
Handwritten Text Detection using Open

CV and CNN

Dr. S Jessica Saritha
Assistant Professor, Dept of CSE, JNTUACE,

Pulivendula, AP, India

K R G Deepak Teja
Student, Dept of CSE, JNTUACE,

Pulivendula, AP, India

G Hemanth Kumar
Student, Dept of CSE, JNTUACE,

Pulivendula, AP, India

S Jeelani Sharief
Student, Dept of CSE, JNTUACE,

Pulivendula, AP, India.

Abstract:- The main aim of the project is Handwritten Text

Recognition (HTR). HTR is the task of transcribing images of

handwritten text into the digital text. In HTR, the text is

written, captured by a scanner and then the resulting

images are processed as input to return its text format. We

need openCV and CNN for achieving this task. Our goal is to

design a model that transcribes the images to text with great

accuracy.

Keywords – CNN, Handwritter Text Recognition (HTR),

openCV, Transcription

I. INTRODUCTION

Now a day’s people have been using ebooks

which do not occupy any space and ample copies can be

carried comfortably. So there is a need for making more

ebooks available. We have more number of handwritten

texts available all over the world which need protection be

safegaurded. By transcribing them we can increase the

availability of ebooks. And also instead of striving hard to

protect old texts which are hand written, they can be

digitilized and stored as soft copies with ease.

We will apply the machine learning techniques in

order to find the digital form of handwritten text from their

scanned images. We will take the help of the readymade

datasets that contain pixel values of scanned images as the

inputs and we will be able to find the text in it. We can also

extend this project for different languages and writing

styles.

Problem Statement: To accurately predict the text from a

scanned handwritten text image using Machine Learning

algorithms.

For this we need to assume that all the images that

contain same letters have same features and we can

conclude that an image having those features contains that

alphabet. However this hypothesis is ideal and may not

come true always in practical.

II. DATASETS

The data plays a very important role in machine

learning. The past data is used to predict the future

outcome. The relevant data can be downloaded from the

internet.

The data that is related to our project that is HTR

consists of pixel values. The format of the data files is csv

(Comma Separated Values). Each row represents an image

and contains a lable in the first column and followed by

784 pixel values for 28 X 28 images.

 The data related to our project will have thousands

of instances. The data that we use for our project is

obtained from kaggle.

Two types of data will be taken

✓ One for English alphabets

A_Z Handwritten Data [1] and

✓ The other for digits - MNIST dataset [2]

DATA VISUALIZATION

For dataset_1 the shape will be (372450, 785) and for

dataset_2 the shape will be (42000, 785).

A_Z Handwritten_Data:

The dataset will comprise of multivariate data of

English alphabets. Here the dataset will have a label and

pixel values which lie from 0 to 255. There will be total of

372450 instances, and the total number of attributes is 784

and a label.

0_9 Handwritten_Data:

The dataset will comprise of multivariate data of

digits from 0 to 9. Here the dataset will have a label and

pixel values which lie from 0 to 255. There will be total of

42000 instances, and the total number of attributes is 784

and a label.

Fig 1. Bar diagram showing lable sizes of different labels

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS040641
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 04, April-2020

749

www.ijert.org
www.ijert.org
www.ijert.org

Table 1. First five instances of the dataset

III. ARCHITECTURE

The problem convert a handwritten text which is in the

form of pixels into its digital for is a data driven approach.

The data which is already collected can be used for

extracting the features of each letter. The availability of

more powerful machine learning algorithms introduces an

efficient and better approach to solve this problem.

The project is divided into two modules.

A Segmentation module in which an image is taken as

input, letters are detected, bounded, cropped, resized and

then segmented and a Training module where prediction

occurs.

The output of the segmenation module is the input of the

training module.

Fig 2. Architecture

IV. METHODOLOGY

The research methodology in this project include,

• Visualizing and understanding the data

• Choosing a suitable model

• Agreeing on a common evaluation metric

• Training and Testing the models

• Implementing the final model

• Analyzing the result

Fig 3. Flow of training module

V. EXPERIMENTAL RESULTS

A. Segmetation Module

 Segmentation model is very important for this

project as its output will be the input of the other module.

1) Read the image

We have many ML libraries like Pillow, openCV etc. for

performing operations on images. Here openCV is used to

read and manipulate images. An image is read and then

stored in multiple copies for performing different

operations.

After reading the image is plotted in its shape to make sure

it is read perfectly. That image contains letters that need to

be images each cropped into 28 X 28 images by the end of

segmentation model.

