledbelonging to this site.
Similarly, the request forwder sends user
requests for processing fostance of modules
belonging to this site. Reques forwarding
decisions take into accoutite resource allocati
policy and constraints such a®ssion affinity.
Figure shows the component$ a site manager
and how they relate tanachine managers. The
remainder of this paperfocuse on the
functionality of the resourcenanage component.

1. FORMALIZING THE PROBLEMOF
RESOURCEALLOCATION BY THE
CLOUD MIDDLEWARE

The specific problem address is that of
placing modules (more precisely: identical
instances of modules) anachines ar allocating
cloud resources tdhese module such that a
cloud utility is maximized under constraints.
cloud utility we choosethe minimum utility
generated by any sitayhich we define as the
minimum utility of its module instances. We
formulate the resourcallocatior problem as that
of maximizing the cloudutility under CPU and
memory constraints. Tk solution to this
problem is aconfiguratior matrix that controls
the module scheduleand reque forwarder
components. At discretpoints in time, events
occur, such as loachanges, addition a removal
of site or machines, etdn response to such an
event, the opti- mizatioproblem i: solved again,
in order to keep the cloudtility maximized. We
add a secondary objeati to the optimization
problem, which stateshai the costof change
from the current configuratic to the new
configuration must be minimize

A.THE MODEL

We model the clouds a system with a set
of sitesS and a set ahachine N that run the
sites. Each sites [ S is composed of a set of
modules denoted b s.We consider a system that

may run more thawne instanc of a module m,
each on a differentmachine, in whic case its
CPU demand is divideédimonc its instances. The
demandon,m(t) of aninstance o m run- ning on
machine n is given byn,m (t) = an,m ()om
(t), where

nN en,m(®) =1 andoan,m (t) > 0.

It is called thatthe matrix A with elements
an,m (t) the configuration
(matrix) of the system. As a non-negative matrix

with 1T A =1T

A machine n7 N in the cloud has a
CPU capacityQn and amemon capacityI'n .
We useQ andI' to denot the vectors of CPU
and memory capacities aflithe machines in the
system. An instance ofnodule m running on
machine n demandsn,m (t) CPU resource and

vym  memory resourcefrom n. Machine n
allocates to module m th@PL capacitydn,m(t)
(which may be differenfrom on,m(t)) and the
memory capacityym . We define the utilityun,m
(t) generated by arinstance o module m on
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machine n as the ratio of the allocated CPU
capacity to the demand of the instance on that
particular machinéVefurther define the utility of

a module m as

um (t) =minnoN {un, m(t)}

and that of a site as the minimum wtflity of its
modules. Finally, the utility of the cloud

UC is the minimum of the utilities of the sites
it hosts. As a consequence, the utility of the dlou
becomes the minimum utility of any module
instance in the system.

B.THE OPTIMIZATION PROBLEM

For the above model, we consider a cloud
with CPU capacity2, memory capacity’, and
demand vectorswo, vy . We first discuss a
simplified version of the problem. It consists of
finding a configuration A that maximizes the

cloud utility UC-

Maximize UC(A,J) OP(1)
subjectto A=0, 1T a=1T (a)
QA )l Q (b)

Our concept of utility is max-min fairness and
our goal is to achieve fairness among sites. This
means that we want to maximize the minimum
utility of all sites, which we achieve by
maximizing the minimum utility of all module
instances.

Constraint (a) of OP(1) relates to dividing into
shares the CPU demand of each module into
the demand of its instances. The constraint
expresses that all shares are non-negative and
add up to 1 for each module.

maximize UC(A(t+ 1), o(t+ 1))
minimize c (A, At + 1))
subject to

At+1)>0, 1V A(t+1)=1T
QA+ 1), o(t+1)1 Q

sign(A(t+ 1)y T.
(OP(2))

This optimization problem has prioritized objective

in the sense that, among all configurations A that
maximize the cloud utility, we select one that
minimizes the cost function c. While this paper
considers only events in form of changes in
demand, OP(2) allows us to express (and solve)
the problem of finding a new allocation after other
events, including adding or removing sites or
machines.

