
Global State Recognition Algorithms In Distributed Systems

 T. Swathi
1
 M. Padma

2
 M. Lakshmi Neelima

3

 Asst.Prof,CSE Dept Asst.Prof , CSE Asst.Prof , CSE Dept

 G.Pulla Reddy Engineering College, Kurnool, Andhra Pradesh

Abstract—Large Scale distributed systems and peer-

peer networks are envisioned to be deployed for a wide

range of applications. Processes in distributed system

communicate by sending and receiving messages. A

process can record its state and message it sends and

receives.

Computing the global state of a system is a

difficult task in distributing computing. Global states are

also useful in monitoring the stable properties of the

system. There are many existing algorithms for computing

global state which have high response time and require

large number of messages.

 This paper presents a suite of algorithms

DPREU and DPRRU by which a process in distributed

system can determine a global state of the system and that

data is accessed through different clusters. These

algorithms are fast and require less number of messages.

Keywords-Distributed Systems, Minimal Spanning Trees,

Clusters, Message Communication Systems, Global States.

I. INTRODUCTION

A distributed computing system consists of spatially

separated process that do not shares a common memory

and communicate asynchronously with each other by

passing messages over communication channel. Each

component of a distributed system has a local state. The

state of process is characterized by the state of its local

memory and a history of its activity. The state of channel

is characterized by the set of messages sent along the

channel less the messages received along the channel. The

global state of the distributed system is a collection of the

local states of its components.

 Recording the global state of a distributed system

is an important paradigm and it finds applications in

several aspects of distributed system design. A global

state of a system consists of <Ui{LSi}Ui.j{SCi.j}>,Where

Lsi is a local state of a processor pi and Sci.j is the state of

the channel ci.j from the processor pi to pj In the system

with non-FIFO channels, Sci.j={ messages sent up to

Lsi}\{ messages received up to Lsj}.

 Recording the distributed global states is a

fundamental problem in asynchronous distributed

systems.

The global states have applications in fault

tolerance of long running programs by providing an

intermediate Checkpoint of the system. In case of a

failure, the system can restart from the checkpoint instead

of the beginning of the program.

 There are many mechanisms for taking

checkpoints in Distributed systems; two broad categories

are coordinated and uncoordinated check pointing. In

uncoordinated check pointing, processes autonomously

take a checkpoint. The drawback of uncoordinated

checkpoints is that checkpoints may be wasted because

they are not consistent with checkpoints taken by other

nodes. Further, multiple checkpoints need to be recorded

at each process because the latest checkpoint at a process

may not be consistent with the latest checkpoints at other

process. Worse, this requires rollback to a much older

system state and redoing computation from that older

system state. In coordinated check pointing, the nodes

collectively record a consistent global state of the system

so that no checkpoint is wasted. Coordinated check

pointing based on recording global snapshots is the

preferred way of check pointing in the high performance

massively parallel systems community.

Global states are also useful in monitoring stable

properties of the system. A property is stable if, once it

becomes true, it stays true. Some examples of stable

properties are termination, deadlock, loss-of-a-token, etc.

By repeatedly computing the global snapshot and

evaluating the property on the computed snapshot, one

can detect any stable property.

Existing algorithms for computing global states

like seminal algorithm by Chandy and Lamport [1]

requires sending a special control message called the

marker message on each of the logical channels in the

system. In the typical case where there exists a fully

connected overlay on the network graph, this amounts to a

O(n
2
)message.

In this paper we present two algorithms which

are fast and require less number of messages. This makes

the algorithm highly scalable, in addition to having the

property that the roles of all the processes are symmetry.

Process symmetry implies greater potential for balanced

workload and congestion-freedom. These algorithms

assume non-FIFO channels.

613

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70311

This paper is organized as follows. Section-2

provides related work on global states over Non-FIFO

channels and Section-3 provides related work on MST,

Section-4 provides DPREU and DPRRU algorithms.

Finally section-5 provides Conclusions and Results.

