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Abstract— The components of the middleware 
layer run on every processing node of the cloud 
environment in a decentralized design. To 
achieve scalability, it envisions that all key tasks 
of the middleware layer, including estimating 
global states, placing site modules and 
computing policies for request forwarding are 
based on distributed algorithms. Further, it 
relies on a global directory for routing requests 
from users on the Internet to access points to 
particular sites inside the cloud. A gossip 
protocol P*, executes in a middleware platform 
and meets the design goals. It provides an 
optimal solution for a simplified version of the 
resource allocation problem and an efficient 
heuristic for the hard problem. The protocol 
proposed continuously executes, while it’s input 
and consequently its output dynamically 
changes. Hence to reduce the demand, a time 
and cost based slot mechanism have been 
implemented to convert the application into a 
business oriented application for cloud 
providers which will be efficient for cloud 
providers and consumers to minimize the cost of 
accessing the cloud applications. It will reduce 
the waiting time of the consumer for accessing 
the resource in cloud at traffic less environment 
with efficient cost.  

Key Terms— Middleware platform, Heuristic 
solution, Resource allocation, gossip protocol. 

I.INTRODUCTION 
 

Cloud computing is a popular trend in 
current computing which attempts to provide  
cheap  and  easy  access  to make the computational 
resources. Compared to previous paradigms, cloud 
computing focuses on treating computational 
resources as measurable and billable utilities. From 
the clients point of view, cloud computing provides 
an abstraction of the underlying hardware 
architecture. This abstraction saves them the costs 
of design, setup and maintenance of a data center to 
host their Application Environments (AE). 
Whereas for cloud providers, the arrangement 
yields an opportunity to profit by hosting many 

AEs. This economy of scale provides benefits to 
both parties, but leaves the providers in a position 
where they must have an efficient and cost 
effective data center. This approach centers around 
a decentralized design whereby the components of 
the middleware layer run on every processing node 
of the cloud environment. To achieve scalability, it 
is envisioned that all key tasks of the middleware 
layer, including estimating global states, placing 
site modules and computing policies for request 
forwarding are based on distributed algorithms. 

 

The core contribution is a gossip protocol 
P*, which executes in a middleware platform and 
meets the design goals outlined above. The 
protocol has two innovative characteristics. First, 
while gossip protocols for load balancing in 
distributed systems have been studied before, has 
no results are available for cases that consider 
memory constraints and the cost of reconfiguration, 
which makes the resource allocation problem hard 
to solve (memory constraints alone make it NP-
hard). An optimal solution is provided for a 
simplified version of the resource allocation 
problem and an efficient heuristic for the hard 
problems. Second, the protocol proposed is 
continuously executes, while its input and 
consequently its output dynamically changes. Most 
gossip protocols that have been proposed to date 
are used in a different way. They assume static 
input and produce a single output value.  

The benefit of a single, continuous 
execution vs. a sequence of executions with restarts 
is that in which global synchronization can be 
avoided and that the system can continuously adapt 
to changes in local input. On the other hand, its 
drawback is that the behavior of a protocol with 
dynamic input is more difficult to analyze. Also, 
the cost of the system to react to a high rate of 
change in local output can potentially be higher 
than implementing a set of changes after each 
synchronized run. Based on the work thus far, it is 
believed that, for a gossip protocol running in 
large-scale dynamic environments, the advantages 
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of continuous execution with dynamic input 
outweigh its potential drawbacks. 

II.SYSTEM MODEL

 

 

Fig 1.SYSTEM DESIGN

 

A cloud environment spans sev
interconnected by an internet. Each
datacenters contains a large number
that are connected by a high-
Users access sites hosted 
environment through the public Internet.
typically accessed through a URL 
to a network address through a 
service, such as DNS. A request to
through the Internet to a machine
datacenter that either processes the
forwards it. In this paper, we restrict oursel
cloud that spans a datacenter containing a single
cluster of machines and leave for
the extension of our contri
environment including multiple datacenters. 

