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Abstract: With its huge applications, „Data 

Clustering‟ which is one the main task in data 

mining, is getting popular day by day. In simple 

words it can be defined as the process of organizing 

similar data objects into groups. It is considered as 

one among the unsupervised learning methods, which 

yields result without using any prior external 

supervision. Any Clustering technique, organized a 

given data set into several groups such that the 

similarity within a group is greater as compared to 

among other groups. In this paper, a review of 

different Hard and Fuzzy Clustering technique is 

done such as: K-means, K-Medoid, Fuzzy C-Means, 

Gustafson-Kessel, and Gath-Geva. The different 

techniques are implemented and tested against a 

normally distributed motorcycle dataset. Their 

performances with respect to speed and accuracy of 

each of the techniques are compared accordingly 

which includes their validation parameters as well.  

Index Terms— data clustering, k-means, k-

Medoid, fuzzy c-means, Gustafson-Kessel, Gath-

Geva. 

I. INTRODUCTION 

It is remarkable to think how this particular field has 

find it‟s ways in numerous uncountable applications 

such as Image processing, Biological research, web 

documentation and many more. Data Clustering itself 

is well known for its interesting approach of finding 

similarities between data and organizing them into 

groups. However it does not only means organizing 

data‟s into groups but they are used for data 

compression and model induction as well as 

extraction of meaningful information As mentioned 

earlier Clustering is nothing but partition of given 

data sets into clusters such that there is a larger 

similarity between data in the same group as 

compared to those among other groups. Clustering in 

its approach reflects very much from our daily lives. 

For example so often we group our books of similar 

sizes together in one side of our shelves, our mother 

used to organize similar household utensils one side 

of our almaris and so on. This is not the point to be 

noted, if then clustering would look very simple and 

predictable. But living in a digital world things 

normally don‟t go easy, data tends to accumulate and 

multiply rapidly over time. This leads to the 

challenge, of how to organize these data‟s. Here is 

where „soft computing‟ methods come into 

usefulness which helps us in clustering those huge 

data‟s.. In this paper, a brief review is done on the 

performance of the various Hard as well as Fuzzy 

Clustering algorithms. Hard algorithms such as K-

Means, K-Medoid and Fuzzy algorithms such as C-

Means, GK(Gustafson-Kessel), GG(Gath-Geva). 

These five techniques are implemented and their 

performance comparison is comprehensively done to  

II. RELATED WORKS 

There has been a tremendous growth of interest in the 

field of soft computing, starting from the 

development of K-Means to the development of 

fuzzy C-Means algorithms. J. C. Bezdek [1] in his 

book “Pattern Recognition with Fuzzy Objective 

Function Algorithms” has given a comprehensive 

detail of all the fuzzy clustering algorithms. F. 

Hoppner, F. Klawonn, R. Kruse, and T. Runkler[2]  

in another book gave a brief idea of Fuzzy Cluster 

Analysis. R. BabuŠka[3] formulate all the clustering 

algorithms. D.E. Gustafson and W.C. Kessel [4]  

proposed the Fuzzy clustering with fuzzy covariance 

matrix. T.Velmurugan and T.Santhanam [5] describe 

the affect of normal distribution of data points on the 

Hard clustering algorithms.  R. BabuŠka, P. J. van der 

Veen, and U. Kaymak[6] proposed the Improved 

covariance estimation for Gustafson-Kessel 

clustering. .D .Napolean et al[6] proposed an efficient 
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Clustering Technique to Reduce the time Complexity 

Of K-Means Using Normal Distribution of data 

points. J.C. Bezdek and J.C. Dunn [8], I. Gath and 

A.B [9], A.M. Bensaid et al [10] are some of the 

other works that has explore finding out the 

validation parameters of the various clustering 

algorithms. The implementation and analysis id one 

with the used of fuzzy toolbox by Balazs 

Balasko[11]. . 

