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Abstract --Inertial navigation is a self-contained navigation 

which are used to track the position and orientation of an object 

relative to a known starting point, orientation and velocity, like 

GPS. The INS can calculate the position of the aircraft without 

any help of other sources. Due, to a large numbers of error 

occurred by the sensors which leads to an unacceptable results. 

Therefore, GPS has been used to in INS using a Kalman filter. 

Where INS, Kalman Filter are widely used to increase the 

accuracy and reliability of the navigation solution. Usually, 

Direct Kalman filter is used for among quantities like 

velocity,position and attitude are among the state variable 

of the filter, which allows them to be estimate directly. 
 

Keywords—GPS/INS;  Kalman Filter; Adaptive Kalman Filter;      

GPS; INS 

I.  INTRODUCTION  

 

Most of these navigation systems use no longer only the 

Global Positioning System (GPS) but also an inertial 

navigation system (INS).Together the two systems 

complement each other and permit improved navigation 

accuracy and reliability especially when GPS is degraded or 

interrupted for example because of buildings or tunnels and  

for this application the Kalman filter provides the basis. 

Most INS errors are attributed to the inertial sensors 

(instrument errors). These are the residual errors exhibited by 

the installed gyros and accelerometers following calibration of 

the INS such error leads to error in the velocity and position of 

an object. So unaided INS leads to error grow with time which 

is undesirable this is the reason we usually integrate INS with 

GPS. The primary role of GPS is to provide highly accurate 

position and velocity world-wide, based on range and range-

rate measurements. GPS can be implemented in navigation as 

a fixing aid by being a part of an integrated navigation system, 

for example GPS/INS. 

 

It constitutes a tool for correcting the predicted INS trajectory 

with GPS measurements. Also the determination of a 

reference orbit for these GPS satellites and correcting it with 

the data from the GPS control stations is a very important 

application of the Kalman filter. But these are only two 

examples of the wide variety of fields where Kalman filtering 

plays an important role. The application areas span from 

aerospace, to marine navigation, demographic modeling, 

weather science, manufacturing and many others. Because the 

Kalman filter is very effective and useful for such a large class 

of problems, it has been subject of extensive research. 

The performance of the Kalman filter is crucial to overall 

system performance, especially when low-cost sensors are 

integrated. This paper focus on integrated GPS and Inertial 

Navigation System.  

 

II. NAVIGATION  EQUATIONS 

 

The navigation equation is important for Kalman filter and the 

algorithm. Where INS consists of the 3-axis gyroscope from 

where we can have pitch and yaw rates about the body axes.  

It also has 3-axis accelerometers which give the accelerations 

along the three body axes. There are two basic inertial 

mechanisms which are used to derive the Euler angles from 

the rate gyros, viz. stable platform and strap-down INS. The 

acceleration values from the accelerometers are then corrected 

for rotation of the earth and gravity to give the velocity and 

position of the aircraft. 

The orientation of an aircraft with respect to a fixed inertial 

frame of axes is given by three Euler angles. The relationship 

between the angular rates of roll, pitch and yaw, p, q, r 

(measured by the body mounted gyro), the Euler angles, ψ, θ, 

φ and their relation are shown in figure: 
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To determine the attitude at a given time we can derive the 

Euler angles using initial condition from equation (1) 

considering for the pitch angles around ±90 the error becomes 

unbounded as tan θ tends to infinity. Where it depends on the 

parameters (e0, e1, e2, e3). Once we have calculated the time 

history of the four parameters, we can calculate the Euler 

angles using the following equations: 
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We now have with us the attitude of the aircraft. To calculate 

the position we use the accelerations given by the 

accelerometers. 

singWqVraU x 


                                  (5) 
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Now the actual angular rate is given by 
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Where, 

DCM is the direction cosine matrix or the transformation 

matrix which is given by 
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To Calculate the Velocities along with north, east and the 

downward velocity is given by the equation (9) 
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Whereas,  
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Now on this way we can calculate the rate of latitude λ, 

longitude μ and height H  
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Now,   

The INS program now takes 6 states from this time 

history.After we obtain the row, pitch, yaw (viz. p, q, r, ax, ay, 

az) from the gyros and accelerometers. Then the program 

integrates and calculates the Euler angles are calculated using 

equations 2-4 Now the accelerations from the accelerometers 

are used to calculate U˙ ,V˙ , W˙ given by equations 5-7, 

which are then integrated to get the values of U , V , W. Now 

to calculate the velocity components in the body frame we 

have to convert the components into the navigation frame 

where we use the DCM matrix as in equation 8 and calculate 

velocities in equation 10. These velocities are then integrated 

to get the position (X, Y, and Z) along the axes. Hence, we can 

finally calculate the latitude, longitude and the height can be 

calculated using equation 11. 

Similarly, the GPS give the latitude, longitude and altitude of 

the current location of the receiver through which we can 

calculate the Flong  and  Flat  in equation 12-13. Considering that 

earth has a semi major axis equatorial radius (a=6,378,137m) 

and with polar radius of (b= 6,356,752.3142m) where the 

distance corresponding to a 1
0
 change in longitude Flong and 

latitude   Flat for a specific latitude λ and height h. 
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Hence, the latitude and longitude at the current location (λ2, 

µ2) can be calculated from the latitude and longitude from the 

previous location (λ1, µ1) in the following manner  
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Where, δX and δY are the changes in position along North 

direction and East direction on the earth, respectively. 

