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Abstract—Large Scale distributed systems and peer-

peer networks are envisioned to be deployed for a wide 

range of applications. Processes in distributed system 

communicate by sending and receiving messages. A 

process can record its state and message it sends and 

receives. 

Computing the global state of a system is a 

difficult task in distributing computing. Global states are 

also useful in monitoring the stable properties of the 

system. There are many existing algorithms for computing 

global state which have high response time and require 

large number of messages. 

 This paper presents a suite of algorithms 

DPREU and DPRRU by which a process in distributed 

system can determine a global state of the system and that 

data is accessed through different clusters. These 

algorithms are fast and require less number of messages. 

 
Keywords-Distributed Systems, Minimal Spanning Trees, 

Clusters, Message Communication Systems, Global States. 

I. INTRODUCTION 

A distributed computing system consists of spatially 

separated process that do not shares a common memory 

and communicate asynchronously with each other by 

passing messages over communication channel. Each 

component of a distributed system has a local state. The 

state of process is characterized by the state of its local 

memory and a history of its activity. The state of channel 

is characterized by the set of messages sent along the 

channel less the messages received along the channel. The 

global state of the distributed system is a collection of the 

local states of its components. 

  Recording the global state of a distributed system 

is an important paradigm and it finds applications in 

several aspects of distributed system design. A global 

state of a system consists of  <Ui{LSi}Ui.j{SCi.j}>,Where 

Lsi  is a local state of a processor pi and Sci.j  is the state of 

the channel ci.j from the processor pi to pj In the system 

with non-FIFO  channels, Sci.j={ messages sent up to 

Lsi}\{ messages received up to Lsj}.         

  Recording the distributed global states is a 

fundamental problem in asynchronous distributed 

systems. 

        

 

The global states have applications in fault 

tolerance of long running programs by providing an 

intermediate Checkpoint of the system. In case of a 

failure, the system can restart from the checkpoint instead 

of the beginning of the program.      

  There are many mechanisms for taking 

checkpoints in Distributed systems; two broad categories 

are coordinated and uncoordinated check pointing. In 

uncoordinated check pointing, processes autonomously 

take a checkpoint. The drawback of uncoordinated 

checkpoints is that checkpoints may be wasted because 

they are not consistent with checkpoints taken by other 

nodes. Further, multiple checkpoints need to be recorded 

at each process because the latest checkpoint at a process 

may not be consistent with the latest checkpoints at other 

process. Worse, this requires rollback to a much older 

system state and redoing computation from that older 

system state. In coordinated check pointing, the nodes 

collectively record a consistent global state of the system 

so that no checkpoint is wasted. Coordinated check 

pointing based on recording global snapshots is the 

preferred way of check pointing in the high performance 

massively parallel systems community. 

Global states are also useful in monitoring stable 

properties of the system. A property is stable if, once it 

becomes true, it stays true. Some examples of stable 

properties are termination, deadlock, loss-of-a-token, etc. 

By repeatedly computing the global snapshot and 

evaluating the property on the computed snapshot, one 

can detect any stable property. 

Existing algorithms for computing global states 

like seminal algorithm by Chandy and Lamport [1] 

requires sending a special control message called the 

marker message on each of the logical channels in the 

system. In the typical case where there exists a fully 

connected overlay on the network graph, this amounts to a 

O(n
2
)message. 

In this paper we present two algorithms which 

are fast and require less number of messages. This makes 

the algorithm highly scalable, in addition to having the 

property that the roles of all the processes are symmetry. 

Process symmetry implies greater potential for balanced 

workload and congestion-freedom. These algorithms 

assume non-FIFO channels. 
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This paper is organized as follows. Section-2 

provides related work on global states over Non-FIFO 

channels and Section-3 provides related work on MST, 

Section-4 provides DPREU and DPRRU algorithms. 

Finally section-5 provides Conclusions and Results. 

 

II   RELATED WORK ON GLOBAL STATE OVER 
NON-FIFO CHANNELS 

 

The Lai-Yang algorithm [2] works as follows: 

1. Each process is initially white and turns red while 

taking a local snapshot. 

2. A white (red) process sends white (red) colored 

messages. 

3. Each process takes a local snapshot at any time before 

receiving a red message. 

Each process keeps a log of all messages sent and 

received along the channel. After the local snapshots are 

collected at an initiator, the in-transit messages SCi.j are 

computed as the set-theoretic difference per channel Ci.j 

 The Chandy-Lamport algorithm [1] for a FIFO 

system and its variant by Mattern [3] for a non-FIFO 

system use a marker per logical channel. The deficiency 

counting algorithm which are introduced by Mattern [3] 

works as follows. 

The algorithm uses the white/red coloring and 

does not use Markers. Each processor keeps a counter that 

counts the number of messages sent minus the number of 

messages received. The counter gets recorded as part of 

the local state recording. When the initiator collects the 

local snapshots, it knows how many white messages are in 

transit to the processors in the snapshot. Each red 

processor is required to report to the initiator each in-

transit (white) message that is received. This continues 

until the deficit count is matched at the initiator. 