IV. THE PROTOCOL FOR DISTRIBUTIVE
RESOURCE ALLOCATION

In this section, we present a protocol Pictvh
is a heuristic algorithm for solving OP(2) and
which represents our proposed protocol for
resource allocation in a cloud environment. P is a
gossip protocol and has the structure of a round-
based distributed algorithm (whereby round-based
does not imply that the protocol is synchronous).
When exe- cutting a round-based gossip protocol,
each node selects a subset of other nodes todhtera
with, whereby the selection function is often
probabilistic. Nodes interact via ‘small’ messages,
which are processed and trigger local state changes
In this work, node interaction follows the so-célle
push-pull paradigm, whereby two nodes exchange
state information, process this information and
update their local states during a round.

P runs on all machines of the cloud. It is
invoked at discrete points in time, in responsa to
load change. The output of the protocol, the
configuration matrix A, is distributed across the
machines of the system. A controls the start and
stop of module instances and determines the
control policies for module schedulers and request
forwarders. The protocol executes in the resource
manager components of the middleware
architecture. A set of candidate machines to
interact with is maintained by the overlay
manager component of the machine manager. We
assume that the time it takes for P to compute a
new configuration A is small compared to the
time between events that trigger consecutive runs
of the protocols. At the time of initialization, P
reads as input a feasible configuration of the
system (see below). At later invocations, the
protocol reads as input the configuration matrix
produced during the previous run.

A. Functionalities the protocol P Uses

a) Random selection of machines: P relies
on the ability of a machine to select another
machine of the cloud uniformly at random. In this
work, we approximate this ability by using
CYCLON, an overlay protocol that produces a
time-varying network graph with properties of a
random network [3].

b) Resource

scheduling policy.

c) Computing a feasible configuration: P
requires a feasible configuration as input during
its initialization phase. A simple greedy algorithm
can be used for this purpose, which we present in
[4] due to space limitation.

allocation and module

B. Protocol P’: An Optimal Solution t®P(1)

We developed the protocol P’, which is a
distributed solution to OP(1). P’ is a gossip
protocol that produces a sequence of configuration
matrices
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AN, r=1,2,..,

such that the series of cloud utilitie® (A(r), ®)
con- verges exponentially fast to the optimal
utility. Due to space limitation, P’ is describadd

its properties proved in [4]. We would encourage
the reader to look up this protocol, as it is quite
simple and enables a better understanding of P,
which can be seen as an extension of P’. During
each round of P’, two machines perform an
equalization step whereby CPU demand is moved
from one machine to another machine in such a
way that their relative demands are equalized.

C. Protocol P: A Heuristic Solution 0P (2)

OP(2) differs from OP(1) in that memory
constraints of individual machines are considered
and a secondary objective is added for the
purpose of minimizing the cost of adapting the
system from the current to a new configuration
that maximizes the utility for the new demand
Introducing local memory constraints to the
optimization problem turns OP(1), which we
showed can be efficiently solved for many
practical cases [4], into an NP-hard problem [2].

P employs the same basic mechanism as P’ as
it attempts to equalize the relative demands of
pairs of machines during a protocol round. Due to
the local memory constraints, such a step does
not always succeed.

P uses the following approach to achieve its
objectives. First, pairs of machines that execute a
equalization step are often chosen in such a way
that they run instances of common modules. To
support this concept, we maintain on each
machine n the sdipy of machines in the cloud
that run module instances common with n. To
avoid the

possibility of the cloud being partitioned into
disjoint sets of interacting machines, n is
occasionally paired with a machine outside of
the setNp to execute an equalization step.
This dual approach keeps low the need for
starting new module instances and thus keeps
the cost low. Second, during an equalization
step, P attempts to reduce the difference in
relative demand between two machines, in case it
cannot equalize the demand. Further, P attempts to
execute an equalization step in such a way tha
the demand for a specific module is shifted to
one machine only. This concept aims at
increasing the probability that an equalizatiorpste
succeeds in equalizing the relative demands, thus
increasing the cloud utility.

The pseudo code of P is given in Algorithm 1.
To keep the presentation simple, we omit thread
synchronization  primitives  which  prevent
concurrent machine to machine interactions. Note

that settingon,m = 0 implies stopping module
m on machinen.

During the initialization of machine n, the
algorithm reads the CPU demand vector, the CPU
and memory capacity vectors, and the row of the
configuration matrix for n. (For an efficient
implementation, n must only read those vector
components that refer to itself and its module
instances.) Then, it starts two threads: an activ
thread, in which the machine periodically executes
a round, and a passive thread that waits for
another machine to start an interaction.