 

III. KALMAN FILTER  MOUDLE 

 

Kalman filter is the best procedure for combining noisy sensor 

output to estimate the state of a system with uncertain 

dynamics. The noisy sensor output include output from the 
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GPS and INS which include the position, velocity, attitude and 

attitude rate of the object and uncertain dynamics caused by a 

human error or any medium. The Kalman filter used to 

estimate the error introduce into the unaided INS system due 

to the gyro and accelerometer. In this model the error from the 

INS state vector  



kx
 and the measured value of the state 

vector from the GPS forms a measurement vector Z. The 

GPS/INS integrate system configuration and the error are 

wither compensated by the two mechanism as feedback 

mechanism or feedback mechanism as shown in figure I and 

II. 

 

 

 

 

 

 

 

 

 

                               

 

 

 

 

 

         Fig I:  Feed forward aided INS 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Fig II: Feed backward aided INS 

 

 

IV. A D A P T I V E K A L M A N F I L T E R I N G 

A L G O R I T H M S 

 

 A number of adaptive Kalman filtering techniques exist to 

achieve the criteria described in adapting the stochastic 

properties of the Kalman Filter. Most techniques use the 

innovation sequence as the basis for adapting the measurement 

noise covariance, Rk, and the process noise covariance, 

Qk. These methods use a windowing function on the 

most recent innovations. Correct identification of the window 

size also needs to be identified to obtain the correct balance 

between filter adaptivity and stability. Multiple Model Kalman 

filtering is also described as a potential method for filter 

adaptation. 

 

a. Covariance Scaling.  

 

The covariance scaling method was used for improving the 

stochastic modeling of deferential pseudo-range GPS. The 

predicted covariance, P(k+x)1 , is artificially scaled by the 

factor Sk>1 to apply more weight to the measurements: 
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Deferent techniques can be used in estimating Sk. For 

example, a priori methods can be used in alignment of low 

cost IMUs, where it is known that the inertial sensor errors 

will be larger before the system has been aligned.  

 

b. Adaptive Kalman Filter.  

 

The principle of the Adaptive Kalman Filter (AKF) is to make 

the Kalman filter residuals consistent with their theoretical co-

variances (Mehra, 1972). An estimate of the covariance of the 

innovation residual is obtained by averaging the previous 

residual sequence over a window length N: 
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The estimated process noise can also be to give: 
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Where, Δxk = xk
(-)

-xk
(+)

.This is known as a residual based 

estimate. Equation (19) can be written in terms of the 

innovation sequence by making the following substitution for 

the covariance of the state corrections. 
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V. RESULT 

The graphs for attitude computed and corrected by the 

adaptive Kalman filter are given in Figure III. We cannot 

expect the Kalman filter to correct the attitude, velocity and 

positions given by the INS perfectly. This corrected attitude 

forms a part of the integration loop in the whole system. In 

figure III, the Red line denotes the output obtained by adaptive 

kalman filter where as the blue line is the output obtained by 

kalman filter respectively. As can be seen from the graph, the 

error of adaptive kalman filter was smaller than the error of 

kalman filter. 
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Figure III: longitude, latitude and velocity error obtained by the Kalman Filter 

and Adaptive Kalman Filter 

 

In the results, the X-axis shows the time period and the Y-axis 

shows the estimated error of the longitude, the latitude, the 

eastward velocity and the northward velocity. 

 

VI. CONCLUSION 

 

This paper has shown that how adaptive Kalman filter can be 

configured. The innovation and residual sequences provide a 

useful performance indicator that can be used to adaptively 

tune the stochastic information used in the filter. This paper 

has shown the use of adaptive filtering techniques to improve 

the error. The integration of INS and GPS is generally 

implemented through a adaptive Kalman flter. This filter 

showed a major improvement over the kalman filter. The 

performance of the adaptive Kalman filter, for most of the 

navigation parameters used in this study, is improved by 

almost 50% or more when compared to that of the kalman 

filter. 

In this paper, an adaptive Kalman flter, based on the flter 

innovation sequence, is introduced as an alternative for 

integrating INS/GPS systems. 

 

REFERENCES 

 
[1] Brown, R. B. and Hwang, P. Y. C. (1997). Introduction to Random 

Signals and Applied Kalman Filtering. 

[2] John Wiley and Sons Inc., 3rd edition.. 

[3] Hu, C., Chen, Y. and Chen, W. (2001). Adaptive Kalman filtering for 

DGPS positioning. International Symposium on Kinematic Systems in 

Geodesy, Geomatics and Navigation, 2001. 

[4] Welch, G. and Bishop, G. (2001). An introduction to the Kalman filter. 
Technical report, University of North Carolina at Chapel Hill. 

[5] Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J. (2001). "GPS: 
Theory and practice".Wien: Springer Verlag. 

[6] Pamadi, B.N., Performance, Stability, Dynamics and Control of 

Airplanes, AIAA Education Series,Virginia, 1998. 

[7] Shin, E.H., “Accuracy Improvement of Low Cost INS/GPS for Land 

Application,” University of Calgary, December 2001. 

[8] Shang, J., Mao, G., and Gu, Q., “Design and Implementation of 

MIMU/GPS Integrated Navigation Systems,”Tsinghua University, 

China, 2002.  

[9] Bhaktavatsala, S., “Design and Development of DSP Based GPS-INS 

Integrated 

[10] System,” M.Tech. Dissertation, Indian Institute of Technology, Bombay, 

June 2004.  

[11] Wolf, R., Eissfeller, B., Hein, G.W., “ A Kalman Filter for the 

Integration of a Low Cost INS and an attitude GPS,” Institute of 
Geodesy and Navigation,Munich, Germany. 

[12] Grewal, M.S., Weill, L.R., and Andrews, A.P., Global Positioning 

Systems, Inertial Navigation, and Integration, John Wiley and Sons, 
New York, 2001. 

 

1756

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041058

International Journal of Engineering Research & Technology (IJERT)


