Gracefull Ness Of $\mathrm{P}_{\mathrm{k}} \circ 2_{C_{k}}$

A. Solairaju ${ }^{1}$ And N. Abdul Ali ${ }^{2}$

${ }^{1-2}$: P.G. \& Research Department of Mathematics, Jamal Mohamed College, Trichy - 20.

Abstract

In this paper, we obtained that the connected graph $\mathrm{P}_{\mathrm{k}} \Delta 2 \mathrm{C}_{4}$ is graceful.

Introduction:

Most graph labeling methods trace their origin to one introduced by Rosa [2] or one given Graham and Sloane [1]. Rosa defined a function f , a β-valuation of a graph with q edges if f is an injective map from the vertices of G to the set $\{0,1,2, \ldots, \mathrm{q}\}$ such that when each edge xy is assigned the label $|f(x)-f(y)|$, the resulting edge labels are distinct.
A. Solairaju and K. Chitra [3] first introduced the concept of edge-odd graceful labeling of graphs, and edge-odd graceful graphs.
A. Solairaju and others [5,6,7] proved the results that(1) the Gracefulness of a spanning tree of the graph of Cartesian product of P_{m} and C_{n}, was obtained (2) the Gracefulness of a spanning tree of the graph of cartesian product of S_{m} and S_{n}, was obtained (3) edge-odd Gracefulness of a spanning tree of Cartesian product of P_{2} and C_{n} was obtained (4) Even -edge Gracefulness of the Graphs was obtained (5) ladder $P_{2} \times P_{n}$ is even-edge graceful, and (6) the even-edge gracefulness of P_{n} o nC_{5} is obtained.

Section I : Preliminaries

Definition 1.1: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph with p vertices and q edges.
A map $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, \mathrm{q}\}$ is called a graceful labeling if
(i) f is one - to - one
(ii) The edges receive all the labels (numbers) from 1 to q where the label of an edge is the absolute value of the difference between the vertex labels at its ends.
A graph having a graceful labeling is called a graceful graph.

Example 1.1: The graph $6 \Delta P_{5}$ is a graceful graph.

Section II - Path merging with circulits of length four

Definition 2.1: $\mathrm{P}_{\mathrm{k}} \Delta 2 \mathrm{C}_{4}$ is a connected graph obtained by merging a circuit of length 4 with isolated vertex of a path of length k.

Theorem 2.1:_The connected graph $\mathrm{P}_{\mathrm{k}} \Delta 2 \mathrm{C}_{4}$ is graceful.

Case (i): k is even.
Define f: V $\{1, \ldots, \mathrm{q}\}$ by
$\mathrm{f}\left(\mathrm{T}_{1}\right)=0 ; \quad \mathrm{f}\left(\mathrm{T}_{2}\right)=\mathrm{q}, \quad \mathrm{f}\left(\mathrm{T}_{3}\right)=\mathrm{q}-1, \quad \mathrm{f}\left(\mathrm{T}_{4}\right)=2$
$\mathrm{f}\left(\mathrm{V}_{\mathrm{i}}\right)=\left\{\begin{array}{l}(\mathrm{q}-2)-\left(\frac{i-1}{2}\right), \mathrm{i} \text { is odd, } \mathrm{i}=1,3, \ldots, \mathrm{k}+1 \\ \end{array}\right.$

$$
\left(2+\frac{i}{2}\right), \mathrm{i} \text { is even, } \mathrm{i}=2,4, \ldots, \mathrm{k}+2
$$

$\mathrm{f}\left(\mathrm{V}_{\mathrm{k}+3}\right)=\mathrm{f}\left(\mathrm{V}_{\mathrm{k}+2}\right)+1$
$\mathrm{f}\left(\mathrm{V}_{\mathrm{k}+4}\right)=\mathrm{f}\left(\mathrm{V}_{\mathrm{k}+3}\right)+1$

Case (ii): k is odd.

Define f: $V\{1, \ldots, q\}$ by
$\mathrm{f}\left(\mathrm{T}_{1}\right)=0 ; \quad \mathrm{f}\left(\mathrm{T}_{2}\right)=\mathrm{q}, \quad \mathrm{f}\left(\mathrm{T}_{3}\right)=\mathrm{q}-1, \quad \mathrm{f}\left(\mathrm{T}_{4}\right)=2$
$\mathrm{f}\left(\mathrm{V}_{\mathrm{i}}\right)=\left\{\begin{array}{lll}(\mathrm{q}-2)-\left(\frac{i-1}{2}\right), & \mathrm{i} \text { is odd, } & \mathrm{i}=1,3, \ldots, \mathrm{k}, \mathrm{k}+2 \\ \left(2+\frac{i}{2}\right), & \mathrm{i} \text { is even, } & \mathrm{i}=2,4, \ldots, \mathrm{k}+1\end{array}\right.$
$f\left(V_{k+3}\right)=f\left(V_{k+2}\right)-1$
$\mathrm{f}\left(\mathrm{V}_{\mathrm{k}+4}\right)=\mathrm{f}\left(\mathrm{V}_{\mathrm{k}+3}\right)-1$
Example 2.1: $\mathrm{k}=11$ (odd) ; P: V $\rightarrow 19$; Q: e $\mid \rightarrow 20$

Example 2.2: $\mathrm{k}=14$ (even) ; P: V $\mid \rightarrow 22$; Q: e $\mid \rightarrow 23$

References:

1. R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graph, SIAM J. Alg. Discrete Math., 1 (1980) $382-404$.
2. A. Rosa, On certain valuation of the vertices of a graph, Theory of graphs (International Synposium,Rome,July 1966),Gordon and Breach, N.Y.and Dunod Paris (1967), 349-355.
3. A.Solairaju and K.Chitra Edge-odd graceful labeling of some graphs, Electronics Notes in Discrete Mathematics Volume 33,April 2009,Pages 1.
4. A. Solairaju and P.Muruganantham, even-edge gracefulness of ladder, The Global Journal of Applied Mathematics \& Mathematical Sciences(GJ-AMMS). Vol.1.No.2, (July-December-2008):pp.149-153.
5. A. Solairaju and P.Sarangapani, even-edge gracefulness of P_{n} o $n C_{5}$, Preprint (Accepted for publication in Serials Publishers, New Delhi).
6. A.Solairaju, A.Sasikala, C.Vimala Gracefulness of a spanning tree of the graph of product of P_{m} and C_{n}, The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp 133-136.
7. A. Solairaju, C.Vimala,A.Sasikala Gracefulness of a spanning tree of the graph of Cartesian product of S_{m} and S_{n}, The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp117-120.
