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Abstract--Distributed generation (DG) uses many small onsite 

energy harvesting deployments at individual buildings to 

generate electricity. DG has the potential to make generation 

more efficient by reducing transmission and distribution 

losses, carbon emissions, and demand peaks. However, since 

renewables are intermittent and uncontrollable, buildings 

must still rely, in part, on the electric grid for power. While 

DG deployments today use net metering to offset costs and 

balance local supply and demand, scaling net metering for 

intermittent renewable to a large fraction of buildings is 

challenging. In this project, we explore an alternative 

approach that combines market-based electricity pricing 

models with on-site renewables and modest energy storage (in 

the form of batteries) to incentivize DG. We propose a system 

architecture and optimization algorithm, called GreenCharge, 

to efficiently manage the renewable energy and storage to 

reduce a building’s electric bill. To determine when to charge 

and discharge the battery each day, the algorithm leverages 

prediction models for forecasting both future energy demand 

and future energy harvesting. We evaluate GreenCharge in 

simulation using a collection of real-world data sets, and 

compare with an oracle that has perfect knowledge of future 

energy demand/harvesting and a system that only leverages a 

battery to lower costs (without any renewable).  

 

Keywords: Distributed Generation(DG),Green Charge, Smart 

Charge 

 
I.INTRODUCTION 

Buildings today consume more energy (41%) than either of 

society’s other broad sectors of energy consumption 

industry (30%) and transportation (29%) [1]. As a result, 

even small improvements in building energy efficiency, if 

widely adopted, hold the potential for significant impact. 

The vast majority (70%) of building energy usage is in the 

form of electricity, which, due to environmental concerns, 

is generated at “dirty” power plants far from population 

centers. As a result, nearly half (47%) of energy use in 

residential buildings is lost in electricity transmission and 

distribution (T&D) from far-away power plants to distant 

homes. An important way to decrease both T&D losses and 

carbon emissions is through distributed generation (DG) 

from many small on-site renewable energy sources 

deployed at individual buildings and homes. Unfortunately, 

in practice, DG has significant drawbacks that have, thus 

far, prevented its widespread adoption. In particular, DG 

primarily relies on solar panels and wind turbines that 

generate electricity intermittently based onus controllable 

and changing environmental conditions. Since the energy 

consumption density, in kilowatt-hours (kWh) per square 

foot, is higher than the energy generation density of solar 

and wind deployments at most locations, buildings must 

still rely heavily on the electric grid for power. 

Distributed generation (DG) uses many small onsite energy 

harvesting deployments at individual buildings to generate 

electricity. DG has the potential to make generation more 

efficient by reducing transmission and distribution losses, 

carbon emissions, and demand peaks. However, since 

renewables are intermittent and uncontrollable, buildings 

must still rely, in part, on the electric grid for power. While 

DG deployments today use net metering to offset costs and 

balance local supply and demand, scaling net metering for 

intermittent renewables to a large fraction of buildings is 

challenging. In this project, we explore an alternative 

approach that combines market-based electricity pricing 

models with on-site renewables and modest energy storage 

(in the form of batteries) to incentivize DG. We propose a 

system architecture and optimization algorithm, called 

GreenCharge, to efficiently manage the renewable energy 

and storage to reduce a building’s electric bill. To 

determine when to charge and discharge the battery each 

day, the algorithm leverages prediction models for 

forecasting both future energy demand and future energy 

harvesting. We evaluate GreenCharge in simulation using a 

collection of real-world data sets, and compare with an 

oracle that has perfect knowledge of future energy 

demand/harvesting and a system that only leverages a 

battery to lower costs (without any renewables). We show 

that GreenCharge’s savings for a typical home today are 

near 20%, which are greater than the savings from using 

only net metering. 
 

II. GREENCHARGE ARCHITECTURE 

A. Objective of Project 

The objectives of green charge is to develop an 

alternative approach that combines market-based electricity 

pricing models with on-site renewable and modest energy 

storage (in the form of batteries) to incentivize DG 

(Distributed Generation). We propose a system architecture 

and optimization algorithm, called Green Charge, to 

efficiently manage the renewable energy and storage to 

reduce a building’s electric bill. To determine when to 

charge and discharge the battery each day, the algorithm 

leverages prediction models for forecasting both future 

energy demand and future energy harvesting. 
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B. Layout and Schematic 
 

 
Fig.1. GreenCharge’s architecture 

 

Green Charge’s architecture, which utilizes a power 

transfer switch that is able to toggle the power source for 

the home’s electrical panel between the grid and a DC-AC 

inverter connected to a battery array. On-site solar panels 

or wind turbines connect to, and charge, the battery array. 

