
Graph Database Application using Neo4j
(Railroad Planner Simulation)

Steve Ataky Tsham Mpinda, Luis Gustavo

Maschietto
Departamento de Computação

Universidade Federal de São Carlos

São Carlos, Brazil

Patrick Andjasubu Bungama
Departamento de Computação

Universidade Federal do Paraná

Curitiba, Brazil

Abstract—Such as relational databases, most graphs databases

are OLTP databases (online transaction processing) of generic

use and can be used to produce a wide range of solutions. That

said, they shine particularly when the solution depends, first, on

our understanding of how things are connected. This is more

common than one may think. And in many cases it is not only

how things are connected but often one wants to know

something about the different relationships in our field - their

names, qualities, weight and so on. Briefly, connectivity is the

key. The graphs are the best abstraction one has to model and

query the connectivity; databases graphs in turn

give developers and the data specialists the ability to apply this

abstraction to their specific problems. For this purpose, in this

paper one used this approach to simulate the route planner

application, capable of querying connected data. Merely having

keys and values is not enough; no more having data partially

connected through joins semantically poor. We need both the

connectivity and contextual richness to operate these solutions.

The case study herein simulates a railway network railway

stations connected with one another where each connection

between two stations may have some properties. And one

answers the question: how to find the optimized route (path)

and know whether a station is reachable from one station or not

and in which depth.

Keywords—Graph database, Relational database, Railroad

Planner, Simulation, Neo4j, Cypher

I. INTRODUCTION

A graph database is a database specifically dedicated to the

storage type of graph data structures. It is therefore necessary

to store only the data in the nodes and arcs. By definition, a

basic graph is any storage system providing an adjacency

between neighboring elements without indexation: any

neighboring entity is directly accessible by a physical pointer.

The types of graphs that can be stored vary, the undirected

graph” single standard” to hyper-graph, including of course

the property graphs. Such a database therefore meets

generally the following criteria [1]: i) Optimized storage for

data represented in a graph, with the option to store the nodes

and arcs; ii) Optimized storage

for reading and clickstream data in the graph (or Traversal),

without using an index to browse relations; iii) Flexible data

model for certain products: no need to explicitly create an

entity for nodes or edges, unlike the rigid model tables in a

relational database; iv) Integrated API to use some standard

algorithms of graph theory (shortest path, Dijsktra, A *,

calculating centrality ...).

A graph database is optimized for searching operator data

locality, from one or more root nodes, rather than global

searches.

II. CURRENT POSITION

The NoSQL movement reached its heyday in recent years,

particularly as it seeks to address several issues that relational

databases do not respond adequately:

 availability to handle very large volumes and

Partitioning;

 flexibility scheme;

 difficulty to represent and process complex

structures such as trees, graphs, or relationships in

large numbers (In the databases ecosystem, graphs

bases are often positioned mainly in the last two

points:);

 process highly connected data;

 easily manage a complex and flexible model;

 deliver outstanding performance for local readings,

for graph traversal;

III. GRAPH DATABASE, RELATIONAL DATABASE

AND OTHER NOSQL

The term ‘relational hubs’ is coined in [3] to describe the

differences. According to Alistair we are at a crossroads. One

of the paths leads to the approach adopted by most NoSQL

databases, in which the data are highly deenormalized and we

rely on the application to gather with typically high latency

and understanding. The other path leads to the approach

adopted by the graphs databases in which we use

the expressive power of the graph to build a flexible model

and connected to the problem in question we then request

with low latency to better understand.

Relational databases are included. As the graphs

Databases, relational databases have a model centered on the

queries. But this model is not as powerful as bases graphs. In

particular, it does not create on the fly arbitrarily large

structures, semantically rich and connected. To create any

broad structure with a relational database we need to plan our

knuckles in advance. To authorize changes, you end up

creating a lot of columns that can be zero. Result: Tables

”dotted” fanciful joins (expensive), object-relational

impedance problems even with simple applications.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041188

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

999

Furthermore, a graph database is adapted to the use

of graph-type data structures like trees or derived, especially

if it is to exploit the relationships between data. The case of

perfect use of a search is to start with one or more nodes and

browse the graph. It is always possible to make

myEntity.findAll type of readings (”find all the entities of a

kind”), but in this case it is necessary to use an indexing

system, which can be internal as appropriate to the graph

(super-nodes for indexing) or above the graph (via Apache

Lucene for example).

Conversely, relational databases are well suited to

findAll queries through the internal structures of tables,

especially if it is to perform aggregations of operations on all

the rows in a table.

