Gracefull Ness Of $P_k \circ 2_{C_k}$

A. Solairaju¹ And N. Abdul Ali²

¹⁻²: P.G. & Research Department of Mathematics, Jamal Mohamed College, Trichy – 20.

Abstract: In this paper, we obtained that the connected graph $P_k \, \Delta \, 2C_4$ is graceful.

Introduction:

Most graph labeling methods trace their origin to one introduced by Rosa [2] or one

given Graham and Sloane [1]. Rosa defined a function f, a β-valuation of a graph with q edges

if f is an injective map from the vertices of G to the set {0, 1, 2,...,q} such that when each edge

xy is assigned the label |f(x)-f(y)|, the resulting edge labels are distinct.

A. Solairaju and K. Chitra [3] first introduced the concept of edge-odd graceful labeling

of graphs, and edge-odd graceful graphs.

A. Solairaju and others [5,6,7] proved the results that(1) the Gracefulness of a spanning

tree of the graph of Cartesian product of P_m and C_n,was obtained (2) the Gracefulness of a

spanning tree of the graph of cartesian product of S_m and S_n, was obtained (3) edge-odd

Gracefulness of a spanning tree of Cartesian product of P2 and Cn was obtained (4) Even -edge

Gracefulness of the Graphs was obtained (5) ladder P2 x Pn is even-edge graceful, and (6) the

even-edge gracefulness of P_{n O} nC₅ is obtained.

Section I : Preliminaries

Definition 1.1: Let G = (V,E) be a simple graph with p vertices and q edges.

A map $f:V(G) \rightarrow \{0,1,2,...,q\}$ is called a graceful labeling if

(i) f is one – to – one

(ii) The edges receive all the labels (numbers) from 1 to q where the label of an edge is the absolute value of the difference between the vertex labels at its ends.

A graph having a graceful labeling is called a graceful graph.

www.ijert.org

1

Example 1.1: The graph $6 \Delta P_5$ is a graceful graph.

Section II - Path merging with circulits of length four

Definition 2.1: $P_k \Delta 2C_4$ is a connected graph obtained by merging a circuit of length 4 with isolated vertex of a path of length k.

Theorem 2.1: The connected graph $P_k \Delta 2C_4$ is graceful.

Case (i): k is even.

Define $f: V \{1, ..., q\}$ by

$$f(T_1) = 0;$$
 $f(T_2) = q,$ $f(T_3) = q-1,$ $f(T_4) = 2$

$$f(V_i) = \begin{cases} (q-2) - (\frac{i-1}{2}), & i \text{ is odd, } i = 1,3, \dots, k+1 \end{cases}$$

www.ijert.org 2

$$(2+\frac{i}{2})$$
, i is even, $i = 2,4,..., k+2$

$$f(V_{k+3}) = f(V_{k+2}) + 1$$

$$f(V_{k+4}) = f(V_{k+3}) + 1$$

Case (ii): k is odd.

Define $f: V \{1, ..., q\}$ by

$$\begin{split} f(T_1) &= 0; & f(T_2) = q, & f(T_3) = q\text{-}1, & f(T_4) = 2 \\ \\ f(V_i) &= & \begin{cases} (q\text{-}2) - (\frac{i-1}{2}), & \text{i is odd,} & \text{i} = 1,3,...,k, k+2 \\ \\ (2 + \frac{i}{2}), & \text{i is even,} & \text{i} = 2,4,...,k+1 \end{cases} \end{split}$$

$$f(V_{k+3}) = f(V_{k+2}) - 1$$

$$f(V_{k+4}) = f(V_{k+3}) - 1$$

Example 2.1: k = 11 (odd); P: $V \mapsto 19$; Q: $e \mapsto 20$

www.ijert.org

12

3

Example 2.2: k = 14 (even); P: $V \rightarrow 22$; Q: $e \rightarrow 23$

References:

- 1. R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graph, SIAM J. Alg. Discrete Math., 1 (1980) 382 404.
- 2. A. Rosa, On certain valuation of the vertices of a graph, Theory of graphs (International Synposium,Rome,July 1966),Gordon and Breach, N.Y. and Dunod Paris (1967), 349-355.
- 3. A.Solairaju and K.Chitra Edge-odd graceful labeling of some graphs, Electronics Notes in Discrete Mathematics Volume 33,April 2009,Pages 1.
- 4. A. Solairaju and P.Muruganantham, even-edge gracefulness of ladder, The Global Journal of Applied Mathematics & Mathematical Sciences(GJ-AMMS). Vol.1.No.2, (July-December-2008):pp.149-153.
- 5. A. Solairaju and P.Sarangapani, even-edge gracefulness of P_{n O} nC₅, Preprint (Accepted for publication in Serials Publishers, New Delhi).
- 6. A.Solairaju, A.Sasikala, C.Vimala Gracefulness of a spanning tree of the graph of product of P_m and C_n, The **Global Journal** of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp 133-136.
- 7. A. Solairaju, C.Vimala, A.Sasikala Gracefulness of a spanning tree of the graph of Cartesian product of S_m and S_n , The **Global Journal** of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp117-120.

www.ijert.org

4