Each site manager handles
a particular site. It has two important components:
a demand profiler and request 
demand profiler estimates the resource demand
each module of the site based 
statistics, QoS targets, etc This
forwarded to all machine managers
instances of modules belonging
Similarly, the request forwarder
requests for processing to instances
belonging to this site. Request
decisions take into account the resource allocation
policy and constraints such as 
Figure shows the components of 
and how they relate to machine
remainder of this paper focuses
functionality of the resource manager
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-speed network. 
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Internet. A site is 
 that is translated 
 global directory 
to a site is routed 

machine inside a 
processes the request or 

restrict ourselves to a 
datacenter containing a single 

for further work 
contribution to an 

datacenters.  

manager handles user requests to 
important components: 

 forwarder. The 
resource demand of 

 on the request 
This estimate is 

machine managers that run 
belonging to this site. 

der sends user 
instances of modules 
Request forwarding 

the resource allocation 
 session affinity. 

of a site manager 
machine managers. The 

focuses on the 
manager component. 

III. FORMALIZING TH
RESOURCE ALLOCATIO
CLOUD MIDDLEWAR E

 
The specific problem addressed

placing modules (more
instances of modules) on machines and
cloud resources to these modules,
cloud utility is maximized under constraints.  As
cloud utility we choose 
generated by any site, which
minimum utility of its module
formulate the resource allocation
of maximizing the cloud utility
memory constraints. The
problem is a configuration
the module scheduler and request
components.  At discrete 
occur, such as load changes, addition and
of site or machines, etc. In
event, the opti- mization problem is
in order to keep the cloud 
add a secondary objectiv
problem, which states that
from  the  current  configuration
configuration must be minimized.

 
A.THE MODEL 

 

           We model the cloud as
of sitesS and a set of machines
sites. Each site s � S is 
modules denoted by Ms .We
may run more than one instance
each on a different machine, in  which
CPU demand is divided among
demand ωn,m (t) of an instance of
machine n is given by ωn,m
(t), where 
 

n�N  αn,m (t) = 1 and α

 
I t  i s  c a l l e d  t h a t the matrix
αn,m (t) the configuration 
(matrix) of the system. A is

with 1T A = 1T 

 
A machine n � N  in the

CPU capacity Ωn   and a memory
We use Ω  and Γ  to denote
and memory capacities of 
system. An instance of module
machine n demands ωn,m
γm  memory resource 
allocates to module m the CPU
(which may be different from
memory capacity γm . We 
(t) generated by an instance of
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THE PROBLEM OF 
TION BY THE 
E 

specific problem addressed is that of 
(more precisely: identical 

machines and allocating 
these modules, such that a 

maximized under constraints.  As 
 the minimum utility 

which we define as the 
module instances. We 

allocation problem as that 
utility under CPU and 

constraints. The solution to this 
configuration matrix that controls 

and request forwarder 
 points in time, events 

changes, addition and removal 
In response to such an 

problem is solved again, 
 utility maximized. We 
ve to the optimization 

that the cost of  change  
current  configuration to  the  new 

configuration must be minimized. 

as a system with a set 
machines N  that run the 

 composed of a set of 
e consider a system that 

one instance of a module m,  
machine, in  which case its 

among its instances. The 
instance of m run- ning on 

n,m (t) = αn,m (t)ωm 

αn,m (t) ≥ 0. 

matrix A with elements 
 

is a non-negative matrix 

 
the cloud has a  

memory capacity Γn . 
to denote the vectors of CPU 

 allthe machines in the 
module m running on 

n,m (t) CPU resource and 
 from n. Machine n 
CPU capacity ω̂n,m (t) 

from ωn,m (t)) and the 
 define the utility un,m 

instance of module m on 
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machine n as the ratio of the allocated CPU  
capacity to  the demand of  the instance on that 
particular machine. Wefurther define the utility of 
a module m  as 
 
 um (t) =minn�N { un,m (t)}  
 
and that of a site as the minimum of utility of its 
modules. Finally, the utility of the cloud 

U c   is the minimum of the utilities of the sites 
it hosts. As a consequence, the utility of the cloud 
becomes the minimum utility of any module 
instance in the system.  
 
