National Conference on Advances in Assistive and Main Stream Technologies for Persons with Special

Needs

Hardware Implementation of Double precision
Floating-Point Reciprocator on FPGA

Naga valli.Vegesna
Dept of ECE
Shri Vishnu Engineering College for women
E-mail:valli.vegesna@gmail.com

Abstract—Floating point division is generally regarded
as a low frequency, high latency operation in typical floating
point applications. So due to this not much development had
taken place in this field. But nowadays floating point divider
has become most important in many modern applications.
Most of the previous implementations required larger area
and latencies. In this paper we have presented an efficient
FPGA implementation of a reciprocator for double-precision
floating point numbers. The method is based on the use of
small look-up tables and partial block multipliers. The
modules occupy less area and less latency.

Keywords: Double precision, Floating-point
arithmetic, reciprocator, partial block-multipliers,
FPGA.

I. INTRODUCTION

Floating point arithmetic like addition, multiplication, division
and square root etc are mostly used in modern applications.
Mainly in scientific and signal processing applications. The
greater dynamic range and lack of need to scale the numbers
makes development of algorithms much easier. Implementing of
arithmetic operations for floating point numbers in hardware is
very difficult. Among the operations division is most difficult to
implement in hardware. So to make floating point division simple
we are going for binomial expansion method.

The IEEE standard for floating point (IEEE-754) defines the
format of the numbers, and also specifies various rounding modes
that determine the accuracy of the result. For many signal
processing, and graphics applications, it is acceptable to trade off
some accuracy for faster and better implementations.

There are many algorithms to implement division. Many
algorithms were developed for division which includes
subtractive method, functional iterations, Digit recurrence
method, seed architecture which uses multipliers and algorithms
for faster computation of division like high radix algorithm. But
these algorithms uses huge look up tables along with wider
multipliers which affects the area and performance.

Our approach focuses on finding the reciprocal. It is based on
the well known binomial-expansion, contains small look-up table,
and uses partial block-multipliers, resulting in

V.Srinivasa Rao
Dept of ECE
Shri Vishnu Engineering College for women
E-mail:vemul974@gmail.com

Less area, less delay. We are taking only normalized numbers.
All the exceptional cases are detected, and indicated as invalid
input/output. When compared with other methods binomial
expansion methods have efficient hardware.

We are using Xilinx ISE synthesis tool, ModelSim 6.4c
simulation tool, and FPGA as our platform.

Il. APPROACH
The format of a floating-point number is as follows in
fig:1 for Single Precision and Double Precision:

32 bits

23 bits
Fraction

64 bits

52 bits

Fraction

Fig:1 format for single and double precision

In this paper, we do not discuss the exponent manipulation
as it is a standard process. The benefits of our implementation are
in the computation of the inverse of the mantissa.

Let y be the inverse of the mantissa a. Then,

_ 1
X =1.a, where in 1.a, 1 is hidden bit of mantissa.
We have divided the mantissa in two parts, a; and a,. a; is used to

fetch some pre-calculated data from a look-up table.
Now, since
X=1/(3.1+3.2)

= (atay)’

:al_'-az_z.az+al_3.322-31_433 _________)
The content of each term of equation (1) will be as follows:

112

International Journal Of Engineering Research and Technology(1JERT), AAMT-2013 Conference Proceedings

National Conference on Advances in Assistive and Main Stream Technologies for Persons with Special Needs

full significant bits
o 3 X

a1 = 0. XXXXXXXX
m-zero bits significant bits
° » x o n X
9 0. 00 - -
ai .ay = 00 XX+ + 0 XX
2m-zero hits_ sigaificant bits
° » x o X
s, 0. 00 - -
a1 a; = 00 _ = XX XX
3m-zero bits significant bits
° » x o X
s 0. 00 - -
a1 ay) = 00 XX - XX

-~ -and soon_
Where m is the number of bits of al.

llfhvdg gé)ef%rn Qliﬁher terms, contribution to main re]§utlts decreas%s.

