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ABSTRACT 

 

We discuss the effects of Hall currents on an ionized hydromagnetic slip-flow between two parallel 

walls in a rotating system, when the walls are made up of non-conducting and conducting materials. 

Exact solutions for the primary and secondary velocity distributions and their corresponding mean 

velocities are obtained by assuming that the magnetic Reynolds number is small by applying the first 

order velocity slip conditions at both the walls. Also discussed the flow features for different values of 

the governing parameters involved such as, the rotation parameter, Hartmann number, Hall parameter, 

slip parameter and the ionization parameter (that is, the ratio of electron pressure to the total pressure). 

 

Keywords: MHD flow, Hall currents, Rotating fluids, Slip flow regime 

 

 

 

§ 1. INTRODUCTION 

 The problem of hydromagnetic channel flow has been attracted by a number 

of researchers, notably, Hartmann- Lazarus (15), Shercliff (40), Cowling (6), Chang and Yen (5), 

Cramer (7), Tao (47), Sutton and Sherman (44) and many more, on account of its numerous 

applications in engineering science, in industrial applications, such as in MHD generators, nuclear 

reactors and geothermal energy extractions, also in plasma studies etc. With the impetus given by 

these authors and many more, the study of hydromagnetic flows on different aspects and in different 

geometries has gained a good deal of studies by several authors, namely  Rossow (34), Kakuktani 

(17), Ong and Nicholls (25), Ludford (21), Gupta (12), Singh (40), Soundalgekar (41, 42), Datta (8), 

Pop (26-28), Messiha (24), Rao (31), Verma and Mathura (48), Mathur (22). 

 In the above mentioned investigations, the effects of Hall currents are not 

considered.  But it is well known in literature that, when the working fluid is an ionized gas, where the 

density is low/or the magnetic field is very strong, one cannot neglect the resulting effects of Hall 

currents, since the study of hydromagnetic flows with Hall currents has important applications in 

designing the magnetohydrodynamic generators, Hall accelerators and in flight 

magnetohydrodynamics etc. The problems relating to the effects of Hall currents on specific flow 

problems under the influence of a very strong magnetic field have been studied by several researchers, 
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such as, Broer (3), Sato (36), Sutton and Sherman (44), Tani (46), Katagiri (16),  Pop (29), Gupta 

(13), Mathur (22), Datta and Jana (9),  Debnath et al (10),  Rao and Krishna (32),  Raptis and Ram 

(35), Ghosh (11), Ram (33), Helmy (15), Rajasekhar et. al (30), Chand et. al (4) and many more. In 

which, LingaRaju and Rao (19) have studied the Hall effects on temperature distribution in a rotating 

ionized hydromagnetic flow between parallel walls.  Later on, LingaRaju and Murthy (20) have 

studied the quasi-state solutions of MHD ionized flow and heat transfer with Hall currents between 

parallel walls in a rotating system. 

 But, in most of these investigations, the authors have considered the no-slip 

conditions at the boundary walls. However there exists, the cases where partial slip on the wall does 

occur. These situations may include rarefied gas flows, rough or porous walls. In such cases, the no-

slip condition must be replaced by the partial slip condition with the modified Navier-Stokes 

equations describing the flow field and many such investigations are also made available in the 

literature. Mention may be made due to the works of: Basset (1), Michael and Stephen (23), Tamada 

and Murali (45), Bhatt and Sacheti (2), Street (43), Lance and Rogers (18), Sastry and Bhadram (37), 

Schaaf and Chambre (38) with slip boundary conditions. 