B.THE OPTIMIZATION PROBLEM 
 

For  the  above  model,  we  consider  a  cloud  
with CPU capacity Ω, memory capacity Γ, and 
demand vectors ω, γ . We first discuss a 
simplified version of the problem. It consists of 
finding a configuration A that maximizes the 

cloud utility U c. 

Maximize  U c(A,�)                  OP(1) 

subject to   A ≥ 0,  1T A = 1T      (a) 

Ω̂ (A, ω)1    Ω         (b) 
  

    Our concept of utility is max-min fairness and 
our goal is to achieve fairness among sites. This 
means that we want to maximize the minimum 
utility of all sites, which we achieve by 
maximizing the minimum utility of all module 
instances. 
Constraint (a) of OP(1) relates to dividing into 
shares the CPU demand of each module into 
the demand of its  instances. The  constraint 
expresses  that  all  shares are  non-negative  and  
add  up  to  1  for  each  module. 

maximize    U c (A(t + 1), ω(t + 1)) 

minimize      c�(A(t), A(t + 1)) 
subject to   

  A(t + 1) ≥ 0,  1T A(t + 1) = 1T 

Ω̂ (A(t + 1), ω(t + 1))1    Ω 

sign(A(t + 1))γ   Γ. 
                                                         (OP(2)) 
 
 
This optimization problem has prioritized objectives 
in the sense that, among all configurations A that 
maximize the cloud utility, we select one that 
minimizes the cost function c. While this paper 
considers only events  in  form of changes  in 
demand, OP(2) allows us to express (and solve) 
the problem of finding a new allocation after other 
events, including adding or removing sites or 
machines.  

IV. THE PROTOCOL FOR DISTRIBUTIVE 
RESOURCE ALLOCATION 

       In this section, we present a protocol P, which 
is a heuristic algorithm for solving OP(2) and 
which represents our proposed protocol for 
resource allocation in a cloud environment. P is a 
gossip protocol and has the structure of a round- 
based distributed algorithm (whereby round-based 
does not imply that the protocol is synchronous). 
When exe- cutting  a round-based gossip protocol, 
each node selects a subset of other nodes to interact 
with, whereby the selection function is often 
probabilistic. Nodes interact via ‘small’ messages, 
which are processed and trigger local state changes. 
In this work, node interaction follows the so-called 
push-pull paradigm, whereby two nodes exchange 
state information, process this information and 
update their local states during a round. 

P runs on all machines of the cloud. It is 
invoked at discrete points in time, in response to a 
load change. The output of the protocol, the 
configuration matrix A, is distributed across the 
machines of the system. A controls the start and 
stop of module instances and determines the 
control policies for module schedulers and request 
forwarders. The protocol executes in the resource 
manager  components of  the  middleware 
architecture. A set of candidate machines to 
interact with is maintained by the overlay 
manager component of the machine manager. We 
assume that the time it takes for P to compute a 
new configuration A is small compared to the 
time between events that trigger consecutive runs 
of the protocols. At the time of initialization, P 
reads as input a feasible configuration of the 
system (see below). At later invocations, the 
protocol reads as input the configuration matrix 
produced during the previous run. 
 
A. Functionalities the protocol P Uses 

a)  Random selection of machines:  P relies 
on the ability of a machine to select another 
machine of the cloud uniformly at random. In this 
work, we approximate this ability by using 
CYCLON, an overlay protocol that produces a 
time-varying network graph with properties of a 
random network [3]. 

b) Resource allocation and module 
scheduling policy. 
c) Computing a feasible configuration:  P 

requires a feasible configuration as input during 
its initialization phase. A simple greedy algorithm 
can be used for this purpose, which we present in 
[4] due to space limitation. 
 