A smart gateway server continuously monitors 1)electricity 

prices via the Internet, 2) household consumption via an in 

panel energy monitor, 3) renewable generation via current 

transducers, and 4) the battery’s state of charge via voltage 

sensors. Our SmartCharge system, which we compare 

against in this work, utilizes the same architecture, but does 

not use renewable. Before the start of each day, the server 

solves an optimization problem based on the next day’s 

expected electricity prices, the home’s expected 

consumption and generation pattern, and the battery array’s 

capacity and current state of charge, to determine when to 

switch the home’s power source between the grid and the 

battery array. The server also determines when to charge 

the battery array when the home uses grid power. 
 

C. Network Communication and Sensing 

One challenge with instantiating GreenCharge’s 

architecture is transmitting sensor data about energy 

consumption, energy generation, and battery status to 

GreenCharge’s smart gate way server in real time. The 

simplest way to measure energy consumption and 

generation is to wrap current transducers(CT) around wires 

in the building’s electrical panel. CTs must be installed in 

the panel, since this is the only place in the building that 

has the incoming grid lines exposed for sensors. Since 

electrical panels are often in remote corners of a building, 

transmitting readings wirelessly is difficult. While wired 

Ethernet is an attractive option, it requires running an 

Ethernet cable from Green Charge’s gateway server to the 

electrical panel. Multiple types of power line-based 

communication protocols exist. The most common are 

X10, Insteon, and HomePlug.X10 is by far the oldest 

protocol, having been developed in1975; it is primarily 

used for controlling applications, which only requires 

sending brief, short control messages. 

Unfortunately,X10 has severe bandwidth limitations (a 

maximum of 20bps) and reliability problems, which make 

it undesirable for continuous real-time sensing. Further, 

power line noise caused by switched mode power supplies 

results in substantial losses with X10 in most buildings. 

Insteon is an improvement to X10 that includes 

acknowledgements, retransmissions, and optimizations to 

overcome power line noise. However, Insteon still has 

bandwidth limitations that, in practice, reduce its maximum 

rate to near 180bps. While useful for controlling devices 

via the power line, it is still insufficient for continuous real-

time sensing of multiple data sources. Thus, in our own 

prototype we chose a power meter that uses the Home Plug 

Ethernet-over power line protocol. Unlike Insteon and X10, 

Home plug was initially designed to stream high definition 

audio and video data from the Internet to televisions. As a 

result, it was designed from the outset to support high-

bandwidth applications. Home Plug modems exist that are 

capable of transmitting up to 200Mbps. 
 

D. Market-based Electricity Pricing 

Most utilities still use fixed-rate plans for residential 

customers that charge a flat fee per kilowatt-hour (kWh) at 

all times. In the past, market-based pricing plans were not 

possible, since the simple electromechanical meters 

installed at homes had to be read manually. However 

utilities are in the process of replacing these old meters 

with smart meters that enable them to monitor electricity 

consumption in real time at fine granularities, e.g., every 

hour or less. To cut electricity bills, GreenCharge relies on 

residential market based pricing that varies the price of 

electricity within eachday to more accurately reflect its 

cost. We expect many utilities to offer such plans in the 

future. There are multiple variants of market-based pricing. 

Figure 2 shows rates over a single day for both a time-of-

use(TOU) pricing plan used in Ontario, and a real-time 

pricing plan used in Illinois. TOU plans divide the day into 

a small number of periods with different rates. The price 

within each period is known in advance and reset rarely, 

typically every month or season. For example, the Ontario 

Electric Board divides the day into four periods (7pm-7am, 

7am-11am, 11am-5pm, and 5pm-7pm) and charges either a 

off-peak-, mid-peak, or on-peak rate (6.2¢/kWh, 9.2¢/kWh, 

or 10.8 ¢/kWh) each period. 

 
Fig.2. Example TOU and hourly market-based rate plans in Ontario and 

Illinois, respectively 
 

E. Markets price fluctuations 

Wholesale energy prices exhibit significant 

fluctuations during each day due to variations in demand 

and generator capacity. Home users are traditionally not 

exposed to these fluctuations but pay a fixed retail energy 

price, as shown in Figure 3 (a).  
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Fig .3.The wholesale energy price (gray) and various approaches to retail 

pricing (black). 
 