 In this paper, an attempt is made to discuss how LingaRaju and Rao‟s (19) 

results get modified when their no-slip boundary conditions at the walls are replaced by the first order 

velocity slip condition?. We discuss the effects of Hall currents on an ionized hydro-magnetic slip-

flow between two parallel walls in a rotating system, when the walls are made up of non-conducting 

and conducting materials. Exact solutions for the primary and secondary velocity distributions and 

their corresponding mean velocities are obtained by assuming that the magnetic Reynolds number is 

small by applying the first order velocity slip boundary conditions at both the walls. Also, it is 

discussed the flow features for different values of the governing parameters involved such as, the 

rotation parameter T, the Hartmann number M, the Hall parameter m, slip parameter  and the 

ionization parameter “s”, that is, the ratio of the electron pressure to the total pressure. In § 1, 

formulation of the problem is mentioned. In § 2, the basic governing equations of motion with 

relevant boundary conditions and mathematical analysis of the problem are given. Section §3, deals 

with the solutions of the problem in two cases of study, one for non-conducting(insulating) and the 
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other for conducting walls. While in section §4, discussion of the results is made in detail from the 

graphs as shown in figures 1 to 24. 

 

§ 2.    Formulation   of   the   problem,   basic   equations    with   boundary   conditions  and    

          mathematical analysis  of  the problem 

 

 We consider the steady two-dimensional viscous flow of an ionized gas 

between two parallel walls extent along x- and z-directions situated at a distance 2h apart, in presence 

of a uniform transverse magnetic field by taking Hall currents into account. The x-axis is taken in the 

direction of hydrodynamic pressure gradient in the plane parallel to the channel walls but not in the 

direction of flow. A uniform magnetic field of intensity H0 is applied in the direction of the y-axis. 

The whole system is rotated with an angular velocity   about an axis normal to the xz-plane, i.e., 

about y-axis, where   = ( 0, Ω, 0 ). Since, the plates are infinite in length, so all physical quantities 

except pressure depend only on y. We assume that the magnetic Reynolds number is very small, so 

that the induced magnetic field produced by the motion of the electrically conducting fluid is 

negligible and we applied an electric field in x- and z-directions.  Further, to simplify the theoretical 

analysis, the following assumptions as in Sato (36), Linga Raju and Rao (19) are considered: (i)  The 

density of gas is always constant, (ii)  The ionization is in equilibrium which is  not  affected  by  the 

applied magnetic and electric fields, (iii)  The effect of space charge is neglected (iv) The  flow  is  

fully  developed   and   stationary,  that  is  /t = 0,  /x = 0 except p/x  0, (v) The magnetic 

Reynolds number is small (so that the externally applied magnetic field is undisturbed by the fluid), 

namely the induced magnetic field  is small compared with the applied  field (Shercliff (40)) and (vi) 

The flow is two-dimensional, namely /z = 0. With these assumptions, the governing equations of 

motion and current are formulated and are simplified as 
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 The slip boundary conditions are given by u = 
dy

du
 and w = 

dy

dw
  at   y = + h.                                      

(3) 

  In the above equations, Ω represents the angular velocity with which the whole system is rotated 

about y-axis and s = pe/p is the ratio of the electron pressure to the total pressure.  The value of s is 1/2 

for neutral  fully–ionized  plasma  and approximately zero for a weakly–ionized gas.  u, w and Ex and 

Ez are x- and z- components of velocity V  and electric field E  respectively,  is the first order 

velocity slip parameter .  Also, 
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  where e is the gyration frequency of electron,  and e are the mean collision time between electron 

and ion, electron and neutral particles respectively; 1, 2 are the modified conductivities parallel and 

normal to the direction of electric field.  The above expression for m which is valid in the case of 

partially–ionized gas agrees with that of fully–ionized gas when e approaches infinity.  

 The equations (1) and  (2)  are non–dimensionalised using the characteristic length h and velocity 
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x

p
.  Using the notation u, w for u/up and w/uP and y for y/h, we obtain the non–

dimensional equations: 
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 Further, writing q = u+iw, K = k1+ik2, E = mx+imz ; the equations (5) and (6) can be written in 

complex form as : 
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 The eq. (8) is to be solved subject to the following slip boundary conditions at the walls: 

    q  =  
dy

dq
 at  y = + 1,                                                                                (9) 

 Also, Ix and Iz defined by JX/(0B0uP) and JZ/(0B0uP) respectively, are given in complex notation as  
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  The non–dimensional electric field mx and mz are to be determined by boundary conditions at large x 

and z. 