Despite their names, they are, however, less

effective

on the holding relationships, which must be optimized by the

index creation, including foreign key. As mentioned

previously, a graph database offers the ability to browse by

physical pointers relations where foreign keys offer only

logical pointer.

IV. SOME GRAPH DATABASE APPLICATION

Social networks modeling have obviously in recent years

become one of the most visible when using the graph

databases. LinkedIn comes easily to display the degree of

separation between each contact, which is ultimately only the

distance between nodes in the graph representing people and

their relationships. Although very interesting, this problem is

not very common because of the small number of actors in

this market.

Use cases that should reveal most common are [2]:

i) modeling a set of knowledge about people, and a market-

sector organizations or more generally ecosystem; ii) the

specific business data representation such as cinema (films,

actors, directors, and so on), publishing (books, authors,

publisher, and so on) or the description of all the parts of an

industrial machine how they are interconnected; iii) In any

case, such a database will be conveniently integrated into a

heterogeneous environment Persistence (thus speaks of

”polyglot persistence”) that would address the various

problems the best solution, etc.

V. NEO4J

Neo4j is a graph database in Java designed to be embedded

in an application or accessed in client/server via a REST API.

The graph manipulation in Java Neo4j is very natural with its

API: Node and Relationship are the major classes used to

model a graph while adding a set of properties for each node

and relationship.

Imagine a social networking application such as

Facebook, Linkedin and Viadeo in which the user can bind

with friends. This user wants to know what friends he has in

common with other friends. With a graph, he could easily see

the relationship. Here is a basic example (Figure 1):

The implementation of the below scheme in a

relational database is not easy. There are several ways to do

so, as the pattern Querie to make resolutions, but it is

complicated to use. To solve these problems several type of

graph databases exist, including the famous base Neo4j and

HyperGraphDB and InfoGrid.

In a graph we can store two types of information: nodes and

links, or , in other words, nodes and edges. Each node can

have multiple links that point to other nodes. It is through this

that relationships can be between nodes. They will thus allow

us to organize them. In addition, each node can have multiple

properties or attributes for stoker as key / value our data.

Figure 1: example of social network relationship

In brief: A graph store data in nodes that have

properties. The nodes are organized by relations that have

they same properties. A traversal allows navigating in the

graph from a node and identifies roads or paths with as nodes

ordered according options. An index is mapped by the

properties of nodes and relationships.

And where is Neo4j? The database used to manage

all types of objects, nodes, relationships and indexes. And

through the algorithms, internal and external tools such as

Apache modules Lucuene, Cypher or Gremlin recovery of

our data is easier.

Developing applications on Neo4j is a breeze. These

language guides help you connect to Neo4j from your

preferred programming language. In this work we used Java

language.

VI. CYPHER

Neo4j is generating much interest among NoSQL database

users for its features, performance and scalability, and

robustness. The software also provides users with a very

natural and expressive graph model and ACID transactions

with rollbacks [4]. However, utilizing Neo4j in a real-world

project can be difficult compared to a traditional relational

database. Cypher fills this gap with SQL, providing a

declarative syntax and the expressiveness of pattern

matching. This relatively simple but powerful language

allows you to focus on your domain instead of getting lost in

database access. With cypher, very complicated database

queries can easily be expressed through.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041188

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1000

VII. CASE STUDY

In our case study (figure2) we are simulating a railway

network railway stations connected with one another and

each connection between two stations has a property: the

distance. The question is: how one can find the optimized

path and know whether a station is reachable from one station

or not. To do so, we need to use two approaches:

1. Breadth-first (Figure 3) search (BFS), each algorithm

that begins at the root node and explores all the

neighboring nodes. Then for each of those nearest nodes,

it explores their unexplored neighbor nodes, and so on,

until it finds the goal. In Neo4j-Cypher, one is traversing

the nodes given some additional criteria only relations

with a property visibility=public should be traversed,

aiming at filtering nodes;

2. In addition of BFS, one is using Dijkstra algorithm

(Figure 4) to calculate the shortest route from one station

to another. It picks the unvisited vertex with the lowest

distance, calculates the distance through it to each

unvisited neighbor, and updates the neighbor’s distance

if smaller. Mark visited (set to red) when done with

neighbors.

Figure 2: Railroad Simulation

Figure 3: DFS in Cypher

Figure 4: Dijkstra’s algorithm in Cyphe for finding the shortest path between

Amazonas and Minas considering both directions.