Economists have long argued to remove the fixed retail 

prices in favor of prices that change during the day. Such 

dynamic pricing reflects the prices of the wholesale market 

and has been predicted to lead to lower demand peaks and 

lower average level and volatility of the wholesale price. 

Dynamic pricing has been enabled by recent smart-grid 

technologies such as smart meters. A first example of 

dynamic  pricing that is being increasingly adopted is time-

of-use pricing (Figure 3(b)). Such schemes typically 

provide two or three price levels (e.g., ‘off-peak’, ‘mid-

peak’ and ‘on-peak’) where the level is determined by the 

time of day. The price levels are determined well in 

advance and are typically not changed more than once or 

twice per year. A second example of dynamic pricing is 

real-time pricing (Figure 3(c)) where the retail energy price 

changes hourly or half-hourly to reflect the price on the 

wholesale energy market. 

Dynamic pricing creates an opportunity for users to reduce 

energy costs by exploiting the price fluctuations. However, 

in practice users show only a minor shift in their demand to 

match the energy prices . A possible remedy is to equip 

homes with a battery that can be used for home energy 

storage. This battery can be charged when the energy price 

is low and the stored energy can then be used to protect 

against high prices. This allows users to benefit from the 

varying energy price without having to adjust their usage 

patterns accordingly. Energy can be stored both by a 

dedicated battery,or by using the battery pack of an electric 

car. In the past such setup was not economically viable due 

to the high cost of batteries, but current developments have 

brought storage applications within reach. 

 

III.GREENCHARGE ALGORITHM 

GreenCharge cuts electricity bills by combining on-site 

renewable generation with energy storage that stores 

energy during low-cost periods for use during high-cost 

periods.  GreenCharge extends our SmartCharge system 

that only uses energy storage to cut electricity bills without 

renewables. The total possible savings each day is a 

function of both the home’s rate plan and its pattern of 

generation and consumption. we use power data from a 

Real home we have monitored for the past two years as a 

case study to illustrate GreenCharge’s potential benefits. 

The home is an average 3 bedroom, 2 bath house in 

Massachusetts with 1700 square feet. To measure 

electricity, we instrument the home with an e Gauge energy 

meter , which installs in the electrical panel by wrapping 

two 100A current transducers around each leg of the 

home’s split-leg incoming power. We have monitored the 

home’s power consumption every second for the past two 

years. Separately, we have deployed solar panels to study 

variation in solar power generation. Figure 4 depicts power 

generation from a sunny day. 

 

 
Fig. 4. Example solar harvest data from a day in August. 

 
 

A. Potential Benefits:- 

To better understand GreenCharge’s potential for savings, 

it is useful to consider a worst-case scenario where 100% 

of the home’s consumption occurs during the day’s highest 

rate period. Figure5 then compares GreenCharge using 

renewable production from Figure 2 with a home has only 

energy storage but not renewables (labeled SmartCharge), 

and home with no energy storage or renewables. Now 

consider our home’s hourly electricity use on January 3rd, 

2012, as depicted in Figure 5 in red. On this day, the home 

consumed 43.7 kWh, primarily due to the occupants 

running multiple laundry loads after returning from a 

holiday trip. With Ontario’s TOU plan, if the home had 

consumed 100% of the day’s power during the 10.8¢/kWh 

on peak period, and all consumption was shifted to the 

6.2¢/kWh off-peak period, then the maximum savings is 

43%, or $2.01(from $4.72 to $2.71) for the day. Since the 

home did not consume 100% of its power during the on-

peak period, the maximum realizable savings (if we shift 

all of the on-peak and mid-peak consumption to the off-

peak period) is only 30%,a decrease of $1.14 for the day 

(from $3.85 to $2.71). In practice, battery and inverter 

inefficiencies, which combine dare _80% efficient, reduce 

the savings further, to $0.99 for the day. Finally, if we then 

add in the 10.5kW generated by renewable the savings 

increases by $0.93 to $1.92. This per day savings rate 

translates to a yearly savings of $702, if the system 

achieves it every day. Real-time pricing plans, as in 

Illinois, offer even more potential for savings, since the 

difference between the highest and lowest rate is 

significantly larger than a typical TOU plan. Of course, 
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energy consumption and generation patterns, as well as 

hourly rates vary each day, which may decrease 

(orincrease) a building’s actual yearly savings. To 

understand why energy consumption and generation 

patterns are important, consider the following scenario 

using the Ontario TOU pricing plan. 