B. Protocol P’: An Optimal Solution to OP(1) 
We developed the protocol P’, which is a 
distributed solution to OP(1). P’ is a gossip 
protocol that produces a sequence of configuration 
matrices 
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 A(r), r = 1, 2, . . ., 
  

such that the series of cloud utilities U c (A(r), ω) 
con- verges  exponentially  fast  to  the  optimal  
utility.  Due to space limitation, P’ is described and 
its properties proved in [4]. We would encourage 
the reader to look up this protocol, as it is quite 
simple and enables a better understanding of P, 
which can be seen as an extension of P’. During 
each round of P’, two machines perform an 
equalization step whereby CPU demand is moved 
from one machine to another machine in such a 
way that their relative demands are equalized. 

  
C. Protocol P: A Heuristic Solution to OP(2) 

 
OP(2) differs from OP(1) in that memory 

constraints of individual machines are considered 
and a secondary objective is added for the 
purpose of minimizing the cost of adapting the 
system from the current to a new configuration 
that  maximizes  the  utility  for  the  new demand.  
Introducing local memory constraints to  the 
optimization problem turns OP(1), which we 
showed can be efficiently solved for many 
practical cases [4], into an NP-hard problem [2]. 

P employs the same basic mechanism as P’ as 
it attempts to equalize the relative demands of 
pairs of machines during a protocol round. Due to 
the local memory constraints, such a step does 
not always succeed. 

P uses the following approach to achieve its 
objectives. First, pairs of machines that execute an 
equalization step are often chosen in such a way 
that they run instances of common modules. To 
support this concept, we maintain on each 
machine n the set Nn  of machines in the cloud 
that run module instances common with n. To 
avoid the  

possibility of the cloud being partitioned into 
disjoint sets of interacting machines, n  is 
occasionally paired with  a  machine outside of  
the set Nn   to  execute  an equalization  step.  
This  dual  approach  keeps  low  the need for 
starting new module instances and thus keeps 
the  cost  low.  Second,  during  an  equalization 
step,  P attempts to reduce the difference in 
relative demand between two machines, in case it 
cannot equalize the demand. Further, P attempts to 
execute an equalization step  in  such  a  way  that  
the  demand  for  a  specific module is shifted to 
one machine only. This concept aims at 
increasing the probability that an equalization step 
succeeds in equalizing the relative demands, thus 
increasing the cloud utility. 

The pseudo code of P is given in Algorithm 1. 
To keep the presentation simple, we omit thread 
synchronization primitives which prevent 
concurrent machine to machine interactions. Note 

that setting αn,m = 0 implies stopping module 
m on machine n. 

During the initialization of machine n, the 
algorithm reads the CPU demand vector, the CPU 
and memory capacity vectors, and the row of the 
configuration matrix for  n.  (For  an  efficient 
implementation, n  must only read  those vector  
components that refer to  itself and its  module 
instances.) Then, it  starts two  threads: an active 
thread, in which the machine periodically executes 
a round, and a passive thread that waits for 
another machine to start an interaction. 

 

Algorithm  1 Protocol P computes a heuristic 
solution for OP(2) and returns a configuration 
matrix A 
 
 
 
Initialization  
1:  read ω, Ω, Γ, rown (A), Nn ; 
2: start  the  passive  and active  
threads 
active  thread 
3:  for r = 1  to  rmax     do 
4: if rand(0..1) < p  then 

5:  choose n0    at random from Nn ; 
6: else 

7:  choose n0    at random from  N − 
Nn ; 

8: send(n0 , rown (A)); 
rown0 (A) 

=receive(n0 ); 

9: equalizeWith(n0 , rown0 (A)); 
10: sleep(roundDuration); 
11:  write  rown (A); 
passive  thread 
12:  while true  do 

13: rown0 (A)=receive(n0 ); 

send(n0 , rown 
(A)); 

14: equalizeWith(n0 , rown0 (A)); 

proc equalizeWith(j, rowj (A)) 