III. DATA CLUSTERING OVERVIEW 

So as to get a taste of the coming sections, let‟s just 

have an overlook, about data clustering. Let‟s start 

from the term cluster itself. Many definitions of 

cluster have been formulated, but all solely depend 

on the objective of clustering. Among those the most 

accepted one is that cluster, is nothing but a group of 

objects that are more similar to one another than to 

members of other clusters. Here the term „Similarity‟ 

here should be understood clearly that it is 

mathematical similarity, purely defined by distance 

Norm. In general, clusters are subsets of a data set. 

The major issue now is whether those subsets formed 

are hard (crisp) or fuzzy. Hard clustering methods are 

based on classical set theory, which requires an 

object either does or does not belong to a cluster; i-e 

subsets are mutually exclusive. Fuzzy clustering 

methods on the other hands allow objects to belong to 

several clusters simultaneously, but with deferent 

degrees of membership. In many real situations, 

fuzzy clustering is more natural than hard clustering, 

as objects on the boundaries between several classes 

are not forced to fully belong to one of the classes, 

but rather are assigned membership degrees between 

0 and 1 indicating their partial memberships. 

The structure of the partition matrix U =  μik   

                             U= 

u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

…
…

u1,c

u2,c

⋮ ⋮ ⋮ ⋱ ⋮
uN,1 uN,2 uN,3 ⋯ uN,c

  

A. Hard partition 

As we are dealing with clustering, one must be clear 

with the objective that is to partition the data set X 

into c clusters. Any Hard Partition can be defined as a 

family of subsets. The classical set represents Hard 

Clustering as {Ai|1≤ i ≤ c ⊂ P(x)}. Its properties are 

as follows: 

∪i=1
c Ai=X 

Ai ∩ Aj,1≤ i ≠ j ≤ c, 

∅ ⊂ Ai⊂ X, 1 ≤ i ≤ c. 

The first condition above states that the subsets Ai 

contain all the data in X, second one states that they 

must be disjoint and the last none of them must be 

empty nor should contains all the data in X. The 

membership function of Hard partition is  given 

below: 

Vi=1
c μA i

= 1, 

μA i
⋁  μA j ,

1 ≤  i ≠  j ≤  c 

0< μA i
< 1, 1 ≤ i ≤ c. 

Here μAi is the characteristic function of the subset 

Ai  and can have values either zero or one. In matrix 

notation the partition can be represented as follows:     

A N×c matrix U = [μik ] represents the hard partition 

if and only if its elements satisfies 

μA ij
∈ 0,1, 1 ≤  i ≤  N, 1 ≤  k ≤  c, 

 μA ik

c

k=1

= 1,1 ≤  i ≤  N, 

0 <  μA ik

k

k=1

< N, 1 ≤  k ≤  c. 

B. Fuzzy partition 

Fuzzy partition can be viewed as a generalization of 

hard partition. The only difference is that it allows  

μik  attaining real values between the range [0, 1]. An 

N×c matrix U = [μik ] represents the fuzzy partitions. 

Its condition is given below: 

μij ∈ [0,1], 1 ≤  i ≤  N, 1 ≤  k ≤  c, 

 μik

c

k=1

= 1,1 ≤  i ≤  N, 

0 <  μik

k

k=1

< N, 1 ≤  k ≤  c. 

One thing one needs to be clear that the distribution 

of memberships among the c fuzzy subsets in case of 

fuzzy partition is not constrained. Hence data at the 

borders are not forced to belong to only one cluster. 
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IV. DATA CLUSTERING TECHNIQUES 

A. K-means and K-Medoid algorithms 

  The popular classes of Hard Partitioning 

algorithm are K-Means and K-Medoid. These classes 

of partitioning methods are simple, popular and very 

widely used. But, both have a big drawback that is 

both does not give any fair reliable results every time 

and have some numerical problems as well. For any  

N× n dimensional data set K-means and K-Medoid 

algorithms is purely based on finding data clusters in 

a data set by minimizing  the within-cluster sum of 

squares given below which basically denotes a 

distance norm: 