Algorithm 1 Protocol P computes a heuristic
solution for OP(2) and returns a configuration
matrix A

Initialization

1: reado, Q,T, rown(A), Nn ;

2: start the passive andctive
threads

active thread

3: for r=1 to rMmax do

4: if rand(0..1) <p then

5: (:hoosm0 at random from M ;
6: else

7: (:hoosm0 at random fromN -
Nn;

8: seno[no, rown (A));

rown0 (A)
:receiveoo);
9: equalizeWith’, rown0 (A));
10: sleep(roundDuration);
11: write rown(A);

passive thread
12: while true do

13: rownO(A)=receive(10);
sendoo,rown
(A);
14: equalizeWith’, rown0 (A)):

proc equalizeWith(j,rowj (A))

1: | =argmaxvn,Vj}; 10 =argmin{vn, vj
}s
2:if jONn then

3: moveDemandl(kowl (A), IO, row|0 (A));
4. else

5: moveDemand2(kowl (A), IO, row]0 (A));

A.Ramachandran, V.Vimala Dheeksh

816

International Journal Of Engineering Research and Technology(1JERT), ICSEM-2013 Conference Proceedings



Proceedings of International Conference “ICSEM’13”

proc moveDemandl1(kowl (A), 19, row|0 (A))
1: compute\e suchthat

1 P 1 P
0 ( molbm-A0)= 0,0 ( m 0
,m +A0)) v

2: let mod be an array of all
modules

that runon both | and IO,
sortedby increasingol,m
3: for i=1 to |mod do
4: m=modi]; 0 =min(Aw,ol,m);
dw

5: Ao -=d%v; da =al,m——;
ol,
m
aldm  +=3da; al,m
-=J%a;

proc moveDemand2(kowl (A), IO, row|0 (A))
1: compute\e suchthat

P P
1 am-ae)= L (7 00,m
+ Ao)

Q m Q0 m

2: let mod be an array of all
modules
that runon |, sortedby
decreasing
ol,m
ym
3: for i=1 to |mod do
4: m=modi]; 0 = min(An,ol,m);

. P

5: if ym + iJou =ovi <TI0

then
10
S

6: A® —=00; 80L=0c|,m6i;

ol,m
ald m +=3da; al,m

—-=%a;

rounds.

machine’

The active thread executelsmax

In eachround, n chooses a
uniformly at random from the selNp  with

probability p and from the set N Np  with
probability 1 —p. Then n sends its state (ir@wn

(A) to n! , receivesn’s state as a response, and
calls the procedureequalizeWith() which

performs the equalization step. The passive thread of satisfaction

the state from another machim@, it responds by

sending its own state tol and performing an
equalization step by invokingqualizeWith()

The procedureequalizeWith()attempts to
equal- ize the relative demands of madahine

n and nl. It first identifies the machine |
with the larger (or equal) relative demand an

the machine® with the lower relative demand.

Then, if n! belongs to N and thus runs at
least one common module instance, procedure
moveDemandl1() is invoked. Otherwise
moveDemand2() is invoked.
moveDemand1() equalizes (or reduces the
differ- ence) of the relative demands of the two
machines, by shiftng demand from the
machine | with the larger relative demand to

the machine 19 with the smaller relative
demand. It starts by computing the demakd

that needs to be shifted from Ilfb(step 1). Then,

from the set of modules that run on both
machines, taking an instance with the smallest
demand on |, it proceeds to shift the demand from

| to IO, until a total ofAw demand is shifted, or it
has exhausted the set of modules.
moveDemand2() equalizes (or reduces the
differ- ence) of the relative demands of the
two machines, by moving demand from the
machine with larger rel- ative demand to the
machine with smaller relative de- mand. Unlike
moveDemandl1(), moveDemand2arts one

or more module instances at the destination
machine, to move demand from the source
machine to the destination, if sufficient memory
at the destination machine is available. Finding a
set of instances at the source that equalize the
relative demands of the partic- ipating machines
while observing the available memory of the
destination is a Knapsack problem. A method
called greedy approximation is applied,
whereby the modulen with the largest value of

ol,M s moved first, followedm by the

second largest, etc., until the relative demands ar
equalized or the set of candidate modules is
exhausted.

V.PRICEAND TIME-SLOT NEGOT
IATIONS

ThePTN mechanism consists of the following:
1) an aggregated utility function; 2) negotiation
strategies; and 3) a negotiation protocol.