§ 3.   Solutions of the problem 

The solution of the problem considered is carried out in the following two cases. 
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3.1   Solutions for non-conducting(insulating) walls: 

When the side walls are kept at large distance in x and z-directions and are made up of  non-

conducting material, the induced electric current does not go out of the channel, but circulates in the 

fluid.  Therefore, the additional conditions for current can be defined as in Sato (36) and hence the 

resulting solutions are found. Solutions for velocity and current distributions u, w, um, wm, respectively 

are all independent of the partial pressure of electron gas „s‟and are obtained as  

u=C1 coshpy cosqy + C2 sinhpy sinqy+(1/M
2
)(1+γ/ε)                                                                               

(11) 

w=C2 coshpy cosqy – C1 sinhpy sinqy+(1/M
2
)(m-δ/ε)                                                                              

(12)                           

The mean velocity in the complex notation is given by   qm = um + i wm , where the primary mean 

velocity is given by 

 um=C1 a4 + C2 a5 + A                                                                                                                         

(13) 

and the secondary mean velocity is  given by  

 wm= C2 a4 - C1 a5 + B                                                                                                                   (14) 

The constants involved in the above solutions (11) to (14) are given by     

p = √[√{[M
2
/(1+m

2
)]

2
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2
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2
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 2
} -[M
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2
)]]/√2 
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2
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2
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2
]

 2
 }+[M

2
/(1+m

2
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2
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2
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2
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2
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2
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2
)](sinh

2
p cos

2
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2
p sin

2
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       +2βq sinq cosq + 2 β p sinhp coshp, 

a2 = sinhp sinq+ β q sinhp cosq+ β p coshp sinq, a3 = coshp cosq - β q coshp sinq + β p sinhp cosq 

a4 = [p/(p
2
+q

2
)]sinhp cosq+[q/(p

2
+q

2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
, A = (1/M

2
)[1+(γ/ζ)], B = (1/M

2
)[m-(δ/ζ)] 

 C1 = -[Aa3-Ba2]/a1.,  C2 = -[Aa2+Ba3]/a1.                         

(15) 

       

3.2   Solutions for conducting walls:          

                        When the side walls are made up of conducting material and short-circuited by 

an external conductor, the indeed electric current flows out of the channel.  In this case no electric 

potential exists between the side walls. If we assume zero electric field also in the x- and z- directions, 
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we have mx=0, mz=0.  Constants in the solution are determined by these two conditions. The solutions 

for u, w, um, wm,  are all depend on „s‟ and are obtained as  

u=C1 coshpy cosqy + C2 sinhpy sinqy + A                                                                                                  

(16) 

w=C2 coshpy cosqy – C1 sinhpy sinqy + B                                                                                                 

(17) 

The primary mean velocity is given by 

 um==C1 a4 + C2 a5 + A                                                                                          

(18) 

and the secondary  mean velocity is given by 

 wm= C2 a4 - C1 a5 + B                                                                                              (19) 

the constants involve in the above solutions(16) to (19) are given by 
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  in which um and wm are the mean velocities of the primary and secondary  velocity distributions u and 

w respectively. 

§ 4.  Results and discussion 

The closed form solutions are obtained for both primary and secondary velocity distributions, that is, 

u and w, when both walls are made up of non-conducting (insulated) and conducting materials. The 

numerical computations for u and w are carried out and the corresponding mean velocities are 

calculated to plot their graphs. We note that when = 0 (i.e., for no-slip condition at the walls), the 

analysis is in agreement with the solution of  LingaRaju and Rao (19). When  = 0 and T = 0 (that is, 

for no-slip and without rigid rotation), these results coincide with those of Sato (36). Also, the 

1322

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90521

Vol. 2 Issue 9, September - 2013



  

 

velocity distributions thus obtained are found independent of s (ratio of electron pressure to the total 

pressure) in case of non-conducting walls and depending on “s” in the case of conducting walls. The 

graphs for velocity distributions are shown in figures 1 to 24 for both the cases.  Fig. 1 and 2 exhibit 

the primary  and secondary velocity distributions u and w respectively for different values of the 