   Xi − Vi 
2

K∈A i

c

i=1

 

Where Ai a set of data is points or objects and Vi  is 

the mean for that data points over any cluster. In K-

means clustering Vi is also called the cluster 

prototypes, its general form is 

Vi =
 XK

N
K =1

N i
             , XK ∈ Ai 

Where Ni   is the number of objects in Ai.In K-medoid 

clustering the cluster centers are to the nearest objects 

to the mean of data in one cluster  

V =  Vi ∈ X|1 ≤ i ≤ c . 

B. Fuzzy C-means algorithm 

Fuzzy C-means clustering (FCM), relies on the basic 

idea of Hard Clustering(HC), with the difference that 

in FCM each data point belongs to a cluster based on 

a degree of membership, while in HC every data 

point either it belongs or not to a certain cluster. So 

FCM employs fuzzy partitioning such that a given 

data point can belong to several groups with the 

degree of belongingness specified by membership 

grades between the range 0 and 1. However, FCM 

still uses a cost function that is to be minimized while 

trying to partition the data set. 

The membership matrix U is allowed to have 

elements with values between 0 and 1. However, the 

summation of degrees of belongingness of a data 

point to all clusters is always equal to unity: 

 μij
c
i=1    ,∀ j = 1…n 

The cost function for FCM is a generalization of 

Equation given for Hard clustering algorithms. 

J X; U, V =   (μik )m

N

k=1

c

i=1

 Xi − Vi 
2 

Where  μik  is between 0 and 1;  Vi  is the cluster center 

of fuzzy group, dij = Xi − Vi 
2  is the Euclidean 

distance between the ith cluster center and the jth 

data point; and m[1,∞) is a weighting exponent. 

Where, DikA
2 =  xk − vi A

2 =(xk-vi)TA(xk-vi) is a 

squared inner-product distance norm. The necessary 

conditions for the above equation to reach its 

minimum are: 

Vi =
 (μij )

m Xj
N
j=1

 (μij )
mN

j=1

 

And       μij =
1

  
d ij

d kj
 

2/ m−1 
c
k =1

 

The algorithm works iteratively through the 

preceding two conditions until the no more 

improvement is noticed. The FCM algorithm 

computes with the standard Euclidean distance norm, 

which induces hyper spherical clusters. Hence it can 

only detect clusters with the same shape and 

orientation. 

C. The Gustafson-Kessel (GK) 

algorithm: 

The basic problem of FCM algorithm is that it does 

not detect clusters of different shapes. In order to 

solve this problem Gustafson and Kessel extended 

the standard fuzzy c-means algorithm by employing 

an adaptive distance norm, in order to detect clusters 

of different geometrical shapes. Each cluster has its 

own norm-inducing matrix Ai, which yields the 

following inner-product norm: 

DikA
2 =(Xk-vi)T  Ai(xk-vi)   ,1 ≤  i ≤  c, 

1 ≤  k ≤  N. 

The matrices Ai are used as optimization variables in 

the c-means functional, thus allowing each cluster to 

adapt the distance norm to the local topological 
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structure of the data. Let A denote a c-tuple of the 

norm-inducing matrices: A= (A1, A2 …Ac) the 

objective functional of the GK algorithm is defined by:    

J(X; U, V,A) =   (μik )m DikA i

2N
k=1

c
i=1  

For any fixed  A, fuzzy partition conditions can be 

directly applied. However, in the objective function 

given above, since it is linear in Ai it cannot be directly 

minimized w.r.t Ai. Which means J can be made as 

small as we want by simply making Ai less positive 

definite. Ai must be constrained in some way to get a 

feasible solution, the usual way to accomplish this is to 

constrain the determinant of Ai. Allowing the matrix Ai 

to vary with its determinant fixed corresponds to 

optimizing the cluster's shape while its volume remains 

constant: 