1: l = arg max{ vn , vj  } ;  l0  = arg min{ vn , vj  
} ; 
2: if  j � Nn     then 
 

3: moveDemand1(l, rowl (A), l0 , rowl0 (A)); 
4: else 

5: moveDemand2(l, rowl (A), l0 , rowl0 (A)); 
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γ

proc   moveDemand1(l, rowl (A), l0 , rowl0 (A)) 
1:  compute ∆ω   such that 

 1     P   1       P 

Ωl  (     m ωl,m  − ∆ω) = Ωl0  (     m ωl0 

,m  + ∆ω) 
2: let mod  be an array of all  
modules 

that  run on   both l  and l0 , 
sorted  by increasing ωl,m 

3:  for i = 1  to |mod|  do 
4: m = mod[i];  δω = min(∆ω, ωl,m ); 

5: ∆ω  − = δω;  δα = αl,m  δω   ; 

ωl,
m 

αl0 ,m    + = δα;  αl,m    
− = δα; 

proc   moveDemand2(l, rowl (A), l0 , rowl0 (A)) 
1:  compute ∆ω   such that 

 1  (
P    

ωl,m  − ∆ω) =   1    (
P    

ωl0 ,m  
+ ∆ω) 
Ωl  m Ωl0 m 

2: let mod  be an array of all  
modules 

that  run on   l,  sorted by   
decreasing 
ωl,m 

γm    ; 
3:  for i = 1  to |mod|  do 
4: m = mod[i];  δω = min(∆ω, ωl,m ); 

5: if γm  + 
P

i|α >0 γi  ≤ Γl0     

then 
l0 
,i 

6: ∆ω  − = δω;  δα = αl,m  δω   ; 

ωl,m 
αl0 ,m    + = δα;  αl,m    

− = δα; 

 

The  active  thread  executes  rmax    rounds.  

In  each round,  n  chooses a  machine n0   

uniformly at  random from the set Nn   with 
probability p and from  the set N − Nn   with 
probability 1 − p. Then n sends its state (i.e., rown 

(A))  to n0  , receives n0’s  state as a response, and 
calls the procedure equalizeWith(), which 
performs the equalization step. The passive thread 
executes in a continuous loop. Whenever n receives 

the state from another machine n0,  it responds by 

sending its own state to n0  and performing an 
equalization step by invoking equalizeWith(). 

 
The procedure equalizeWith() attempts to 
equal- ize   the   relative   demands  of   machines  

n   and   n0. It  first  identifies  the  machine  l  
with  the  larger  (or equal)  relative  demand  and  

the  machine  l0    with  the lower  relative  demand.  

Then,  if  n0    belongs  to  Nn and thus runs at 
least one common module instance, procedure 
moveDemand1() is invoked. Otherwise 
moveDemand2() is invoked. 
moveDemand1() equalizes (or reduces the 
differ- ence) of the relative demands of the two 
machines, by shifting  demand  from  the  
machine  l  with  the  larger relative  demand  to  

the  machine  l0   with  the  smaller relative 
demand. It starts by computing the demand ∆ω 

that needs to be shifted from l to l0  (step 1). Then, 
from the set of modules that run on both 
machines, taking an instance with the smallest 
demand on l, it proceeds to shift the demand from 

l to l0, until a total of ∆ω demand is shifted, or it 
has exhausted the set of modules. 
moveDemand2() equalizes (or reduces the 
differ- ence)  of  the  relative  demands  of  the  
two  machines, by moving demand from the 
machine with larger rel- ative demand to the 
machine with smaller relative de- mand. Unlike 
moveDemand1(), moveDemand2() starts one 
or more module instances at the destination 
machine, to move demand from the source 
machine to the destination, if sufficient memory 
at the destination machine is available. Finding a 
set of instances at the source that equalize the 
relative demands of the partic- ipating machines 
while observing the available memory of the 
destination is a Knapsack problem. A method 
called  greedy approximation  is applied, 
whereby the module m with the largest value of 
ωl,m   is moved first, followed m by the 
second largest, etc., until the relative demands are 
equalized or the set of candidate modules is 
exhausted. 
 