 
Fig.5.Example from January 3rd with and without GreenCharge. 

 

In Ontario, while GreenCharge may fully charge its battery 

array during the lowest rate period (7pm-7am), it may also 

consume that stored energy during the day’s first high rate 

period (7am-11am). If the home expects to consume at 

least the battery array’s entire usable capacity, even when 

accounting for renewable generation, during the day’s 

second high rate period (5pm-9pm), it is cost-effective, 

assuming ideal batteries, to fully charge the batteries during 

the mid-rate period (11am-5pm) when electricity costs are 

17% less than in the high rate period. However, if the home 

only expects to use 20% of the battery’s capacity during the 

subsequent high rate period, e.g., because renewables will 

generate some power during this time, it is only cost-

effective to charge the battery 20% during the mid-rate 

period, since there will bean opportunity to charge the 

battery further (for 33% less cost) during the next low-rate 

period. In this case, charging the battery more than 20% 

wastes money. Introducing more price tiers, as in real-time 

markets, complicates the problem further. As a result, we 

frame the problem of minimizing the daily electricity bill 

as a linear optimization problem. 
 

B.  Problem Formulation:- 

While batteries exhibit numerous limitations (e.g., 

charging rate, capacity), inefficiencies (e.g., energy 

conversion efficiency, self-discharge), and non-linear 

relationships (e.g., between capacity, lifetime, depth of 

discharge, discharge rate, ambient temperature, etc.), 

GreenCharge’s normal operation places it at the efficient 

end of these relationships. We frame GreenCharge’s linear 

optimization problem as follows. The objective is to 

minimize a home’s electricity bill using a battery array 

with a usable capacity (after accounting for its DOD) of C 

kWh. We divide each day into T discrete intervals of length 

I from 1 to T. We then denote the power charged to the 

battery from the grid during interval i as si, the renewable 

power charged to the battery as gi, average renewable 

power available to the home as ri, the power discharged 

from the battery as di, and the power consumed from the 

grid as pi. We combine both the battery array and inverter 

inefficiency into a single inefficiency parameter e. Finally, 

we specify the cost per kWh over the ith interval as ci, and 

the amount billed as mi. Formally, our objective is to 

minimize∑ miT
i=1 each day, given thefollowing constraints. 

 

si ≥ 0, ∀i ∈ [1, T]            (1)  

di ≥ 0, ∀i ∈ [1, T]            (2)  

gi ≥ 0, ∀i ∈ [1, T]            (3)  

gi ≤ ri , ∀i ∈ [1, T]           (4)  

si ≤ C/4, ∀i ∈ [1, T]            (5) 

gi ≤ C/4, ∀i ∈ [1, T]            (6)  

X i t=1 dt ≤ e ∗ X i t=1 st + e ∗ X i t=1 gt, ∀i ∈ [1, T]         (7)  

( X i t=1 st + X i t=1 gt − X i t=1 dt/e) ∗ I ≤ C, ∀i ∈ [1, T]    (8)  

mi = (pi + si − di) ∗ I ∗ ci , ∀i ∈ [1, T]         (9) 

 

The first second and third constraint ensures the energy 

charged to, or discharged from, the battery is non-negative. 

The fourth constraint ensures that total renewable energy 

charged to the battery is less than or equal to the available 

renewable energy. The fifth and sixth constraint limits the 

battery’s maximum charging rate. The seventh constraint 

specifies that the power discharged from the battery is 

never greater than the total power charged to the battery 

multiplied by the inefficiency parameter. The eighth 

constraint states that the energy stored in the battery array, 

which is the difference between the energy charged to or 

discharged from the battery over the previous time 

intervals, cannot be greater than its capacity. Finally, the 

ninth constraint defines the price the home pays for energy 

during the ith interval. The objective and constraints define 

a linearly constrained optimization problem that is solvable 

using standard linear programming techniques. 

GreenCharge solves the problem at the beginning of each 

day to determine when to switch between grid and battery 

power, and when to charge the battery from grid vs 

renewables. SmartCharge uses a similar linear 

programming formulation without the constraints specific 

to renewable energy. Since the approach uses knowledge of 

next-day consumption and generation patterns, we next 

detail techniques for predicting next day consumption and 

generation, and quantify their accuracy for our case study 

home. 