 Ai = ρi  , ρ > 0 

Where ρi   is fixed for each cluster. Using the 

Lagrange multiplier method, the following 

expression for Ai is obtained: 

Ai =  ρidet⁡(Fi) 
1

n Fi
−1 Where Fi is the fuzzy 

covariance matrix of the ith cluster defined by 

Fi=
 (μ ik )m (xk−v i)  (xk−v i  )

TN
k =1

 (μ ik )mN
k =1

 Note that the 

substitution of Fi and Ai gives a generalized squared 

Mahalanobis distance norm between X k and the 

cluster mean vi , where the covariance is weighted by 

the membership degrees in U.  

D. The Gath-Geva (GG) algorithm: 

We have seen how GK algorithm has 

considerably extent its effort to solve FCM 

limitation. GG algorithm is yet another extension 

done on GK algorithm by taking the size and density 

of clusters into account. In here the Clustering 

algorithm, employs a distance norm based on the 

fuzzy maximum likelihood estimates, proposed by 

Bezdek and Dunn. 

Dik  xk , vi =
 det⁡(Fwi )

α i
exp 

1

2
(xk − vi

 l )TFwi
−1(xk − vi

 l )  

In contrast to GK algorithm, this distance norm 

involves an exponential term thus decreases faster 

than the inner-product norm. Fwi  denotes the fuzzy 

covariance matrix of the i-th cluster, given by: 

𝐹𝑤𝑖  = 
 (μ ik )w (xk−v i)  (xk−v i  )

TN
k =1

 (μ ik )wN
k =1

 , 1 ≤  i ≤  c 

Where w = 1 in the original FMLE algorithm, but 

here we use the w = 2 weighting exponent, so as to 

compensate the exponential term of the distance 

norm and the partition to become more fuzzy. The 

difference between the matrix Fi in GK algorithm and 

the Fwi define above is that the latter does not 

involve the weighting exponent m, but instead 

consists of w. This is because the two weighted 

covariance matrices arise as generalizations of the 

classical covariance from two different concepts. The 

αi is the prior probability of selecting cluster is given 

by 

αi =
1

N
 μik

N

k=1

 

The membership degrees μik  are interpreted as the 

posterior probabilities of selecting the  i-th cluster. 

Algorithms: 

A. K-Means algorithm:                                                                                                                 

 

 

 

 

 

 

 

 

 

 

 

𝑣𝑖
(𝑙)

=
 𝑥𝑖
𝑁
𝑖=1

𝑁𝑖

 

 𝑚𝑎𝑥 𝑣(𝑙) −  𝑣(𝑙−1) 

𝑛

𝑘=1

≠ 0 

Given the data set X, choose the number of clusters 1 < c 

< N. 

Initialize with random cluster centers chosen from the 

data set. 

Repeat for l=1,2,3…….  

Step 1 Compute the distances 

𝐷𝑖𝑘𝐴
2 =(xk-vi)

T
A(xk-vi), 1 ≤  i ≤  c ,1 ≤  k ≤  N 

Step 2 Select the points for a cluster with the minimal 

distances, 

they belong to that cluster. 

Step 3 Calculate cluster centers 

Until 

Ending: Calculate the partition matrix. 
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B.K-Medoid Algorithm:

 

 

 

 

 

                                                                                                                           

 

 

 

 

 

 

 

 

C.FCM  Algorithm

 

C. FCM Algorithm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D.  GG Algorithm

 

 

 

 

 

 

                   

 

       

 

 

 

 

 

 

 

 

 

 

 

E.GK Algorithm

 

 

 

 

 

 

 

𝑣𝑖
 𝑙 ∗ =

 𝑥𝑖
𝑁
𝑖=1

𝑁𝑖

 

Given the data set X, choose the number of clusters 1 < c 

<

 

N.Initialize with random cluster centers chosen from the 

data setX.