             V.  PRICE AND TIME -SLOT NEGOT 
IATIONS  
 
      The PTN mechanism consists of the  following: 
1) an aggregated utility function; 2) negotiation 
strategies; and 3) a negotiation protocol.  
 

A. Utility Functions 
 

A utility function U(x) represents an agent’s level 
of satisfaction   for a negotiation outcome x. Since 
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each Cloud participant has different preferences for 
different prices and time slots, a price utility 
function, a time-slot utility function, and an 
aggregated utility function are used to model the 
preference ordering of each proposal and each 
negotiation outcome. 
 

B. Negotiation Strategy 
 

This work considers bilateral negotiations between 
a consumer and a provider, where both agents are 
sensitive to time and adopt a time-dependent 
concession-making strategy for PTNs. Since both 
agents negotiate on both price and time slot, 
generating a counterproposal can be making either 
a concession or a tradeoff between price and time 
slot. Hence, an agent’s strategy for multi-issue 
negotiation is implemented using both the 
following: 1) a tradeoff algorithm and 2) a 
concession making algorithm. 
 

C. Negotiation Protocol 
 
 
 
 
 
 
 
 
 
 
 
 

 
The negotiation protocol of the PTN mechanism 
follows, Rubinstein’s alternating offers protocol in 
which agents make counteroffers to their opponents 
in alternate rounds. Both agents generate 
counteroffers and evaluate their opponent’s offers 
until either an agreement is made or one of the 
agents’ deadline is reached. If a counterproposal is 
accepted, both agents found a mutually acceptable 
price and time slot. If one of the agents’ deadline 
expires before the yreach an agreement, the  
negotiation fails. 
 
 

 
 
 

 
 

 

               
 
 
 
 

VI.RELATEDWORK 
 

The problem of application placement in the 
context of resource management for datacenters 
has been studied before (e.g., [2], [7]), and 
solutions are already available in middleware 
products [8]. While these product solu- tions 
allow for a fair resource allocation in a similar 
way as our scheme does, they rely on centralized 
archi- tectures, which do not at all scale to system 
sizes we consider in this paper. 

         Distributed load balancing algorithm have 
been extensively studied for homogeneous as well 
as hetero- geneous systems, for both divisible and 
indivisible demands. These algorithms typically fall 
into two classes: diffusion algorithms (e.g., [11]) 
and dimension exchange algorithms (e.g., [12]). 
Convergence results for different network 
topologies and different norms (that measure the 
distance between the system state and the optimal 
state) have been reported, and it seems to us that 
the problem is well understood today. The key 
difference to the problem addressed in this paper is 
that these algorithms do not take into account 
memory constraints. Considering memory 
constraints makes the problem NP- hard and does 
require a new approach. 

 

           VII CONCLUSION 

With this paper, we make a significant 
contribution towards engineering a resource 
management middleware for  a  site-hosting  cloud  
environment.  We  identify  a key component of 
such a middleware and present a protocol  that  
can  be  used  to  meet  our  design  goals for 
resource management: fairness of resource 
allocation with respect to sites, efficient adaptation 
to load changes and scalability of the middleware 
layer in terms of both the  number of  machines 
in  the  cloud as  well as  the number of hosted 
sites. 

 
We presented  a  gossip  protocol,  that  

Computes the heuristic solution to the resource 
allocation problem and evaluated its performance. 
In all the scenarios we investigated, we observe 
that the protocol qualitatively behaves as expected 
based on its design. Regarding fairness, the 
gossip protocol performs close to an ideal system 
for scenarios where the ratio of the total memory 
capacity to the total memory demand is large. The 
simulations suggest that the  protocol  is  scalable  
in  the  sense  that  all  inves- tigated  metrics  do  
not  change  when  the  system  size (i.e.,  the  
number  of  machines) increases  proportional to  
the  external  load  (i.e.,  the  number of  sites).  
Note that if we would solve the resource allocation 
problem expressed in OP(2) by P in a centralized 
system, then the CPU and memory demand for that 
resource allocation system would increase linearly 