 

IV. PREDICTING CONSUMPTION AND 

GENERATION 
 

For solving GreenCharge’s linear optimization problem 

requires a priori knowledge of next day consumption and 

generation patterns. We develop a machine learning based 

approach to predicting demand, and use an approach 

developed in prior work to predict next day energy 

harvesting based on weather forecasts. 
 

A.  ML-based Demand Prediction:- 

A simple approach to predicting consumption is to use 

past predicts-future models that assume an interval’s 

consumption will closely match either that interval’s 

consumption from the previous day or the prior interval’s 

consumption. As we show, the approach does not work 

well for the multi-hour intervals in Ontario’s TOU pricing 
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plan. Instead, we develop statistical machine learning (ML) 

techniques to accurately predict consumption each interval. 

While our techniques have numerous applications, e.g., 

dispatch scheduling in microgrids, we focus solely on their 

application to SmartCharge in this paper. We experimented 

with a variety of prediction techniques, including 

Exponentially Weighted Moving Averages 

(EWMA),Linear Regression (LR), and Support Vector 

Machines (SVMs)with various kernel functions, including 

Linear, Polynomial, and Radial Basis Function (RBF) 

kernels. EWMA is a classic past-predicts-future model that 

predicts consumption in the next interval as a weighted 

sum of the previous interval’s consumption and an average 

of all previous intervals’ consumption. 

 

 
Fig.6. Predicting energy consumption using the past does not capture day 

to-day variations due to changing weather, weekly routines, holidays, etc. 
 

Both LR and SVM are regression techniques that combine 

and correlate numerous indicators (or features) of future 

power consumption to predict next-day usage. We 

experimented with a total of nine features: outdoor 

temperature and humidity, month, day of week, previous 

day power, previous interval power, as well as whether or 

not it is a weekend day or a holiday. We also included the 

EWMA prediction as an additional feature. To predict 

next-day temperature and humidity, we used weather 

forecasts from the National Weather Service available from 

the National Digital Forecast Database. To evaluate our 

techniq use used power data collected every second from 

our case study home over a period of four months from 

June to September2011. For the LR and SVM models, we 

used the first 70days of the data set for model training, and 

the last 40 days for evaluating the model’s accuracy. We 

use the Lib SVM library to implement our LR and SVM 

models. Our SVM models use the nu-SVR regression 

algorithm, which we found always performed better than 

the SVR algorithm Before training our model, we 

employed Correlation-based Feature Subset Selection 

(CFSS) to refine the number of input features. CFSS 

evaluates the predictive ability of each individual feature 

along with the degree of redundancy between features. We 

apply CFSS separately for each of the five intervals, since 

the pattern of power consumption varies each interval. 

CFSS reduces the number  of features in prediction model 

from nine to: four for 12am-7am, seven for 7am-11am, 

seven for 11am-5pm, six for 5pm-9pm, and five for9pm-

12am. In general, we find that more features are useful 

during periods with high, variable consumption. 
 

B. Predicting Energy Harvesting from Weather 

Forecasts: 

For a given solar panel deployment this model 

translates the forecasted sky cover, by National Weather 

Service (NWS), into solar energy have sting prediction. 

The NWS publishes weather forecast including sky 

condition forecast, every hour. The forecast contains 

predicted sky condition for next 24 hours. The model 

computes predicted solar harvesting power for every hour 

as: 

Power = MaxPower *(1 – Sky Condition) 

Power in above expression is the predicted solar harvesting 

power, Max Power is the maximum possible solar power 

that can be harvested from the given solar panel in a given 

hour of day assuming perfectly sunny day, and Sky 

Condition is the fraction of sky that is covered with clouds. 