 

Repeat for l= 1,2,3,…….

 

Step 1

 

Compute the distances

 

DikA
2∗ =(xk-vi

*
)

T
A(xk-

 

vi
*
),

 

And xi
∗=argmini Dik

2∗ vi
 l = xi

∗

 

Step 2

 

Select the points for a cluster with the minimal 

distances,they belong to that cluster.

 

Step 3

 

Calculate fake cluster centers(the original K-

means)

 

Step 4

 

Choose the nearest data point to be the cluster 

center

 

𝐷𝑖𝑘𝐴
2 =(xk-vi)

T
A(xk-vi)

 

Until  𝑚𝑎𝑥 𝑣(𝑙) −

 

𝑣(𝑙−1) 𝑛
𝑘=1 ≠ 0

 

Ending Calculate the partition matrix

 

 

𝑣𝑖
(𝑙)

=
 (𝜇𝑖𝑘

(𝑙−1)
)𝑚𝑥𝑘

𝑁
𝑘=1

 (𝜇𝑖𝑘
(𝑙−1)

)𝑚𝑁
𝑘=1

, 1

 

≤

 

i

 

≤

 

c

  

Given the data set X, choose the number of clusters 1 < c 

< N,

 

the weighting exponent m > 1, the termination 

tolerance

  

𝜖> 0

 

and the norm-inducing matrix A. Initialize the partition 

matrix randomly, such that𝑈(0) ∈ 𝑀𝑓𝑐 .

 

Repeat forl=1,2,3….

 

Step 1

 

Compute the cluster prototypes (means):

 Step 2

 

Compute the distances:

 

 

𝐷𝑖𝑘𝐴
2 =(xk-vi)

T
A(xk-vi), 1

 

≤

 

i

 

≤

 

c

 

,1

 

≤

 

k

 

≤

 

N

 

Step 3

 

Update the partition matrix:

 

𝜇𝑖 ,𝑘
(𝑙)

=
1

  𝐷𝑖𝑘𝐴 D jkA  
2  𝑚−1  𝑐

𝑗=1

.

 

Until  𝑈(𝑙) − 𝑈(𝑙−1) <∈

 

 

 

Dik
2  Xk , vi =

(2π) 
n
2
 
 det Fi 

αi

exp 
1

2
 Xk

−

 

vi
(l) 

T
Fi

−1 Xk −

 

vi
(l)
  

 

 𝑈(𝑙) − 𝑈(𝑙−1) < 𝜖

 

Given a set of data X specify c, choose a weighting 

exponent m > 1 and a termination tolerance ∈

 

> 0. 

Initialize the partition matrix with a more robust 

method.

 

Repeat for l = 1, 2,….

 

Step 1

 

Calculate the cluster centers:

 

 

    vi
(l)

=
  μ ik

 l−1 
 
ω

Xk
N
k =1

  μ ik
 l−1 

 
ω

N
k =1

, 1 ≤ i ≤ c

 

Step 2

 

Compute the distance measure 𝐷𝑖𝑘
2 The distance 

to the prototype is calculated based the fuzzyCovariance 

matrices of the cluster.

 

 

Fi
l =

  μ ik
 l−1 

 
ω

N
k =1  Xk−Vil   Xk−Vil  

T

  μ ik
 l−1 

 
ω

N
k =1

,

 

1 ≤ i ≤ c

 

with the a priori probability

 

 

  𝛼𝑖 =
1

𝑁
 𝜇𝑖𝑘
𝑁
𝑘=1

 

Step 3

 

Update the partition matrix

 

 

  𝜇𝑖𝑘
 𝑙 =

1

 (𝐷𝑖𝑘 (𝑋𝑘 ,𝑉𝑖)/𝑐
𝑗=1 𝐷𝑗𝑘 (𝑋𝑘 ,𝑉𝑗 ))2/(𝑚−1)      ,

 