Hartmann number M and for fixed Hall parameter m=2, Rotation parameter T = 2 and  = 0.01.  From 

fig.1, It is observed that when m,  and T  are fixed, u decreases with an increase in M. From fig. 2, 

for fixed when m,  and T , as M increases, w also decreases.  Fig. 3 and 4 show the primary and 

secondary velocity distributions u and w respectively for fixed values of Hartmann number M=10, 

rotation parameter T=2,  = 0.01 and for different Hall parameter m.  Here, it is noticed that, for small 

m( say upto 2), both u and w are decreasing in nature while for values of m above 2, they tend to 

increase.  Figures 5 and 6 show the primary and secondary velocity distributions u and w respectively 

for different values of rotation parameter T with fixed M=10, m=2, =0.01. It is found that, both these 

distributions increase as the rotation increases. Figures 7 and 8 exhibit the primary and secondary 

velocity profiles u and w respectively for fixed values of M=10, m=T=2 and different slip parameter 

. These profiles, also found to increase as  increases. 
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Figures 9 to 16 and 17 to 24 represent the graphs for both primary and secondary velocity 

distributions in two cases of s=0 and s=1/2 respectively. For the case when s=0 and s=1/2, it is noticed 

that both the distributions tend to decrease as M increases with fixed m, T and . While for fixed M, 

T,  and an increase in m increases the primary and secondary velocity distributions. But with an 

increase in T, there is no significant variation in the primary velocity distributions for the cases when 

s=0 and s=1/2. While the secondary velocity distribution decreases in case of s=0 and it increases in 

case of s = ½.  Further it is concluded that, the primary velocity distribution u decreases but the 
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secondary velocity distribution increases as the slip parameter  increases with a fixed values of  M, 

m and T in both the cases s=0 and s=1/2. 

§ 6    Conclusion 

The problem of an ionized hydromagnetic slip-flow between two parallel walls in a rotating system, 

when both the walls are made up of non-conducting (insulating) and conducting materials is 

considered by taking the effects of Hall currents in to account. It is assumed that the magnetic 

Reynolds number is small. Exact solutions for the primary and secondary velocity distributions and 

their corresponding mean velocities are obtained by applying the slip boundary conditions at both the 

walls. Also discussed the flow features for different values of the governing parameters involved such 

as, the rotation parameter T, the Hartmann number M, the Hall parameter m, slip parameter  and the 

ionization parameter s ( the ratio of the electron pressure to the total pressure). The velocity 

distributions are found to be independent of s, in case of non-conducting walls and are depending on 

this parameter s, in the case of conducting walls. In case of the non-conducting walls, it is observed 

that, an increase in the Hartmann number is to decrease both the primary and secondary velocity 

distributions for fixed Hall parameter, Rotation parameter and slip parameter. It is noticed that, the 

small Hall parameter ( say upto 2), diminishes the velocity distributions, while for values of this 

parameter (say, above 2), they tend to enhance. It is found that, the profiles of the velocity 

distributions tend to increase with an increase in the rotation or the slip parameter. 

In case of conducting walls and for the cases when the ionization parameter, s= 0 and 1/2, it is noticed 

that, both the distributions tend to decrease as the Hartmann number increases with fixed Hall 

parameter, Taylor number and slip parameter. While, an increase in Hall parameter increases the 

primary and secondary velocity distributions for fixed Hartmann number, Taylor number, slip 

parameter. But with an increase in Taylor number, there is no significant variation in the primary 

velocity distributions. While the secondary velocity distribution decreases in case of ionization 

parameter equal to zero and it increases in case of ionization parameter equal to half.   Further it is 

concluded that, the primary velocity distribution decreases, but the secondary velocity distribution 

1331

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90521

Vol. 2 Issue 9, September - 2013



  

 

increases as the slip parameter increases with the increasing values of Hartmann number, Hall 

parameter and Taylor number.  
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