 

V. EXPERIMENTAL EVALUATION 
 

To illustrate GreenCharge’s potential for savings, we use 

the home to evaluate the savings using Ontario’s TOU rate 

plans . While our home is not located in Ontario, it lies at 

the same latitude and experiences a similar climate. Thus, 

the prices are not entirely mismatched to our home’s 

consumption and generation profile. In our experiments, 

we vary the pricing plans and battery characteristics to see 

how future price trends and battery apply EWMA to each 

interval independently on a daily basis. As might be 

expected, since home consumption patterns vary largely 

around mealtimes, we found that predicting consumption 

based on the preceding interval to be highly inaccurate. To 

predict next-day usage, we use the SVM-Polynomial 

model. Finally, to quantify the optimal savings, we 

compare with an oracle that has perfect knowledge of next-

day consumption and generation. Unless otherwise noted, 

our experiments use home power data from the same 40 

day period in late summer as the previous section, and 

generation data from our own solar panel installation scaled 

up to generate equal to the home’s average power 

consumption. We use CPLEX, a popular integer and linear 

programming solver, to encode and solve 

GreenCharge’s(and SmartCharge’s) optimization problem, 

given next-day prices and expected consumption levels. 

Note that we consider only usable storage capacity in kWh 

in this section, which is distinct from (and typically much 

less than) battery capacity. In the next section, we discuss 

the battery capacity necessary to attain a given storage 

capacity. We use an energy conversion efficiency of 80% 

for the battery and a C/4 charging rate for the usable 

storage capacity. 

 

A. Household Savings:- 

Figure7 shows the average savings per day in USD for 

the TOU rate plan over the 40 day period, as a function of 

storage capacity, while Figure 8 shows the savings as a 

percentage of the total electricity bill. The graphs show that 

a storage capacity beyond 30kWh does not significantly 

increase savings. Further, smaller storage capacities, such 
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as12kWh, are also capable of reducing costs, near 10% for 

SmartCharge and 20% for GreenCharge. If we extrapolate 

the savings over an entire year, we estimate that Green 

Charge with 24kWh of storage is capable of saving $200, 

while SmartCharge is capable of saving $100. 

 
 

Fig.7. Average dollar savings per day for both SmartCharge and Green-

Charge in our case study home. 

 

Finally, the graphs show that GreenCharge’s performance 

is close to that of an oracle with perfect knowledge of 

future consumption and generation miss predictions only 

cost a few dollars each year with 24kWh storage capacity, 

or under 10% of the total savings. 
 

 
Fig.8. Average percentage savings for both SmartCharge and 

GreenCharge in our case study home. 

 

The experiments above assume that we use today’s battery 

characteristics and price levels. Of course, a more efficient 

battery and inverter would increase the usable storage 

capacity in a battery array. As the experiments above 

indicate, increasing storage capacity increases the savings 

up to a 30kWh capacity. We evaluate the effect of 

maximum battery charging rate on home savings using 

TOU pricing plan over 40 day traces in presence of 24kWh 

battery capacity. Figure 9 demonstrates that the maximum 

charging rate has a minimal effect on savings, since the 

TOU rate plan offers a long period of relatively low rates 

during the night for charging. The charging rate need only 

be high enough, e.g., a C/10 rate, to charge the battery over 

these periods. Figures 10(a) and (b) show how the savings 

change if we vary either the average price(while keeping 

price ratios constant) or the peak-to-off-peak price ratio 

(while keeping the average price constant) for a24kWh 

capacity, assuming C/4 charging rate for the usable storage 

capacity, for both GreenCharge and SmartCharge. The 

graphs demonstrate that, as expected, rising prices or ratios 

significantly impact the savings. In the former case, the 

relationship is linear, with a doubling of today’s average 

price resulting in a doubling of the savings for both 

GreenCharge and SmartCharge. Thus, if average electricity 

prices continue  to rise 5% per year, as in the past, the 

expected savings for both systems should also increase at 

5% per year. Finally, Figure11 shows the additional 

savings homes are able to realize by sharing battery 

capacity with neighbors. Sharing is beneficial when homes 

exhibit peaks at different times by allowing them to share 

the available storage capacity. For the experiment, we use 

power data for a single day from apool of 353 additional 

homes we monitor (described below),such that each point 

is an average of twenty runs with a set of k randomly 

chosen homes. We report both the additional dollar and 

percentage savings per home. We include 90%confidence 

intervals for the dollar savings. The experiment shows that 

sharing a battery array between homes results in additional 

savings as we increase the number of homes. 

 

 

 
Fig.9.SmartCharge’s and GreenCharge’s savings as a function of the 

charging rate for a 24kWh storage capacity. 
 

 

 
 

Fig.10. Varying the average electricity price (a) and the peak-to-off-peak 

price ratio (b) impacts savings. 
 

