
National Conference on Advances in Assistive and Main Stream Technologies for Persons with Special

Needs

 112

Hardware Implementation of Double precision

Floating-Point Reciprocator on FPGA
Naga valli.Vegesna V.Srinivasa Rao

Dept of ECE Dept of ECE

Shri Vishnu Engineering College for women Shri Vishnu Engineering College for women

E-mail:valli.vegesna@gmail.com E-mail:vemu1974@gmail.com

 Abstract—Floating point division is generally regarded
as a low frequency, high latency operation in typical floating
point applications. So due to this not much development had
taken place in this field. But nowadays floating point divider
has become most important in many modern applications.
Most of the previous implementations required larger area
and latencies. In this paper we have presented an efficient
FPGA implementation of a reciprocator for double-precision
floating point numbers. The method is based on the use of
small look-up tables and partial block multipliers. The
modules occupy less area and less latency.

Keywords: Double precision, Floating-point
arithmetic, reciprocator, partial block-multipliers,

FPGA.

I. INTRODUCTION

Floating point arithmetic like addition, multiplication, division

and square root etc are mostly used in modern applications.

Mainly in scientific and signal processing applications. The

greater dynamic range and lack of need to scale the numbers

makes development of algorithms much easier. Implementing of

arithmetic operations for floating point numbers in hardware is

very difficult. Among the operations division is most difficult to

implement in hardware. So to make floating point division simple

we are going for binomial expansion method.
The IEEE standard for floating point (IEEE-754) defines the

format of the numbers, and also specifies various rounding modes

that determine the accuracy of the result. For many signal

processing, and graphics applications, it is acceptable to trade off

some accuracy for faster and better implementations.
There are many algorithms to implement division. Many

algorithms were developed for division which includes

subtractive method, functional iterations, Digit recurrence
method, seed architecture which uses multipliers and algorithms

for faster computation of division like high radix algorithm. But

these algorithms uses huge look up tables along with wider
multipliers which affects the area and performance.

Our approach focuses on finding the reciprocal. It is based on

the well known binomial-expansion, contains small look-up table,
and uses partial block-multipliers, resulting in

Less area, less delay. We are taking only normalized numbers.

All the exceptional cases are detected, and indicated as invalid

input/output. When compared with other methods binomial

expansion methods have efficient hardware.
We are using Xilinx ISE synthesis tool, ModelSim 6.4c

simulation tool, and FPGA as our platform.

II. APPROACH
The format of a floating-point number is as follows in
fig:1 for Single Precision and Double Precision:

 Fig:1 format for single and double precision

 In this paper, we do not discuss the exponent manipulation
as it is a standard process. The benefits of our implementation are

in the computation of the inverse of the mantissa.
Let y be the inverse of the mantissa a. Then,

1

X = 1.a, where in 1.a, 1 is hidden bit of mantissa.

We have divided the mantissa in two parts, a1 and a2. a1 is used to
fetch some pre-calculated data from a look-up table.

Now, since

 X=1/(a1+a2)

 = (a1+a2)

-1

=a1ˉ¹-a2ˉ².a2+a1ˉ³.a2²-a1

-4a3--------- (1)
The content of each term of equation (1) will be as follows:

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), AAMT-2013 Conference Proceedings

National Conference on Advances in Assistive and Main Stream Technologies for Persons with Special Needs

 113

If we go for higher terms, contribution to main results decreases.
Thus, depending upon our precision number of terms can be
taken from equation (1) for calculating inverse, based on value of
m.

For our implementation, based on experiments over a large

number of random test cases, we have chosen the number of

terms as described below. In case of single-precision we have

taken the first three terms, while for the case of double-precision

7 terms have been taken. The value of m we have chosen is 8 for

both cases. These values were selected based on available FPGA.

We have simplified the desired terms in such a way so that we

can use less hardware with low latency and good accuracy.
For single-precision we have taken all the three terms as

available, like

 Y=a1
-1-a1

-2a2+a1
-3a2

2

 a1
-1-a1

-1[(a1
-1a2-a1

-2a2
2) (1+a1

-2a2
2+a1

-4a2
4)]-------(2)

The above equation can be little more simplified but it affects the

area, latency and accuracy. The accuracy is affected due to the

fact that floating-point operations are not completely associative,

i.e. u(v + w) may not be exactly equal to (uv + uw). This is due to

the finite number of bits used to represent the numbers.

III. IMPLEMENTATION

An algorithm for single precision and double precision

floating point reciprocal is implemented using Binomial

Expansion method which contains small look up tables,

and partial block multipliers, resulting in less area, less

delay. We have shown the implementations for single

precision and double precision separately as different

issues arise in each case.

First we convert the required decimal number in to IEEE

754 floating point number using IEEE 754 decimal to

floating point converter and mantissa is inverted.

 a2(15-bit) a1(8-bit)

 Block
 RAM Stage-1

a1
-2

 Multiplier

Multiplier

Stage-2

 (17-bit) (17-bit)

a
2

a
-2

a

 a -3

2 1

a1
-1 1 2

 Multiplier

Subtractor

Stage-3

 (17-bit) (30-bit)

a1

-3
a2

2
(a1

-1
-a1

-2
a2)

Adder

Stage-4

 (30-bit)

 23-bit Mantissa

Fig. 2.