II RELATED WORK ON GLOBAL STATE OVER
NON-FIFO CHANNELS

The Lai-Yang algorithm [2] works as follows:

1. Each process is initially white and turns red while

taking a local snapshot.

2. A white (red) process sends white (red) colored

messages.

3. Each process takes a local snapshot at any time before

receiving a red message.

Each process keeps a log of all messages sent and

received along the channel. After the local snapshots are

collected at an initiator, the in-transit messages SCi.j are

computed as the set-theoretic difference per channel Ci.j

 The Chandy-Lamport algorithm [1] for a FIFO

system and its variant by Mattern [3] for a non-FIFO

system use a marker per logical channel. The deficiency

counting algorithm which are introduced by Mattern [3]

works as follows.

The algorithm uses the white/red coloring and

does not use Markers. Each processor keeps a counter that

counts the number of messages sent minus the number of

messages received. The counter gets recorded as part of

the local state recording. When the initiator collects the

local snapshots, it knows how many white messages are in

transit to the processors in the snapshot. Each red

processor is required to report to the initiator each in-

transit (white) message that is received. This continues

until the deficit count is matched at the initiator.

The two-dimensional grid-based algorithm by

Garg [4, 5] uses O(n
3/2

) messages, each of size √n, by

assuming a logical grid overlay on the underlying

architecture and by using message coloring. The

centralized and tree-based algorithms by Garg are based

on deficit counting of the sum of intransit messages, as

used by Mattern in his deficiency counting algorithm.

III CONSTRUCTING MINIMAL SPANNING TREES

The distributed minimum spanning tree (MST)

problem is one of the most important problems in the area

of distributed computing. There has been a long line of

research to develop efficient distributed algorithms for the

MST problem starting with the seminal paper of

Gallager[6] that constructs the MST in O(n logn) time and

O(|E|+n logn) messages. The communication (message)

complexity of the Gallager[6] algorithm is optimal, but its

time complexity is not optimal. Hence further research

concentrated on improving the time complexity. The time

complexity was first improved to O(n log logn) by Chin

and Ting [7], further improved to O(n log
*
n) by Gafni [8],

and then improved to existentially optimal running time of

O(n) by Awerbuch[9]. The O (n) bound is existentially

optimal in the sense that there exists graphs where no

distributed MST algorithm can do better than Ω(n) time.

Computing the low weight spanning sub graphs

of a given graph G (V; E) with non-negative edge weights

is a fundamental problem in network design. One

important problem in this setting is the k-vertex

connectivity problem (henceforth simply the k-

connectivity problem) find a spanning sub graph of

minimum weight that is k-vertex-connected, i.e., there

exists k vertex-disjoint paths between every pair of

vertices. Finding an optimal k-connected spanning sub

graph is NP-hard for k ¸ 2 even if the weights of the edges

satisfy the triangle inequality, or even when the graph is a

complete Euclidean graph. There has been a lot of work

on designing approximation algorithms for the k-

connectivity problem. Most of these algorithms are

centralized algorithms which are quite sophisticated and

their main goal is to obtain a polynomial time algorithms

with the best possible approximation ratio.

With the emergence of the new networking

technologies such as ad hoc and sensor networks, there is

an increasing need for distributed algorithms that are

simple and easily implementable, have low

communication complexity, and perform reasonably well.

Such simple local algorithms are desirable even for the

MST problem, where optimal distributed algorithms are

known because these algorithms are quite complex,

involve a lot of message complexity and synchronization

to implement in a light weight and unreliable

environment, such as ad hoc networks. This motivates the

question of developing simple, local control, approximate

algorithms.

This also adds a new dimension to the design of

distributed algorithms for such networks: we can

potentially tradeoff optimality of the solution to the

amount of resources (messages, time etc) consumed by

the algorithm. This is the motivation for the relatively new

area of distributed approximation (Elkin [10]).