1 ≤ 𝑖 ≤

𝑐,

 

1 ≤ 𝑘 ≤ 𝑁

 

 

Until

 

 

 

𝑣𝑖
(𝑙)

=
 (𝜇𝑖𝑘

(𝑙−1)
)𝑚𝑥𝑘

𝑁
𝑘=1

 (𝜇𝑖𝑘
(𝑙−1)

)𝑚𝑁
𝑘=1

, 1

 

≤

 

i

 

≤

 

Given the data set X, choose the number of clusters 

1 < c < N,

 

the weighting exponent m > 1, the termination 

tolerance 𝜖> 0

 

and the norm-inducing matrix A. 

 

Initialize the partition matrix

 

randomly, such that 𝑈(0) ∈ 𝑀𝑓𝑐 .

 

Repeat for l= 1, 2,3…….

 

Step 1

 

Calculate the cluster centers.

 

324

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100105



 

 

 

 

 

 

 

 

 

 

 

 

V. Validation Parameter: 

Cluster validity refers to the alternate solution to find 

out whether a given clustering partition fits to the 

data well or not. The clustering algorithm always 

tries to find the best fit for a fixed number of clusters 

and the parameterized cluster shapes. However this 

does not mean that even the best fit is meaningful for 

all cases. Either the number of clusters might be 

wrong or the cluster shapes might not correspond to 

the groups in the data, if the data can be grouped in a 

meaningful way at all. There is different scalar 

validity measures have been proposed in the 

literature, and one should be clear none of them is 

perfect by oneself; therefore we used several of those 

validity measures known as indexes in our validation. 

1. Partition Coefficient (PC): measures the amount 

of "overlapping" between clusters. It is defined by 

Bezdek as follows: 

PC(c) = 
1

𝑁
   (𝜇𝑖𝑗 )2𝑁

𝑗=1
𝑐
𝑖=1  , where 𝜇𝑖𝑗  is the 

membership of data point j in cluster i.The 

disadvantage of PC is lack of direct connection to 

some property of the data themselves. The optimal 

number of cluster is at the maximum value. 

2. Classification Entropy (CE): it measures the 

fuzziness of the cluster partition only, which is 

similar to the Partition Coefficient 

CE(c)=−  
1

N
   μij log μij 

N
j=1

c
i=1  

.3. Partition Index (SC): is the ratio of the sum of 

compactness and separation of the clusters. It is a 

sum of individual cluster validity measures 

normalized through division by the fuzzy cardinality 

of each cluster. 

SC(c)= 
 (μ ij )mN

j=1  (x j−vi)   
2

N i  (μ ij )mc
k =1  (vk−v i)   

2
c
i=1 , SC is useful 

when comparing different partitions having equal 

number of clusters. A lower value of SC indicates a 

better partition. 

4. Separation Index (S): on the contrary of partition 

index (SC), the separation index uses a minimum-

distance separation for partition validity. 

S(c)=
   (μ ij )2N

j=1  (x j−v i)   
2N

j=1
c
i=1

Nmin i,k
 (vk−v i)   

2  

5. Dunn's Index (DI): this index is originally 

proposed to use at the identification of "compact and 

well separated clusters". So the result of the 

clustering has to be recalculated as it was a hard 

partition algorithm. 

DI(c)= mini ϵc{minjϵc,i≠j  
min x∈C i,y∈C j d  x ,y  

max k∈ c {max x ,y∈ C d(x,y)
 },  

The main drawback of Dunn's index is computational 

since calculating becomes computationally very 

expansive as c and N increase. 

              VI. Implementation and Results: 

As now we have a general idea of all the Hard as well 

as Fuzzy clustering, which include their basic 

mathematical foundations. We now turn our 

discussion to all these techniques on the basis of 

practical study. This study includes the practical 

implementation of all the five clustering techniques 

and testing each one of them on a set of data called 

motorcycledataset.   