Fig 4. An image of dimensions 351 X 232 pixels

2) Detecting the letters

Object detection is a Computer vision technique that

detectects certain components from in an image or a video.

It makes use of Machine Learning and Deep Learning

Algorithms to yield good results. Detecting the letters is

same as detecting objects. We need to apply some standard

filters to the input image for achieving this task.

Step 1: Convert a BGR image to Greyscale image.

An image with 3 channels is a BGR image but a Grayscale

image consists of a single channel. A channel is a thid

dimension of an image.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS040641
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 04, April-2020

750

www.ijert.org
www.ijert.org
www.ijert.org

Fig 5. A Grayscale Image

Step 2: Applying Gaussian blur to the Greyscale image.

This step is done to remove any noise and disturbances in

the image. If the image is blurred the colour intensites can

be recognised easily from the image. The blurring is

technically called Gaussian Blur in the Computer Vision.

Step 3: Otsu Thresholding → A standard stepfor object

detection

It is calcluation of the measure of spread for the pixel

levels each side of the threshold.

Fig 6. Image after applying Otsu thresholding

Step 4: Finding and Drawing contours

The ‘findcontours()’ and ‘drawcontours()’ are the methods

used for finding and drawing contours which are generally

borders of a detected object in an image.

The drawcontours need image, detected contours, colour

and dimensions of the border as the parameters.

Fig 7. Image with contours

Step 5: Storing co-ordinates for rectangular bounding

Boundingrect() gets the list of x, y co-ordinates of top left

point of the image, width and height allowing us to

drawimages in the order of detected objects. We need to

sort in the order of x co-ordinate of the top left corner to

order them. All these lists are stored in a list and sorted

with a base of list[i][0]th elements.

3) Bounding and Cropping

This part of code is added before cropping in order to add

spaces between letters. In the list that contains bounding

details, we add a space string “ “if the distance between the

corresponding x co-ordinates is > 50 pixel values

representing they must be separated by a space.

And then Bounding and Cropping for non-spaces and

storing them in a list ‘img_lst’.

The elements in the list of detected objects may be the

boundingrect values of a detected object from the image or

a space string. The detected object is considered a letter

only if its height is greater than 20 pixels. (Our assumption)

Then for those which are considered letters we use

boundingrect values to crop the letter from another copy of

the original image stored in another variable and append

each of the cropped images which are in numpy array form

into a python list.

‘rectangle()’ draws a rectangular border around detected

letters which has the image, bounding values, colour and

width of the border.

Fig 8. Image with rectangular bounds around

Fig 9. A cropped image of letter E is one of the results of cropping

4) Resizing

For each cropped image in the list, we resize them to 28 X

28 pixels. We do so because the output images from this

module which are going to be the input of the other module

must be images of size 28 X 28 pixels as the training data

of that module is of that format.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS040641
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 04, April-2020

751

www.ijert.org
www.ijert.org
www.ijert.org

Fig 10. A resized image

Each resized images must be converted to Grayscale to

match requirements of training model. And then sent as

input to the training model.

The subplot of the output of segmentation module looks

like

B. Training Module

A model is trained by using past data and Machine learning

Algorithms. It learns from the past data by feature

extraction and patterns. In this project Convolutional

Neural Networks are used. We split the data into training

and testing in the ratio of 80:20.

The dataframe with attributes, the dataframe with only

label column, train_size or test_size and shuffeled are

important parametere of trin_test_split. Shuffeled will be

‘True’ by default which shuffeles the data before spliting.

This method need not always return same output.

Scikit-learn library is used to change the form of data. We

need to convert the attribute values to the float datatype and

their labels into the categorial form to train them.

The attribute values are converted to floating point

numbers ranging from 0 to 1 which earlier were 0 to 255. A

pixel value of 0 will be 0.0000, a pixel value of 1 will be

1.0000, and a pixel value of 128 will be 0.5000.

Categirial form results in a list of size equals number of all

possible labels in which an instance with lable value i will

have i = 1 and other elements 0. Even these values must be

in float.

The categorial form will look like this.

Now we can proceed to train our data by using standard

Machine Learning Algorithms.

A sequence of hidden layers are created with some nodes in

each of them. The first hidden layer is 2Dimensional

Convolution layer with kernal size 5 X 5 and 32 nodes. The

activation function used is ‘relu’. And then max pooled

with 2 X 2 and over fitting is reduced using dropout of 0.3.

Then two more layers are added with 128 and n nodes

respectively, where n is the number of possible outputs

(here n = 36).