 We now mention the previous work on

distributed algorithms. Most of these algorithms assume

that the graph is unweighted and the goal is to find a

sparse k-connected subgraph. The algorithm of Cheriyan

[11] finds k edge-disjoint breadth fist (BFS) forests, which

gives a k-connected subgraph. The distributed

implementation of this algorithm has time and message

complexity as O(knlog
3
n) and O(k|E|+knlog

3
n)

respectively. Thurimella [12] improved the time

complexity to O(kD+kn
0.614

)where D is the diameter of G,

but the message complexity was ignored and can be much

larger than the previous algorithm. Using similar ideas,

Jennings developed a distributed algorithm for the k-

vertex connected subgraph problem which takes O(n) time

and O(|E|) messages. In the same paper, they also

presented a distributed algorithm for the k-edge

connectivity problem which takes O((k+D)log
3
n) time and

O(|E|+knlog
3
n) messages. All the above algorithms

produces a k-connected subgraph with O(kn) edges from

an unweighted k-connected graph G.

614

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70311

IV DATA PROVISION RESOURCE EXPLOIT AND

UTILIZATION (DPREU) AND DATA PROVISION

RESOURCE REPLICATION AND UTILIZATION

(DPRRU)

The advent of high speed distributed systems has

made it feasible for a large number of geographically

dispersed computers to cooperate and share objects. An

attempt is made with this set of algorithms to minimize

communication delays with efficient use of network

resources and providing access to shared objects.

 The task of designing efficient algorithms for

supporting access to shared objects over wide area

networks is challenging both for practically and

theoretically. The main source of difficulty in designing

an access scheme that is efficient in both time and space is

the computing considerations of these measures. In this

paper a simple randomized access scheme is designed that

exploits locality and distributes control information to

achieve low memory.

 The centralized and tree-based algorithms by

Garg [4, 5] limited their solution to deal with resource

requirements of the single clusters.

In this model two algorithms are designed that

manages multiple clusters, one is for resource discovery

and utilization in between node groups that labeled as

“Grid level Data Provision resource exploit and utilization

[DPREU] model” and other one is for resource

replication and utilization between nodes with in node

groups that labeled as node group level “Data provision

resource replication and utilization” [DPRRU] model.

 A network is modeled as an undirected

weighted graph G = (V;E;w) where V is the set of the

nodes (vertices) and E is the set of the communication

links between them and w(e) is the weight of the edge e 2

E. Each node hosts a processor with limited initial

knowledge.

The communication between any two nodes

happens by sending/receiving messages along the edge

between them in the graph G. We assume that the

communication is synchronous and occurs in discrete

pulses (time steps). This assumption is not essential for

time complexity analysis. One can use a synchronizer to

obtain the same time bound in an asynchronous network

at the cost of some increase in the message complexity

[13]. We assume that O (log n) bits can be transferred in

one step per edge and a node can send messages through

its entire incident links at the same time.

Initially all the nodes in the distributed systems

are grouped into clusters. Minimal spanning trees are

constructed separately for each cluster. Inter cluster graph

is build by reading the coast between each cluster. By

applying DPREU a cluster is selected as root where global

data is placed. DPRRU replicates the data in each cluster

that is accessed by all the nodes present in each cluster.

By using DPREU average cost between each cluster is

noted. Inter cluster graph is constructed which is MST for

the whole network. With this the time complexity can be

reduced. DPRRU places the data in each and every cluster

at the root node of minimal spanning tree. Thus providing

access of data for other local nodes.

V CONCLUSION AND RESULTS

 A simple randomized approximation scheme for

constructing a low-weight k-connected spanning sub

graph with this paper, it also presents an efficient

implementation in a complete network of processors. The

proposed algorithm has low time and message complexity

while giving a relatively good approximation ratio for the

metric graphs, random geometric graphs, and random

edge-weight graphs. It is interesting to see whether the

ideas in this paper can be used to design an efficient

distributed algorithm for the more challenging problem of

finding a k-connected sub graph in an arbitrary general

graph.

 The local nature of the NN-scheme seems

suitable for designing a simple and efficient dynamic

algorithm (especially in a distributed setting), where the

goal is to maintain a k-connected graph of good quality, as

nodes are added or deleted. This looks promising for

future work.