Step 2 Compute the cluster covariance matrices. 

𝐹𝑖
(𝑙)

=
 (𝜇 𝑖𝑘

 𝑙−1 
)𝑚 (𝑥𝑘−𝑣𝑖

(𝑙)
)(𝑥𝑘−𝑣𝑖

(𝑙)
)𝑇𝑁

𝑘=1

 (𝜇 𝑖𝑘
 𝑙−1 

)𝑚𝑁
𝑘=1

    , 1 ≤  i ≤  c 

Add a scaled identity matrix:𝐹𝑖 =  1 − 𝛾 𝐹𝑖 +

 𝛾(𝐹0)1 𝑛  I 

Extract eigenvalue 𝜆𝑖𝑗  and eigenvectors 𝜙𝑖𝑗  ,Find 

𝜆𝑖 ,𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗𝜆𝑖 ,𝑗 and set 

𝜆𝑖 ,𝑚𝑎𝑥 = 𝜆𝑖𝑗 𝛽,∀𝑗  for which𝜆𝑖 ,𝑚𝑎𝑥 𝜆𝑖 ,𝑗 ≥ 𝛽  

Reconstruct Fi by: 

Fi= [∅i,1 … . .∅i,n]diag(𝜆𝑖 ,1 … . 𝜆𝑖 ,𝑛)[∅i,1 … . .∅i,n]−1 

Step 3 Compute the distances. 

𝐷𝑖𝑘𝐴𝑖
2 (𝑋𝑘 ,𝑉𝑖)=(𝑥𝑘 − 𝑣𝑖

 𝑙 )𝑇 (𝜌𝑖det⁡(𝐹𝑖))1/𝑛𝐹𝑖
−1  𝑋𝑘 −

𝑉𝑖
(𝑙)  

Step4 Udpate the partition matrix 

𝜇𝑖𝑘
 𝑙 =

1

 (𝐷𝑖𝑘𝐴𝑖
(𝑋𝑘 ,𝑉𝑖)/𝑐

𝑗=1 𝐷𝑗𝑘 (𝑋𝑘 ,𝑉𝑗 ))2/(𝑚−1)      , 1 ≤ 𝑖 ≤

𝑐, 1 ≤ 𝑘 ≤ 𝑁 

Until            𝑈(𝑙)  − 𝑈(𝑙−1)|| < 𝜖 
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      Fig-1 Clusters using K-means Algorithm 

 

         Fig-2 Clusters using K-medoid Algorithm 

Fig-3 Cluster using FCM Algorithm 

Fig-4 Clusters using GK Algorithm 

Fig-5 clusters using GG Algorithm 

Table-1Comparision of Index parameters for 

different algorithms 

Table-2 Comparison of Speed and Accuracy for 

different algorithm 

 PC CE SC S DI 
K-

Means 

1 NaN 0.085 0.0001 0.0129 

K-

Medoid 

1  NaN 0.2384 0.0002 0.0031 

FCM 0.8152 0.3480 0.9157 0.0007 0.0185 

GK 0.8255 0.3278 0.8890 0.0007 0.0083 

GG 0.9837 0.0287 2.2349 0.0020 0.0153 

CLUSTERING 

ALGORITHM 

Speed in 

terms of 

Number 

of 

Iteration 

Root Mean 

Square Error 

(RMSE) 

Accuracy 

K-Means 3 0.443 81% 

K-Medoid 2 0.441 78% 

FCM 42 0.437 69% 

GK 70 0.437 77% 

GG 27 0.439 79% 
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Fig-6 Comparison of speed and accuracy 

 

Fig-7 Comparison of RMSE 

As mentioned earlier the similarity norm that is used 

is purely mathematical distance norm. However 

because most similarity metrics are very sensitive to 

large ranges of elements in the input vectors, so each 

of the input variable is normalized first within the 

unit interval [0, 1] or hypercube. After normalization 

each algorithm is tested on the normalized data set. 