Architecture for single-precision floating-point reciprocator

A. Single-precision Floating-point

The architecture of single-precision floating-point

reciprocator is shown in Fig. 1. It includes a Block-

Memory
(BRAM) which contains pre-calculated values of a−

1
1(24 −

bits), a−
1
2(17 − bits), and a−

1
3(17 − bits) in a single data-

Word (58-bits), with 8-bit (content of a1) as address bits.
The contents of the BRAM have been calculated using a
separate program written in C, with float data type for the
numbers. The content of a−

1
1 has been extended to 30-bits

(by appending 6-bits”111111” at least significant bit
(LSB’s)) for addition/subtraction purpose. Here we can
also do above operation with only value of a−

1
1, but it will

increase the total operation latency and size of multipliers.
In both cases we will use only a single BRAM on FPGA,
so we prefer the first approach.

The architecture has latency of four, though we can

include the BRAM access in the first stage with a slight

loss in maximum operating frequency. By using pipelined

multiplier we can approximately double the overall

frequency. We have shown the result with the latency four.

Our aim here is to only show the use of less necessary

hardware. We can do pipelining in the given architecture

very easily.

B. Double-precision Floating-point

The architecture of double-precision floating-point
reciprocator is shown in Fig. 2. It also includes a single
BRAM which contains pre-calculated values of only
a−

1
1(54 − bits) with 8-bit (content of a1) as address bits.

The content of BRAM has been calculated using a C-
program, with double as data-type of floating-point
numbers. The content of a−

1
1 has been extended to 60-bits

(by appending 6-bits”111111” at LSB’s) for
addition/subtraction purpose. Here we have a huge saving
on block-memory compared to other methods discussed
later.

There are three type of multiplier (based on Xilinx

MULT18x18 block) that have been used. Second, third and

 full significant bits

a
−

1
1
 = 0.

➐ ₃₃ x

 xxxxxxxx

 m−zero bits significant bits

a
−

1

 ➐ ₃₃ x ➐ ₃₃ x

2
.a2 =

0. 00 · · ·
00

xx · · · xx

 2m−zero bits significant bits

a
−

1

 ➐ ₃₃ x ➐ ₃₃ x

3
.a

2
2 =

0. 00 · · ·
00

xx · · · xx

 3m−zero bits significant bits

a
−

1

 ➐ ₃₃ x ➐ ₃₃ x

4
.a

3
2 =

0. 00 · · ·
00

xx · · · xx

 · · · and so on

 . Where m is the number of bits of a1.

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), AAMT-2013 Conference Proceedings

National Conference on Advances in Assistive and Main Stream Technologies for Persons with Special

Needs

 114

 a1(8-bit) a2(44-bit)

Block
RAM Stage-1

 a1
-1

 51-bit partial Stage-2

 block multiplier

a1
-1

a2

 51-bit partial Stage-3

 block multiplier

a1
-2

a2
2

 34-bit Full 60-bit Stage-4

 block multiplier Substractor

a1

-4
a2

4

60-bit Adder

Stage-5

 (1+a1
-2

a2
2
+a1

-4
a2

4
) (a1

-1
a2 - a1

-2
a2

2
)

 51-bit Reduced

 partial Stage-6

 block multiplier

a-1

 51-bit partial Stage-7

 block multiplier

 a-1

 60-bit Stage-8

 Substractor

 52-bit Mantissa

Fig. 3.

 Architecture for double-precision floating-point reciprocator

 51-bits

 A A3, 17-bits

A2,
17bits A1, 17-bits

 B B3, 17-bits B2, 17-bits B1, 17-bits

 A1 . B1 34-bits

A1 . B2

 This part Ignored 34-bits 17-bits__

 A2 . B1 34-bits

 A1 . B3 34-bits

17-bits__

 A2 . B2 34-bits

 A3 . B1 34-bits

 A2 . B3 34-bits 17-bits__

 A3 . B2 34-bits

 This part Ignored

A3 . B3 34-bits
 17-bits__

We took sum of this part only, using only 6-MULT18x18.

Fig. 4. Partial 51-bit multiplier for stages 2,3 and 7

 51-bits

 A 0x10000 A2, 17bits A1, 17-bits

 17-bits

 B B3, 17-bits B2, 17-bits B1, 17-bits

 This part Ignored

 A1 . B3 34-bits

 A2 . B2 34-bits

 {B1,0x0000} 34-bits

 A2 . B3 34-bits 17-bits__

 {B2,0x0000} 34-bits

 17-bits__

{B3,0x0000} 34-bits

We took sum of this part, using only 3-MULT18x18.