As expected, more homes require more storage capacity to 

reap additional benefits. With 10 homes sharing 24kWh per 

home, the additional savings is 25%. However, with 

12kWh per home the percentage savings does not increase 

beyond 15% when sharing  with more than four homes. 
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B. Grid Peak Reduction 

The purpose of market-based rate plans is to lower peak 

electricity usage across the entire grid. We evaluate the 

potential grid-scale effect of GreenCharge using power 

data from a large sampling of homes. We gather power 

data at scale from thousands of in-panel energy meters that 

anonymously publish their data to the web. Power 

consumption trace for each home is at the granularity of 

one hour. Since we do not know if the meters are installed 

in commercial, industrial, or residential buildings, we filter 

out sources that do not have typical household power levels 

and profiles, i.e., peak powerless than 10kW and average 

power less than 3kW. We also filter out sources with large 

gaps in their data. After filtering, we select 435 homes from 

the available sources. 

 

 
Fig.11. Additional savings (in % and $) from sharing 12kWh and 24 kWh 

between homes. 
  

Figure12 plots the peak power over all the homes as a 

function of the fraction of homes using GreenCharge and 

SmartCharge with energy storage. For these experiments 

we assume that each home has available energy storage 

equal to half the home’s average daily consumption. 

Charging rate of C/4 for the usable storage capacity is 

assumed. The figure shows that GreenCharge and 

SmartCharge are capable of reducing peak power by 

roughly 20% when little more than 20% of homes use the 

system, as long as the homes randomize when they begin 

overnight charging. 

 

 
 

 
 

Fig.12. With 25% of homes using GreenCharge, the peak demand 
decreases by 22.5% (a) and demand flattens significantly (b). 

If everyone begins charging at the same time, e.g., at 12am 

at night, the peak reduction decreases to a maximum of 

only 8%. Even using randomized charging, if more than 

22% of consumers install GreenCharge or Smart Charge, 

then the peak reduction benefits begin to decrease, due to a 

nighttime “rebound peak”. Once 45% of consumers use the 

system the evening rebound peak actually becomes larger 

than the original peak. The same point occurs when only 

25% of homes use the system without randomized 

charging. ’Net Metering’ represents those homes which 

have on-site renewable deployments, however, they don’t 

have on-site battery installations for storing this energy. 

Hence, the renewable energy is consumed as soon as it is 

generated. In contrast to GreenCharge and Smart Charge 

the peak savings from ’Net Metering’ increase from 0% to 

5.75%and then flattens out. The reason being, net metering 

does not use any on-site battery storage, it simply uses the 

renewable energy whenever it is available else the power is 

drawn from the grid. Also, as can be seen from figure 6.6 

net metering effectively flattens out the mid day peaks 

between 11am and2pm, however, it does poorly to shave 

the evening peak which occurs after 5pm. This is because 

solar energy harvest reduces significantly towards sunset. 

Discussion on GreenCharge’s and SmartCharge’s 

economics at scale further . Figure12 (b) shows grid power 

usage over time, with 0% and 22% of the homes using 

GreenCharge and SmartCharge with randomized charging, 

and demonstrates how both approaches cause demand to 

“flatten” significantly. Such a peak reduction would have a 

profound effect on generation costs, likely lowering them 

by more than 20% . Finally, with 20% of homes using 

Green Charge or Smart Charge, the increase in total energy 

usage is only2%. The result demonstrates that the benefits 

of flattening likely outweigh the increased energy 

consumption due to battery/inverter inefficiencies. 

 

VI. COST-BENEFIT ANALYSIS 
 

A.  Return-on-Investment 

In many instances, homes already have the necessary 

infrastructure to implement GreenCharge. For example, 

many homes in developing countries already utilize UPSs 

because of instability in the power grid. In addition, homes 

with photovoltaic (PV) systems require on-site energy 

storage to balance an intermittent supply with demand 

without the aid of net metering. Batteries in electric 

vehicles (EVs) could also serve as energy storage. In each 

case, the homes already include the required infrastructure 
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and battery capacity to implement GreenCharge. Since the 

homes would not need new infrastructure, the ROI is 

positive in these cases. Below, we discuss the ROI for 

homes that do not already have the necessary 

infrastructure. GreenCharge’s largest expenses are its 

battery array and solar panel installation. 