 These algorithms are also suitable for

constructing Minimal spanning tree using multiprocessor

computer systems. There are many reasons for

constructing minimal spanning trees in computer

communications networks since minimal spanning tree

routing is useful in distributed operating systems for

performing broadcast in adaptive routing algorithms for

transmitting delay estimates, and in other networks like

packet Radio Networks.

Below figure (Fig.1) is a result of DPREU and

DPRRU algorithms. An Inter cluster graph is constructed

considering all the clusters. The time and message

considerations are done by taking 80 nodes, grouping

those to nine clusters. In the second step MST are

constructed for each cluster separately. Then DPREU is

applied to construct Inter cluster graph reading the cost

between clusters and making one cluster as root (the

highlighted cluster) considering the threshold. At last

DPRRU places the data at root node for each cluster.

As there is an overhead in distributed

communication as the processors may not be stable, this

paper suggest an idea to group the nodes into clusters thus

making communication management easier which leads to

less number of messages sent and received between

processors . These algorithms are also scalable as the new

nodes can be placed or deleted in any cluster. Additionally

these algorithms are congestion free and have balanced

workload as all the processors share the work equally.

Finally these algorithms are used as distributed

termination detection this is known when local states are

of no interest then no messages are sent or received and

the message counter is equally zero.

615

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70311

Fig.1
INTERCLUSTER GRAPH CONSTRUCTED BY APPLYING DPREU

ALGORITHM

REFERENCES

[1] K.M. Chandy and L. Lamport, “Distributed Snapshots: Determining
Global States of Distributed Systems,” ACM Trans. Computer Systems,

vol. 3, no. 1, Feb. 1985.

[2] T.-H. Lai and T. Yang, “On Distributed Snapshots,” Information
Processing Letters, vol. 25, no. 3, pp. 153-158, 1987.

[3] F. Mattern, “Efficient Algorithms for Distributed Snapshots and

Global Virtual Time Approximation,” J. Parallel and Distributed
Computing, vol. 18, no. 4, pp. 423-434, 1993.

[4] S.Agarwal, R. Garg, M. Gupta, and J. Moreira, “Adaptive

Incremental Checkpointing for Massively Parallel Systems,” Proc.Int’l
Conf. Supercomputing, pp. 277-286, 2004.

[5] R. Garg, V. Garg, and Y. Sabharwal, “Scalable Algorithms for

Global Snapshots in Distributed Systems,” Proc. 20th Ann.
Conf.Supercomputing, pp. 269-277, Nov. 2006.

[6]R.Gallager, P. Humblet, and P. Spira, “A distributed algorithm for

minimum weight spanning tree,”. ACM Transactions on Programming

Languages and Systems, January 1983.

[7] F.Chin and H.F. Ting “An almost linear time and O(n log n + e)

messages distributed algorithm for minimum-weight spanning trees” , In

Proceedings of the 26th IEEE Symposium on Foundations of Computer

Science (FOCS).
[8] E. Gafni, "Improvements in the time complexity of two message-

optimal electionalgorithm” , In Proceedings of the 4th Symposium on

Principles of Distributed Computing (PODC), 1985.
[9] B. Awerbuch.” Optimal distributed algorithms for minimum weight

spanningtree, counting, leader election, and related problems” , In

Proceedings of the 19thACM Symposium on Theory of Computing
(STOC), May 1987..

 [10] M. Elkin, “Unconditional lower bounds on the time-approximation

tradeoff fort he distributed minimum spanning tree problem” , In
Proceedings of the ACMSymposium on Theory of Computing

(STOC),June 2004.

[11] J.Cheriyan, M. Kao, and R. Thurimella, “ Scan-first search and
sparse certi¯cates:an improved parallel algorithm for k-connectivity”

SIAM Journal of Computing, 1993.

[12] R.Thurimella, “Sub-linear distributed algorithms for sparse
certificates and biconnected components”, In Proceedings of the

Symposium onPrinciples of Distributed Computing (PODC), August

1995
[13] D. Peleg. Distributed Computing, “ A Locality-Sensitive
Approach”, SIAM, 2000.

616

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70311