(RS eSSt) o cTSETat g PVRTSS Shscd o vl B

For our implementation, based on experiments over a large
number of random test cases, we have chosen the number of
terms as described below. In case of single-precision we have
taken the first three terms, while for the case of double-precision
7 terms have been taken. The value of m we have chosen is 8 for
both cases. These values were selected based on available FPGA.
We have simplified the desired terms in such a way so that we
can use less hardware with low latency and good accuracy.

For single-precision we have taken all the three terms as
available, like

Y=a1'1-a1'2a2+a1'3a22
A A, a2, 2 2, 2, -4 4
Yy =a-ar (a7 a-ay @) (1+ay a, +ay "ay)]------ 2

The above equation can be little more simplified but it affects the
area, latency and accuracy. The accuracy is affected due to the
fact that floating-point operations are not completely associative,
i.e. u(v + w) may not be exactly equal to (uv + uw). This is due to
the finite number of bits used to represent the numbers.

1. IMPLEMENTATION

An algorithm for single precision and double precision
floating point reciprocal is implemented using Binomial
Expansion method which contains small look up tables,
and partial block multipliers, resulting in less area, less
delay. We have shown the implementations for single
precision and double precision separately as different
issues arise in each case.

First we convert the required decimal number in to IEEE
754 floating point number using IEEE 754 decimal to
floating point converter and mantissa is inverted.

ap(15-bit) ap(8-bit)
Block
RAM Stage-1
t——
ag
Multiplier Multiplier Stage-2
(17-bit) (17-bit)
a’ e b Za
2 EVE P | 1 2
1
Multiplier Subtractor Stage-3
(17-bit) (30-bit)
| |
3.2 | | 12
a; a (a1 -a1 ap
Adder Stage-4
(30-hbit)

23-bit Mantissa |

Fig. 2. Architecture for single-precision floating-point reciprocator

A. Single-precision Floating-point

The architecture of single-precision floating-point
reciprocator is shown in Fig. 1. It includes a Block-
Memory
(BRAM) which contains pre-calculated values of a ;'(24 —
bits), a 1%(17 — bits), and a ,*(17 — bits) in a single data-
Word (58-bits), with 8-bit (content of a;) as address bits.
The contents of the BRAM have been calculated using a
separate program written in C, with float data type for the
numbers. The content of a ;* has been extended to 30-bits
(by appending 6-bits”111111” at least significant bit
(LSB’s)) for addition/subtraction purpose. Here we can
also do above operation with only value of a ;*, but it will
increase the total operation latency and size of multipliers.
In both cases we will use only a single BRAM on FPGA,
so we prefer the first approach.

The architecture has latency of four, though we can
include the BRAM access in the first stage with a slight
loss in maximum operating frequency. By using pipelined
multiplier we can approximately double the overall
frequency. We have shown the result with the latency four.
Our aim here is to only show the use of less necessary
hardware. We can do pipelining in the given architecture
very easily.

B. Double-precision Floating-point

The architecture of double-precision floating-point
reciprocator is shown in Fig. 2. It also includes a single
BRAM which contains pre-calculated values of only
a 1'(54 — bits) with 8-bit (content of a;) as address bits.
The content of BRAM has been calculated using a C-
program, with double as data-type of floating-point
numbers. The content of a”;* has been extended to 60-bits
(by appending 6-bits”111111” at LSB’s) for
addition/subtraction purpose. Here we have a huge saving
on block-memory compared to other methods discussed
later.

There are three type of multiplier (based on Xilinx
MULT18x18 block) that have been used. Second, third and

113

International Journal Of Engineering Research and Technology(1JERT), AAMT-2013 Conference Proceedings

National Conference on Advances in Assistive and Main Stream Technologies for Persons with Special

Needs
a1 (8-bit) ap(44-bit)
Block
RAM Stage-1
-T
al
51-bit partial Stage-2
block multiplier
1 |—£—|7
ar a2
51-bit partial Stage-3
block multiplier
22
2 e |
34-bit Full 60-bit Stage-4
block multiplier Substractor
44 I
ap az _l
60-bit Adder Stage-5
2 2 4 4 22
(I+ay ap +a1 az) (a1 a2 -a; az)
51-bit Reduced
partial Stage-6
block multiplier
L
= 1
51-bit partial Stage-7
block multiplier
|
1]
60-bit Stage-8
Substractor

52-bit Mantissa

Fig. 3. Architecture for double-precision floating-point reciprocator

seventh stage has 51-bit partial multiplier, which is shown
in Fig. 3. It uses only six-MULT18x18 block instead of
nine, to produce more than 52-bit (MSB) of correct result,
which is all that we need. Stage six is also a 51-bit partial
multiplier, but due to it’s specific input nature (17-bits of
first input is 0x10000 in hex), it contains only three-
MULT18x18 block Fig. 4. The fourth stage multiplier is a
34-bit full multiplier, but instead of using IP-core for it we
have designed it using four MULT18x18 block (shown in
Fig. 5) which is taking less (about 2/3) glue logic and is
faster than the IP-core available from Xilinx. Overall
latency of module is eight, which we can increase further
using pipelining as discussed in the case of single
precision, for better performance.

IV. RESULTS

Hardware utilization and performance of both the single-
precision and double-precision is shown in Table-l. Since our
implementation neglects some of the lower order bits in the
computation, it is important to estimate the impact of this on the
overall accuracy of results. For the error performance 5-

51-bits
A |A3, 17-bits| 17bits | AL 17-bi:|
B | B3, 17-bits| B2, 17-bits | B1, 17-bits |

([At BI34bis |
AL.B2 34-bits i
| |17-bt
) Its,
[[Az.BT 3abits)
AL.B3 _ 34-bits
T %
A3.BL _ 34-bits
[Az B3 3abits | 475

¥

A3.B2 34-bits
This part Ignored

TS 17-bits <

This part Ignored

v

—

v

- P
- ==

We took sum of this part only, using only 6-MULT18x18.

Fig. 4. Partial 51-bit multiplier for stages 2,3 and 7

< 51-bits >
A I??%%QOO |A2,17bits rx1,17-bits |

B | B3, 17-bits|Bz, 17-bits pl, 17-bits |

This part Ignored

A2 .B2 34-bits

{B1,0x0000} 34-bits
{BZ,0x0000} _34-its
[e

We took sum of this part, using only 3-MULT18x18.

v

W

Fig. 5. Partial 51-bit multiplier for stage 6

_— 34-bits —
A PETTBRES T T B)

B Pz 7 ERs BT 7B |

I AT . BT

AZ BT 34-bits .
17 -Dits g

AT B2 3 -bits
I I
g1 T-DitS g

Sum of the all abowe give complete result

34-bits |

AZ _BZ 34-bits

Fig. 6. 34-bit block multiplier for stage 4
Millions randomly generated test cases were used to check the
errors. The error performance is shown in Table-11 for both
versions of floating-point numbers. The error was obtained by
comparing results from the proposed module with the results
produced by a C compiler on a workstation. In all cases, it was
found that the maximum error in the case of single precision was
2 ulp (unit last place), while in the case of double precision
numbers, it was 1 ulp. The error we got is without rounding.

114

International Journal Of Engineering Research and Technology(1JERT), AAMT-2013 Conference Proceedings

National Conference on Advances in Assistive and Main Stream Technologies for Persons with Special Needs

V.CONCLUSION
We have implemented an efficient reciprocal unit on
FPGA for both single and double precision floating-point
numbers. The method uses the idea of neglecting higher
order terms in the partial block multiplication to reduce
the number of multipliers. At the same time, the look-up
table requirements are kept to a minimum, and are the
least reported in the literature for double precision
implementation. Initial latency for our module is also
less (4 for single and 8 for double-precision), that too
with promising frequency, which we can improve by
pipelining them very easily. The error performance is
also within acceptable range (1-ulp for double-precision).
The implementation can thus form a useful core for
use in hardware dividers, especially for applications like
signal processing that could be more tolerant of

inaccuracies in the least significant bits.

= wave - default

Fie £t Vew Adi Fomat Tods Widow

i

D-3E28 I2RO2AER SR [LLwyii 00 2999 [\ 53 B

Fie Edt Vew Add Fomat Took ‘Window
JEB-8 RRUCIAZS| SERE fed HmwyddE

oY
EERARISS) 4499 Nz B> § R%08 TN

|
|

B o ronctrd [\
B4 b recorace}a2p2 0001111011800

SINGLE PRECISION:
DOUBLE PRECISION

Resource Comparison:

ingle-precision Diouble-precision

Method - et BEAM | MULCTTERI BREAM
2-NR 3 1] 28

[2] 14 2 36 2
[5][10] 12 1 48 29
[6113] 4 12 16 impractical
] T T] a0

[9] 8 1 32 S0
[12] - impractical - impractical
Proposed 3 1 25 1
Method

VI.REFERENCES

[1] K. Scott Hemmert and Keith D. Underwood “Floating
Point Divider Design for FPGAs”, IEEE Transaction on
very large scale integration systems,vol. 15, No. 1, pp. 115-
118,Jan 2007.

[2] Mohamed anane, Hamid Bessalah ,Mohamed Issad, Nadjia
Anane and Hassen Salhi “Higher radix and redundancy factor
for floating point SRT Division”, IEEE Transaction on very
large scale integration systems, vol. 16, no. 16, pp. 122-128,June
2008.

[3] Anuja Jayraj Thakkar and Abdel Ejnioui “ Pipelining of
Double Precision Floating Point Divider and Square Root
Operations Proceedings of the 44th annual southeast regional
conference, March 2006.

[4] Anuja Jayraj Thakkar and Abdel Ejnioui “ Design and
Implementation of Double Precision Floating Point Divider And
Square Root Operations On FPGAs ,”IEEE Conference on field
programmable technology,2006

[5]P. Hung, H. Fahmy, O. Mencer, M. J. Flynn, “Fast division
algorithm with a small look-up table”, 33th Asilomar
Conference on Signals, Systems and Computers, Pacific Grove,
CA, USA,, Vol-2, Pages 1465-1468, Oct-1999.
[6] U. Kucukkabak, A. Akkas, “A Combined Interval and
Floating- Point Reciprocal Unit”, Thirty-Ninth Asilomar
Conference on Signals, Systems and Computers, pages 1366-
1371, Nov-2005.

[7]Xiaojun Wang, B. E. Nelson, “Tradeoffs ofdesigning
floating-point division and square root on Virtex FPGASs”,
11th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM 2003), Pages 195- 203,
Apr-2003.

[8] J. Hopf, “A parameterizable HandelC divider generator

for FPGAs with embedded hardware multipliers”, |IEEE

International Conference on Field-Programmable Technology,

Pages 355-358, Dec-2004.

[9]1 W. F. Wong, Member, IEEE, and E. Goto, “Fast Hardware-
Based Algorithms for Elementary Function Computations Using
Rectangular Multipliers”, IEEE Transactions on Computers,
Issue 3, VOL. 43,March-1994.

[10] P. Montuschi, L. Ciminiera, A. Giustina, “Division unit
with Newton-Raphson approximation and digit-by-digit
refinement of the quotient”,IEEE Proceedings - Computers and
Digital Techniques, Issue 6, VVol. 141,

Pages 317 - 324, Nov-1994.

[11] W. F. Wong, Member, IEEE, and E. Goto, “Fast Evaluation
of the Elementary Functions in Single Precision”, IEEE
Transactions on Computers, Issue 3, Vol. 44, Pages 453-457,
March-1995.

[12] M. Ito, N. Takagi, and S. Yajima, “Efficient Initial
Approximation and Fast Converging Methods for Division and
Square Root”, Proceedings of the 12th Symposium on Computer
Arithmetic, Pages 2-9, July-1995.

115

International Journal Of Engineering Research and Technology(1JERT), AAMT-2013 Conference Proceedings