The resultant cluster is then evaluated using the 

parameters mentioned above. The analysis of each of 

the algorithm is given below with some of their 

remarks: 

K-Means runs considerably very fast by looking at 

the number of iteration it takes from above table 2, 

than other algorithms, but one limitation it has is that 

it is very sensitive to initial centroids. That is why it 

is recommended to run the algorithm repeatedly to 

yield better the best results. Moreover the value of K 

still needs to be given by the user however regarding 

accuracy it excel as compared with other algorithms. 

K-Medoid performs almost same as that of K-Means 

algorithm. It‟s speed and accuracy are fairly 

encouraging and needless to say it is very very fast. 

Coming to FCM it starts normally like the K-Means 

algorithm by assigning random values to the 

membership matrix U. Looking at the fig 3 above we 

can see that FCM can detect only clusters of circular 

shapes however the clusters are a little bit elongated 

because of the direct affect of one cluster over the 

other. In table 2 we can see it is comparatively slower 

than the Hard algorithms accuracy seems to be a 

problem too. Even here the number of clusters is not 

known before hand. 

On running Gustafson-Kessel from fig 4 we can see it 

detect clusters not only of spherical shaped but of 

different geometrical shapes as well. The 

Mahalanobis distance used here adapt the topological 

structure because each cluster is forces to have its 

own norm inducing matrixAi. since it needs to be 

initialized by PCA it takes more time and hence 

slower however accuracy seems to better than that of 

PCA with same RMSE. 

Gath-Geva algorithm uses the PCA for initialization 

like Gk. However because of the exponential term in 

the distance norm, it decreases faster by increasing  

 Xk − Vi  distance that is fairly visible from table 2 by 

looking at the number of iteration it takes.. In Fig. 4 

The GG divides the data point into several disjoint 

clusters but the effects of the other "cluster-borders" 

distort this disjointness. It‟s accuracy is better than all 

the above fuzzy algorithms mentioned above. 

VII. Comparative Analysis based on index 

Parameters: 

From fig 1 to fig 5 shown above the various index 

values mentioned in Section 1V can be easily 

demarcated and compared for each clustering 

methods. All the validity measures are collected in 

Tab. 1. It must be noted, since all algorithms use 

random initialization, so different running‟s issue 

results in different partition results, i.e. values of the 

validation measures. On the other hand the results 

hardly depend on the structure of the data, and no 

validity index is perfect by itself for a clustering 

problem. The figures show that hard clustering 

methods can find a good solution for the clustering 

problem, when it is compared with the figures of 

fuzzy clustering algorithms. On the contrary in Fig.1 

and Fig.2 one can see a typical example of the 
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initialization problem of hard clustering. This caused 

the differences between the validity index values in 

Tab.1 PC and CE is useless for K-means and K-

medoid, because they are hard clustering methods. 

But SC,S, and DI are useful to validate crisp and well 

separated clusters.. The only difference between Fig. 

3 and Fig. 4 stands in the shape of the clusters, where 

the Gustafson-Kessel algorithm can find the 

elongated clusters better obvious by looking at the 

parameters in tab.1. Fig.5 shows that the Gath Geva 

algorithm returned with a result of three subspaces.  

 

Fig-8Comparison of PC, CE and SC for different 

algorithms 

 

Fig-9 Comparison of DI and S for different 

algorithms 

IX. Conclusion: 

In this paper a brief review has been done on the 

various Hard and fuzzy clustering algorithm. It is 

worth knowing that each of them has their own share 

of pros and cons. Even though at times it may seems 

that Hard clustering algorithm may seems to have an 

upper hand regarding speed and other issues such as 

accuracy but it is important to keep in mind about the 

importance of fuzziness as well when it comes to 

application in real life. We have made efforts in the 

analyzing each clustering algorithm even in terms of 

index parameters and how they help in describing 

and explain the cluster behavior. 
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