Sealed VRLA/AGM lead-acid batteries are the dominant 

battery technology for stationary home UPSs and PV 

installations, due to their combination of low price, high 

efficiency, and low self-discharge rate. By contrast, lithium 

ion batteries, while lighter and more appropriate for EVs, 

are much more expensive. We use, as an example, the Sun 

Xtender PVX-2580L with a 3kWh rated capacity (at a C/20 

discharge rate), which costs $570  and is designed for deep-

cycle use in home PV systems. The battery’s manual 

specifies its life time as a function of its number of charge-

discharge cycles and the DOD each cycle. We use the data 

to estimate the yearly cost of batteries—in $/kWh of usable 

storage capacity—as a function of the depth of discharge 

(Fig.13) amortized over their lifetime, assuming Green 

Charge’s typical single charge discharge cycle per day. The 

usable storage capacity takes DOD into account: a battery 

rated for 10kWh operated at50% depth of discharge has a 

usable capacity of only 5kWh. Fig.13 demonstrates that 

cost begins to increase rapidly after a 45% DOD, with an 

estimated cost of $118/kWh of usable capacity. 
 

 
Fig.13. Amortized cost per kWh as a function of depth of discharge 

 

B.  Comparison of batteries 

Recent advancements in battery technology promise to 

dramatically reduce battery costs in the near future. Lead-

carbon batteries have an expected lifetime 10 times longer 

than today’s sealed lead-acid batteries at roughly the same 

cost. Figure 14 shows the extended lifetime using data from 

recent tests conducted at Sandia National Labs comparing 

today’s sealed lead-acid battery and a new lead carbon 

battery (the Ultra Battery). In addition, solar panel prices 

per installed watt are predicted to drop to $1 per watt over 

the next decade. Lead-carbon batteries combined with 

modest and expected price increases (25%) and peak-to-

off-peak ratios (25%), as well as a decrease in solar panel 

prices, would produce a positive ROI for GreenCharge in a 

few years. 

 
Fig.14. Comparison of sealed lead-acid and lead-carbon battery lifetime  

 

C. Distributed vs. Centralized 

Utilities have already begun to deploy large, 

centralized battery arrays to reduce peak usage and 

integrate more wind and solar farms, which require 

substantial energy storage to match an intermittent supply 

with variable demand. However, distributing battery 

storage and energy harvesting throughout the grid has a 

number of inherent advantages over a centralized approach. 

In particular, local energy storage and generation serves as 

backup power during extended blackouts, lessening the 

economic impact of power outages and promoting a more 

stable grid. A centralized system also introduces a single 

point of failure. Further, substantial home energy storage 

and generation may be a catalyst for implementing micro 

grids, where matching supply and demand is difficult 

without an energy buffer. Storing and generating energy at 

its point-of-use also reduces transmission losses by 

eliminating losses incurred from generator to battery array. 

Finally, perhaps the most important argument for installing 

many distributed battery arrays and energy harvesting 

deployments in homes, rather than large centralized arrays, 

isto encourage distributed generation without relying on net 

metering. While today’s PV installations typically use net 

metering to offset costs by selling energy back to the grid,it 

is not a scalable long-term solution. Injecting significant  

quantities of power into the grid from unpredictable and 

intermittent renewables has the potential to destabilize the 

grid by making it difficult to balance supply and demand. 

GreenCharge provides an alternative to net metering to 

offset costs in home PV systems that use batteries instead 

of net metering. 

 

VII. CONCLUSION 

In this paper, we explore how to lower electric bills using 

Green Charge by storing low-cost energy for use during 

high cost periods. We show that typical savings today are 

near 20% per home with the potential for significant grid 

peak reduction (20% with our data). Finally, we analyze 

Green Charge’s costs, and show that recent battery 

advancements combined with an expected rise in electricity 

prices and decrease in solar panel prices may make Green 

Charge’s return on investment positive for the average 

home within the next few years. 

Both, RES and micro grids are tend to be solutions for 

improving existing grids in a future. Smart grids are able to 

transform the quality of whole distribution system thanks 

to dispersed RES. Variable character of these sources 

implicates a necessity to manage the load. Local micro 
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grids will gain a better quality of energy, a stability of 

supply and energy independence. That is why a 

development of RES should be perceived at a local, 

commune level. RES can enhance power quality and 

reliability and potentially reduce the need for traditional 

grid expansion. The difficult RES’ management process 

can be improved with an implementation of smart, local 

micro grids and – in a next phase – popularization of 

electric vehicles and their storage possibilities V2G. 
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