A. Utility Functions

A utility function U(X) represents an agent’s level
for a negotiation outcomeSince

executes in a continuous loop. Whenever n receives
A.Ramachandran, V.Vimala Dheeksh
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each Cloud participant has different preferences fo
different prices and time slots, a price utility
function, a time-slot utility function, and an
aggregated utility function are used to model the
preference ordering of each proposal and each
negotiation outcome.

B. Negotiation Strategy

This work considers bilateral negotiations between
a consumer and a provider, where both agents are
sensitive to time and adopt a time-dependent
concession-making strategy f®TNs Since both
agents negotiate on both price and time slot,
generating a counterproposal can be making either
a concession or a tradeoff between price and time
slot. Hence, an agent’'s strategy for multi-issue
negotiation is implemented using both the
following: 1) a tradeoff algorithm and 2) a
concession making algorithm.

C. Negotiation Protocol

Vs

A

-

Consumer Agent K]

Negotiation Session]

(.

Provider Agent K ]

The negotiation protocol of the PTN mechanism
follows, Rubinstein’s alternating offers protocal i
which agents make counteroffers to their opponents
in alternate rounds. Both agents generate
counteroffers and evaluate their opponent’s offers
until either an agreement is made or one of the
agents’ deadline is reached. If a counterpropasal i
accepted, both agents found a mutually acceptable
price and time slot. If one of the agents’ deadline
expires before the yreach an agreement, the
negotiation fails.

4 7\
Consumer Agent K

- J

N
Negotiation Session

J

[ Cloud Middleware

( N\

Provider Agent K

/TN

VI.RELATEDWORK

The problem of application placement in the
context of resource management for datacenters
has been studied before (e.g., [2], [7]), and
solutions are already available in middleware
products [8]. While these product solu- tions
allow for a fair resource allocation in a similar
way as our scheme does, they rely on centralized
archi- tectures, which do not at all scale to syste
sizes we consider in this paper.

Distributed load balancing algorithm have
been extensively studied for homogeneous as well
as hetero- geneous systems, for both divisible and
indivisible demands. These algorithms typically fal
into two classes: diffusion algorithms (e.g., [11])
and dimensionexchange algorithms (e.g., [12]).
Convergence results for different network
topologies and different norms (that measure the
distance between the system state and the optimal
state) have been reported, and it seems to us that
the problem is well understood today. The key
difference to the problem addressed in this paper i
that these algorithms do not take into account
memory  constraints.  Considering  memory
constraints makes the problem NP- hard and does
require a new approach.

VIl CONCLUSION

With this paper, we make a significant
contribution towards engineering a resource
management middleware for a site-hosting cloud
environment. We identify a key component of

such a middleware and present a protocol that
can be used to meet our design goals for
resource management: fairness of resource

allocation with respect to sites, efficient adaiptat

to load changes and scalability of the middleware
layer in terms of both the number of machines
in the cloud as well as the number of hosted
sites.

We presented a gossip protocol, that
Computes the heuristic solution to the resource
allocation problem and evaluated its performance.
In all the scenarios we investigated, we observe
that the protocol qualitatively behaves as expected
based on its design. Regarding fairness, the
gossip protocol performs close to an ideal system
for scenarios where the ratio of the total memory
capacity to the total memory demand is large. The
simulations suggest that the protocol is scalabl
in the sense that all inves- tigated metris
not change when the system size (i.e., the
number of machines) increases proportional to
the external load (i.e., the number of sites)
Note that if we would solve the resource allocation
problem expressed in OP(2) by P in a centralized
system, then the CPU and memory demand for that
resource allocation system would increase linearly
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with the system size. Another novelty of this work
is formulating a novel time-slot utility functiomat
characterizes preferences for different time slots.
These ideas are implemented in an agent based
Cloud testbed. This strongly suggests to us that a
centralized solution for the problem we address in
this paper will not be feasible.

The results reported in this paper are
Building blocks towards engineering a resource
management  solution for large-scale clouds.
Pursuing this goal, we plan to address the
following issues in future work: (1) Develop a
distributed mechanism that efficiently places new
sites. (2) Extend the middleware design to
become robust to machine failures. (3) Extend
the middleware design to span several clusters
and several datacenters, while keeping module
instances of the same site “close to each
other”, in order to minimize response times and
communication overhead.
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