Fig. 5. Partial 51-bit multiplier for stage 6

seventh stage has 51-bit partial multiplier, which is shown

in Fig. 3. It uses only six-MULT18x18 block instead of

nine, to produce more than 52-bit (MSB) of correct result,

which is all that we need. Stage six is also a 51-bit partial

multiplier, but due to it’s specific input nature (17-bits of

first input is 0x10000 in hex), it contains only three-

MULT18x18 block Fig. 4. The fourth stage multiplier is a

34-bit full multiplier, but instead of using IP-core for it we

have designed it using four MULT18x18 block (shown in

Fig. 5) which is taking less (about 2/3) glue logic and is

faster than the IP-core available from Xilinx. Overall

latency of module is eight, which we can increase further

using pipelining as discussed in the case of single

precision, for better performance.

IV. RESULTS

Hardware utilization and performance of both the single-

precision and double-precision is shown in Table-I. Since our

implementation neglects some of the lower order bits in the

computation, it is important to estimate the impact of this on the

overall accuracy of results. For the error performance 5-

 Fig. 6. 34-bit block multiplier for stage 4
Millions randomly generated test cases were used to check the

errors. The error performance is shown in Table-II for both

versions of floating-point numbers. The error was obtained by

comparing results from the proposed module with the results

produced by a C compiler on a workstation. In all cases, it was

found that the maximum error in the case of single precision was

2 ulp (unit last place), while in the case of double precision

numbers, it was 1 ulp. The error we got is without rounding.

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), AAMT-2013 Conference Proceedings

National Conference on Advances in Assistive and Main Stream Technologies for Persons with Special Needs

 115

V.CONCLUSION

 We have implemented an efficient reciprocal unit on

FPGA for both single and double precision floating-point
numbers. The method uses the idea of neglecting higher
order terms in the partial block multiplication to reduce
the number of multipliers. At the same time, the look-up
table requirements are kept to a minimum, and are the
least reported in the literature for double precision
implementation. Initial latency for our module is also
less (4 for single and 8 for double-precision), that too

with promising frequency, which we can improve by
pipelining them very easily. The error performance is
also within acceptable range (1-ulp for double-precision).

The implementation can thus form a useful core for

use in hardware dividers, especially for applications like

signal processing that could be more tolerant of

inaccuracies in the least significant bits.

SINGLE PRECISION:

DOUBLE PRECISION

Resource Comparison:

VI.REFERENCES

[1] K. Scott Hemmert and Keith D. Underwood “Floating

Point Divider Design for FPGAs”, IEEE Transaction on

very large scale integration systems,vol. 15, No. 1, pp. 115-

118,Jan 2007.

[2] Mohamed anane, Hamid Bessalah ,Mohamed Issad, Nadjia

Anane and Hassen Salhi “Higher radix and redundancy factor

for floating point SRT Division”, IEEE Transaction on very

large scale integration systems, vol. 16, no. 16, pp. 122-128,June

2008.

[3] Anuja Jayraj Thakkar and Abdel Ejnioui “ Pipelining of

Double Precision Floating Point Divider and Square Root

Operations Proceedings of the 44th annual southeast regional

conference, March 2006.

[4] Anuja Jayraj Thakkar and Abdel Ejnioui “ Design and

Implementation of Double Precision Floating Point Divider And

Square Root Operations On FPGAs ,”IEEE Conference on field

programmable technology,2006

[5]P. Hung, H. Fahmy, O. Mencer, M. J. Flynn, “Fast division

algorithm with a small look-up table”, 33th Asilomar

Conference on Signals, Systems and Computers, Pacific Grove,

CA, USA., Vol-2, Pages 1465-1468, Oct-1999.

 [6] U. Kucukkabak, A. Akkas, “A Combined Interval and

Floating- Point Reciprocal Unit”, Thirty-Ninth Asilomar

Conference on Signals, Systems and Computers, pages 1366-

1371, Nov-2005.

 [7]Xiaojun Wang, B. E. Nelson, “Tradeoffs ofdesigning

floating-point division and square root on Virtex FPGAs”,

11th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM 2003), Pages 195- 203,

Apr-2003.

[8] J. Hopf, “A parameterizable HandelC divider generator

for FPGAs with embedded hardware multipliers”, IEEE

International Conference on Field-Programmable Technology,

Pages 355-358, Dec-2004.

[9] W. F. Wong, Member, IEEE, and E. Goto, “Fast Hardware-

Based Algorithms for Elementary Function Computations Using

Rectangular Multipliers”, IEEE Transactions on Computers,

Issue 3, VOL. 43,March-1994.

[10] P. Montuschi, L. Ciminiera, A. Giustina, “Division unit

with Newton-Raphson approximation and digit-by-digit

refinement of the quotient”,IEEE Proceedings - Computers and

Digital Techniques, Issue 6, Vol. 141,

Pages 317 - 324, Nov-1994.

[11] W. F. Wong, Member, IEEE, and E. Goto, “Fast Evaluation

of the Elementary Functions in Single Precision”, IEEE

Transactions on Computers, Issue 3, Vol. 44, Pages 453-457,

March-1995.

[12] M. Ito, N. Takagi, and S. Yajima, “Efficient Initial

Approximation and Fast Converging Methods for Division and

Square Root”, Proceedings of the 12th Symposium on Computer

Arithmetic, Pages 2-9, July-1995.

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), AAMT-2013 Conference Proceedings