Now we compile the model by ‘categorial_crossentropy’

loss function, ‘adam’ optimizer with a metric of ‘accuracy’.

Fig 11. Summary of the training model

The fitting of a model is shown below. It is passed with 1

iteration. 200 batch size and the dataset contains 331560

instances.

model.fit (X_train, Y_train, validation_data = (X_test, Y_test),

epochs=1, batch_size=200, verbose=2)

Instructions for updating:

Use tf.cast instead.
Train on 331560 samples, validate in 82890 samples

Epoch 1/1
- 350s – loss: 0.3029 – acc: 0.9184 – val_loss: 0.1381 – val_acc: 0.962

VI. RESULTS

The above model will give us the train accuracy of 0.9184

and the test accuracy of 0.9626.

Model Loss Accuracy

Neural Network 0.1381 0.9626

 ARMY

Fig 12. Illustration if HTR

VII. CHALLENGES INVOLVED

The challenges we have faced while modelling handwritten

text recogniser are

(i) Letters like ‘i‘and ‘j‘which have break in them cannot

be detected as a single letter.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS040641
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 04, April-2020

752

www.ijert.org
www.ijert.org
www.ijert.org

Figure An image with rectangular border around detected contours

Figure A subplot for cropped images of above image

(ii) If two letters touch each other (like in cursive writing),

they are recognized as a single letter.

VIII. CONCLUSION

Convolutional Neural Network learns from the real time

data and simplifies model by reducing the number of

parameters and hence gives considerable accuracy.

Future Enhancements

We can increase the accuracy:

→ By taking huge datasets

→ By adopting much suitable algorithms

→ We can compile the model at more number of epochs.

→ Hyper-parameter Tuning (There are a lot of parameters

that we can play with).

→ Use of deeper architectures

This application can be taken to next level by

→ Extending its scope to different writing styles

→ Extending its scope to different writing styles

ACKNOWLEDGEMENT

We would like to acknowledge the help of ‘JNTUA

College of Engineering, Pulivendula’ for the kind support

provided and our faculty and friends for the helpful

discussions. We also would like to thank ‘kaggle’ who

provided datasets.

REFERENCES
[1] https://www.kaggle.com/sachinpatel21/az-handwritten-alphabets-

in-csv-format

[2] https://www.kaggle.com/c/digit-recognizer/data

[3] CHARACTER RECOGNITION IN NATURAL IMAGES By

Te´ofilo E. de Campos, Bodla Rakesh Babu, Manik Varma

https://www.researchgate.net/publication/221416071_Character_
Recognition_in_Natural_Images/link/5dd6e92892851c1feda56fc1

/download

[4] Text detection and recognition in raw image dataset and seven
segment digital energy meter display By Karthick

Kanagarathinam, Kavaskar Sekar

https://reader.elsevier.com/reader/sd/pii/S235248471930174X?to
ken=FFC0111CC7487898FEFE8637DDA6CE1692B76C48DBB

26C375D1CD755667BBC2109D8C5287A2205169F20461A43B

DD304
[5] Scene Text Detection and Recognition: The Deep Learning Era

By Shangbang Long, Xin He, Cong Yao

https://arxiv.org/pdf/1811.04256.pdf
[6] Automatic Text Detection and Classification in Natural Images

By C.P. Chaithanya, N. Manohar, Ajay Bazil Issac

https://www.ijrte.org/wp-
content/uploads/papers/v7i5s3/E11330275S19.pdf

[7] An End-to-End Trainable Neural Network for Image-based
Sequence Recognition and Its Application to Scene Text

Recognition By Baoguang Shi, Xiang Bai and Cong Yao

https://arxiv.org/abs/1507.05717
[8] EMNIST: an extension of MNIST to handwritten letters By

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andr´e van

Schaik https://arxiv.org/pdf/1702.05373.pdf
[9] Handwritten Text Recognition for Historical Documents By

Veronica Romero, Nicholas Serrano, Alejandro H. Toselli, Joan

Andreu Sanchez and Enrique Vidal
https://www.aclweb.org/anthology/W11-4114.pdf

[10] Arabic Cursive Text Recognition from Natural Scene Images By

Saad Bin Ahmed, Saeeda Naz, Muhammad Imran Razzaq and
Rybiyah Yusof https://www.mdpi.com/2076-3417/9/2/236/pdf

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS040641
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 04, April-2020

753

https://www.kaggle.com/c/digit-recognizer/data
www.ijert.org
www.ijert.org
www.ijert.org