Consumer Agent K 

Negotiation Session 

Provider Agent K 

Consumer Agent K 

Cloud Middleware Negotiation Session 

Provider Agent K 

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings



Proceedings of International Conference  “ICSEM’13” 

 

A.Ramachandran, V.Vimala Dheeksh 
819 

 

with the system size. Another novelty of this work 
is formulating a novel time-slot utility function that 
characterizes preferences for different time slots. 
These ideas are implemented in an agent based 
Cloud testbed. This strongly suggests to us that a 
centralized solution for the problem we address in 
this paper will not be feasible. 

The results reported in this paper are  
Building blocks towards  engineering  a  resource  
management  solution for large-scale clouds. 
Pursuing this goal, we plan to address the 
following issues in future work: (1) Develop a 
distributed mechanism that efficiently places new 
sites. (2)  Extend  the  middleware  design  to  
become  robust to machine failures. (3) Extend 
the middleware design to span several clusters 
and several datacenters, while keeping  module  
instances of  the  same  site  “close  to each 
other”, in order to minimize response times and 
communication overhead. 
 

  

REFRENCES 

 
[1] Adam and R. Stadler, ‘Service middleware for 
self-managing large scale systems,’ IEEE Trans. 
Network and Service Management, vol. 4, no. 3, 
pp. 50–64, Apr. 2008. 
 
[2] C. Tang, M. Steinder, M. Spreitzer, and G. 
Pacifici, ‘A scalable application placement 
controller for enterprise data centers,’ in 2007. 
International Conference on World Wide Web. 
 
[3]D. Carrera, M. Steinder, I. Whalley, J. Torres, 
and E. Ayguade, ‘Utility based placement of 
dynamic web applications with fairness goals,” in 
2008 IEEE Network Operations and Management 
Symposium. 
 
[4]E. Loureiro, P. Nixon, and S. Dobson, 
‘Decentralized utility maximization for adaptive 
management of shared resource pools,’ in 2009 
International Conference on Intelligent Networking 
and Collaborative Systems. 
 
[5]F. Wuhib, M. Dam, R. Stadler, and A. Clem, 
‘Robust monitoring of network-wide aggregates 
through gossiping,’ IEEE Trans. Network and 
Service Management, vol. 6, no. 2, pp. 95–109, 
June 2009. 
 
[6]F. Wuhib, M. Dam, and R. Stadler, ‘A gossiping 
protocol for detecting global threshold crossings,’ 
IEEE Trans. Network and Service Management, 
vol. 7, no. 1, pp. 42–57, Mar. 2010. 

 
[7]Fetahi Wuhib, Rolf Stadler, and Mike Spreitzer, 
‘A Gossip Protocol for Dynamic Resource 
Management in Large Cloud Environments,’ IEEE 

transactions on network and service management, 
vol. 9, no. 2, June 2012 
 
 
[8]M. Jelasity, A. Montresor, and O. Babaoglu, 
‘Gossip-based aggregation in large dynamic 
networks,’ ACM Trans. Computer Syst., vol. 23, 
no. 3, pp. 219–252, 2005. 
 
[9] Mark Jelasity, Ozalp Babaoglu, ‘T-Man: Fast 
Gossip-based Construction of Large Scale Overlay 
Topologies,’ Technical Report UBLCS-2004-7  
 
[10] R. L. Graham, ‘Bounds on multiprocessing 
timing anomalies,’ SIAM J. Applied Mathematics, 
vol. 17, no. 2, pp. pp. 416–429, 1969. 
 
[11] S. Voulgaris, D. Gavidia, and M. van Steen, 
‘CYCLON: inexpensivemembership management 
for unstructured p2p overlays,’ J. Network and 
Systems Management, vol. 13, no. 2, pp. 197–217, 
2005. 
 
 
 
 

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings


