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      Abstract—Floating point division is generally regarded 
as a low frequency, high latency operation in typical floating 
point applications. So due to this not much development had 
taken place in this field. But nowadays floating point divider 
has become most important in many modern applications. 
Most of the previous implementations required larger area 
and latencies. In this paper we have presented an efficient 
FPGA implementation of a reciprocator for double-precision 
floating point numbers. The method is based on the use of 
small look-up tables and partial block multipliers. The 
modules occupy less area and less latency.   

Keywords: Double precision, Floating-point 
arithmetic,         reciprocator, partial block-multipliers, 

FPGA. 
 

I.  INTRODUCTION 
 

Floating point arithmetic like addition, multiplication, division 

and square root etc are mostly used in modern applications. 

Mainly in scientific and signal processing applications. The 

greater dynamic range and lack of need to scale the numbers 

makes development of algorithms much easier. Implementing of 

arithmetic operations for floating point numbers in hardware is 

very difficult. Among the operations division is most difficult to 

implement in hardware. So to make floating point division simple 

we are going for binomial  expansion method.  
The IEEE standard for floating point (IEEE-754) defines the 

format of the numbers, and also specifies various rounding modes 

that determine the accuracy of the result. For many signal 

processing, and graphics applications, it is acceptable to trade off 

some accuracy for faster and better implementations.   
There are many algorithms to implement division. Many 

algorithms were developed for division which includes 

subtractive method, functional iterations, Digit recurrence 
method, seed architecture which uses multipliers and algorithms 

for faster computation of division like high radix algorithm. But 

these algorithms uses  huge look up tables along with wider 
multipliers which affects the area and performance. 

Our approach focuses on finding the reciprocal. It is based on 

the well known binomial-expansion, contains small look-up table, 
and uses partial block-multipliers, resulting in 

 
Less area, less delay. We are taking only normalized numbers. 

All the exceptional cases are detected, and indicated as invalid 

input/output. When compared with other methods binomial 

expansion methods have efficient hardware.  
We are using Xilinx ISE synthesis tool, ModelSim 6.4c 

simulation tool, and FPGA  as our platform. 

 

II. APPROACH 
The format of a floating-point number is as follows in 
fig:1  for Single Precision and Double Precision: 

 

 

 
     Fig:1 format for single and double precision 

     
           In this paper, we do not discuss the exponent manipulation 
as it is a standard process. The benefits of our implementation are 

in the computation of the inverse of the mantissa.  
Let y be the inverse of the mantissa a. Then, 

 
1 

X = 1.a, where in 1.a, 1 is hidden bit of mantissa. 
 

We have divided the mantissa in two parts, a1 and a2. a1 is used to 
fetch some pre-calculated data from a look-up table.  

Now, since 

     
    X=1/(a1+a2)  

 
    = (a1+a2)

-1 

 
=a1ˉ¹-a2ˉ².a2+a1ˉ³.a2²-a1

-4a3--------- (1) 
The content of each term of equation (1) will be as follows: 
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If we go for higher terms, contribution to main results decreases. 
Thus, depending upon our precision number of terms can be 
taken from equation (1) for calculating inverse, based on value of 
m.  

For our implementation, based on experiments over a large 

number of random test cases, we have chosen the number of 

terms as described below. In case of single-precision we have 

taken the first three terms, while for the case of double-precision 

7 terms have been taken. The value of m we have chosen is 8 for 

both cases. These values were selected based on available FPGA. 

We have simplified the desired terms in such a way so that we 

can use less hardware with low latency and good accuracy.  
For single-precision we have taken all the three terms as 

available, like 

 

                      Y=a1
-1-a1

-2a2+a1
-3a2

2  

 

  a1
-1-a1

-1[(a1
-1a2-a1

-2a2
2) (1+a1

-2a2
2+a1

-4a2
4)]-------(2) 

 

The above equation can be little more simplified but it affects the 

area, latency and accuracy. The accuracy is affected due to the 

fact that floating-point operations are not completely associative, 

i.e. u(v + w) may not be exactly equal to (uv + uw). This is due to 

the finite number of bits used to represent the numbers. 

 

III. IMPLEMENTATION 
 

An algorithm for single precision and double precision 

floating point reciprocal is implemented using Binomial 

Expansion method which contains small look up tables, 

and partial block multipliers, resulting in less area, less 

delay. We have shown the implementations for single 

precision and double precision separately as different 

issues arise in each case. 

First we convert the required decimal number in to IEEE 

754 floating point number using IEEE 754 decimal to 

floating point converter and mantissa is inverted.  
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Fig. 2. 

  
 

Architecture for single-precision floating-point reciprocator 
 

 
 

A.  Single-precision Floating-point 
 

The architecture of single-precision floating-point 

reciprocator is shown in Fig. 1. It includes a Block-

Memory 
(BRAM) which contains pre-calculated values of a−

1
1(24 − 

bits), a−
1
2(17 − bits), and a−

1
3(17 − bits) in a single data-  

Word (58-bits), with 8-bit (content of a1) as address bits. 
The contents of the BRAM have been calculated using a 
separate program written in C, with float data type for the 
numbers. The content of a−

1
1 has been extended to 30-bits 

(by appending 6-bits”111111” at least significant bit 
(LSB’s)) for addition/subtraction purpose. Here we can 
also do above operation with only value of a−

1
1, but it will 

increase the total operation latency and size of multipliers. 
In both cases we will use only a single BRAM on FPGA, 
so we prefer the first approach.  

The architecture has latency of four, though we can 

include the BRAM access in the first stage with a slight 

loss in maximum operating frequency. By using pipelined 

multiplier we can approximately double the overall 

frequency. We have shown the result with the latency four. 

Our aim here is to only show the use of less necessary 

hardware. We can do pipelining in the given architecture 

very easily. 
 
B.  Double-precision Floating-point 
 

The architecture of double-precision floating-point 
reciprocator is shown in Fig. 2. It also includes a single 
BRAM which contains pre-calculated values of only 
a−

1
1(54 − bits) with 8-bit (content of a1) as address bits. 

The content of BRAM has been calculated using a C-
program, with double as data-type of floating-point 
numbers. The content of a−

1
1 has been extended to 60-bits 

(by appending 6-bits”111111” at LSB’s) for 
addition/subtraction purpose. Here we have a huge saving 
on block-memory compared to other methods discussed 
later.  

There are three type of multiplier (based on Xilinx 

MULT18x18 block) that have been used. Second, third and 
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   · · · and so on     

 .  Where m is the number of bits of a1.  
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Fig. 3. 

    
 

 Architecture for double-precision floating-point reciprocator 
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We took sum of this part only, using only 6-MULT18x18. 
 

Fig. 4. Partial 51-bit multiplier for stages 2,3 and 7 
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Fig. 5.   Partial 51-bit multiplier for stage 6 

 

seventh stage has 51-bit partial multiplier, which is shown 

in Fig. 3. It uses only six-MULT18x18 block instead of 

nine, to produce more than 52-bit (MSB) of correct result, 

which is all that we need. Stage six is also a 51-bit partial 

multiplier, but due to it’s specific input nature (17-bits of 

first input is 0x10000 in hex), it contains only three-

MULT18x18 block Fig. 4. The fourth stage multiplier is a 

34-bit full multiplier, but instead of using IP-core for it we 

have designed it using four MULT18x18 block (shown in 

Fig. 5) which is taking less (about 2/3) glue logic and is 

faster than the IP-core available from Xilinx. Overall 

latency of module is eight, which we can increase further 

using pipelining as discussed in the case of single 

precision, for better performance. 
 

IV. RESULTS 
 

Hardware utilization and performance of both the single-

precision and double-precision is shown in Table-I. Since our 

implementation neglects some of the lower order bits in the 

computation, it is important to estimate the impact of this on the 

overall accuracy of results. For the error performance 5- 

 

                       

 

 

 

 

 

                        Fig. 6. 34-bit block multiplier for stage 4 
Millions randomly generated test cases were used to check the 

errors. The error performance is shown in Table-II for both 

versions of floating-point numbers. The error was obtained by 

comparing results from the proposed module with the results 

produced by a C compiler on a workstation. In all cases, it was 

found that the maximum error in the case of single precision was 

2 ulp (unit last place), while in the case of double precision 

numbers, it was 1 ulp. The error we got is without rounding. 
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V.CONCLUSION

      We have implemented an efficient reciprocal unit on    

FPGA for both single and double precision floating-point 
numbers. The method uses the idea of neglecting higher 
order terms in the partial block multiplication to reduce 
the number of multipliers. At the same time, the look-up 
table requirements are kept to a minimum, and are the 
least reported in the literature for double precision 
implementation. Initial latency for our module is also 
less (4 for single and 8 for double-precision), that too 

with promising frequency, which we can improve by 
pipelining them very easily. The error performance is 
also within acceptable range (1-ulp for double-precision).  

The implementation can thus form a useful core for 

use in hardware dividers, especially for applications like 

signal processing that could be more tolerant of 

inaccuracies in the least significant bits. 

SINGLE PRECISION: 

DOUBLE PRECISION 

Resource Comparison: 
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