Figure 5: Running the code above (Figure 3 and 4), we will

get such cypher output, that shows the shortest path between

Amazonas a Minas and the cost (depth and distance)

 Neo4j comes with a number of built-in graph

algorithms. They are performed from a start node. The

traversal is controlled by the URI and the body sent with the

request. These are the parameters that can be used:

algorithm

The algorithm to choose. If not set, default is shortestPath.

algorithm can have one of these values:

 shortestPath : the shortestPath algorithm can find

multiple paths between the same nodes. If no path

algorithm is specified, a shortestPath algorithm with

a max depth of 1 will be chosen.

 allSimplePaths

 allPaths

 dijkstra (optionally with cost_property and

default_cost parameters)

max_depth

The maximum depth as an integer for the algorithms like

shortestPath, where applicable. Default is 1.

VIII. EXPERIMENT AND RESULTS

The projects implementation using Java language with Neo4j

database access can occur in two different ways: using JDBC

connection driver (Java Database Connectivity) or with the

use of connection class belonging to Neo4j libraries imported

with build dependencies in MAVEN project specified in the

pom.xml file.

For connection to Neo4j with JDBC one must

import the JDBC connection driver for the project and start

the Neo4j service on the local machine on the default port

7474 (http: // localhost: 7474 /) if the project is under local

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041188

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1001

basis. Thus, requests for access to the database management

system occur by using already established connection on the

local machine, i.e., this process avoids the opening and

closing the connection each request performed by the

developed system.

Using the JDBC driver, it is possible to use Cypher,

the specific language for data manipulation in Neo4j

environment and return results using Resultset. The process

occurs using established connection for both queries

(MATCH) and inserts (CREATE) in the database. This

process denotes a shorter duration compared to the process

using Embedded Database method of GraphDatabaseFactory

class.

The use of the method GraphDatabaseFactory of the

Embedded Database class creates a file if it does not exist,

which will store the data managed by Neo4j and opens the

connection. When the database already exists the connection

is established in all required process. In such cases it is

always necessary to initiate a connection and at the end of the

process to close it. This task causes an excessive consumption

of time compared to using JDBC connection driver.

Importantly, for the use of the method Embedded-

Database Neo4j service should not be started out of the

application, therefore, the application tries to establish a

connection that is already established, this attempt will result

in a blocked connection error.

Although it seems a good option to use JDBC

connection driver due to the gain in response time, some

methods belonging to Neo4J library may not be used, in the

case of searches for depth and using dijkstra algorithms. This

fact is because the dijkstra algorithm, for example, requires

the identification of an initial node to check nodes related and

as the search for JDBC returns the data nodes as String and

not as Node object, it would be impossible to identify and

begin the search. Now with the use of Neo4j libraries one can

open the connection and perform a search using the

ExecutionResult class that will receive the return of the data

as a list of Nodes objects.

IX. CONCLUSION AND FUTURE

WORKS

The resulting model and associated queries are simply

projections of questions you want to ask about your data.

With Cypher, language query Neo4j, the complementarity of

these projections becomes apparent: the paths used to create

the structure of the graph are the same as those used for

querying.

One noted that this application, even though it be

possible to be implemented with relational databases, the

performance would not be as good as the graph one.

Moreover, it has been observed the when processing many

concurrent transactions, the nature of the graph data

structures helps distribute the transactional cost through the

graph. Usually as the graph grows, the transactional conflict

disappears. In other words, the higher the graph, the larger

the flow rate is important, which is an interesting result.

As future works, it is being developed and

implemented some strategies capable of replacing some

meta-heuristic for railway and railroad optimization since

both of scenarios can be represented as graphs. Moreover,

some prediction techniques, such as estimate the planning

that better fit for some period of time based on similar past

planning or datas are being implemented as well.

REFERENCES

(1) Domenjoud, M. (2012). Bases de donnes graphes : un tour dhorizon.

France.

(2) Figuiere, M. (2010). cember 5th, 2014 MICHAL FIGUIRE, NoSQL
Europe : Bases de donnes graphe et Neo4j.

http://blog.xebia.fr/2010/05/03/nosql-europebases dedonnees-graphe-

et-neo4j/, accessed on December 6th, 2014.
(3) Jones,A.(2012).http://www.infoq.com/fr/articles/graphdatabases-

bookreview, accessed on December 5th, 2014.

(4) PANZARINO, O. (2014). Learning Cypher, Onofrio Panzarino. Packt,
1st edition.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041188

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1002