The two-dimensional grid-based algorithm by 

Garg [4, 5] uses O(n
3/2

) messages, each of size √n, by  

assuming a logical grid overlay on the underlying  

architecture and by using message coloring. The 

centralized and tree-based algorithms by Garg are based 

on deficit counting of the sum of intransit messages, as 

used by Mattern in his deficiency counting algorithm. 

 

III CONSTRUCTING MINIMAL SPANNING TREES 

 

The distributed minimum spanning tree (MST) 

problem is one of the most important problems in the area 

of distributed computing. There has been a long line of  

research to develop efficient distributed algorithms for the 

MST problem starting with the seminal paper of 

Gallager[6] that constructs the MST in O(n logn) time and 

O(|E|+n logn) messages. The communication (message) 

complexity of the Gallager[6] algorithm is optimal, but its 

time complexity is not optimal. Hence further research 

concentrated on improving the time complexity. The time 

complexity was first improved to O(n log logn) by Chin 

and Ting [7], further improved to O(n log
*
n) by Gafni [8], 

and then improved to existentially optimal running time of 

O(n) by Awerbuch[9]. The O (n) bound is existentially 

optimal in the sense that there exists graphs where no 

distributed MST algorithm can do better than Ω(n) time. 

Computing the low weight spanning sub graphs 

of a given graph G (V; E) with non-negative edge weights 

is a fundamental problem in network design. One 

important problem in this setting is the k-vertex 

connectivity problem (henceforth simply the k-

connectivity problem) find a spanning sub graph of 

minimum weight that is k-vertex-connected, i.e., there 

exists k vertex-disjoint paths between every pair of 

vertices. Finding an optimal k-connected spanning sub 

graph  is NP-hard for k ¸ 2 even if the weights of the edges 

satisfy the triangle inequality, or even when the graph is a 

complete Euclidean graph. There has been a lot of work 

on designing approximation algorithms for the k-

connectivity problem. Most of these algorithms are 

centralized algorithms which are quite sophisticated and 

their main goal is to obtain a polynomial time algorithms 

with the best possible approximation ratio. 

With the emergence of the new networking 

technologies such as ad hoc and sensor networks, there is 

an increasing need for distributed algorithms that are 

simple and easily implementable, have low 

communication complexity, and perform reasonably well. 

Such simple local algorithms are desirable even for the 

MST problem, where optimal distributed algorithms are 

known because these algorithms are quite complex, 

involve a lot of message complexity and synchronization 

to implement in a light weight and unreliable 

environment, such as ad hoc networks. This motivates the 

question of developing simple, local control, approximate 

algorithms.  

This also adds a new dimension to the design of 

distributed algorithms for such networks: we can 

potentially tradeoff optimality of the solution to the 

amount of resources (messages, time etc) consumed by 

the algorithm. This is the motivation for the relatively new 

area of distributed approximation (Elkin [10]).          

 We now mention the previous work on 

distributed algorithms. Most of these algorithms assume 

that the graph is unweighted and the goal is to find a 

sparse k-connected subgraph. The algorithm of Cheriyan 

[11] finds k edge-disjoint breadth fist (BFS) forests, which 

gives a k-connected subgraph. The distributed 

implementation of this algorithm has time and message 

complexity as O(knlog
3
n) and O(k|E|+knlog

3
n) 

respectively. Thurimella [12] improved the time 

complexity to O(kD+kn
0.614

)where D is the diameter of G, 

but the message complexity was ignored and can be much 

larger than the previous algorithm. Using similar ideas, 

Jennings developed a distributed algorithm for the k-

vertex connected subgraph problem which takes O(n) time 

and  O(|E|) messages. In the same paper, they also 

presented a distributed algorithm for the k-edge 

connectivity problem which takes O((k+D)log
3
n) time and 

O(|E|+knlog
3
n) messages. All the above algorithms 

produces a k-connected subgraph with O(kn) edges from 

an unweighted k-connected graph G.  
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IV   DATA PROVISION RESOURCE EXPLOIT AND       

UTILIZATION (DPREU) AND DATA PROVISION 

RESOURCE REPLICATION AND UTILIZATION 

(DPRRU) 

 

The advent of high speed distributed systems has 

made it feasible for a large number of geographically 

dispersed computers to cooperate and share objects. An 

attempt is made with this set of algorithms to minimize 

communication delays with efficient use of network 

resources and providing access to shared objects. 

 The task of designing efficient algorithms for 

supporting access to shared objects over wide area 

networks is challenging both for practically and 

theoretically. The main source of difficulty in designing 

an access scheme that is efficient in both time and space is 

the computing considerations of these measures. In this 

paper a simple randomized access scheme is designed that 

exploits locality and distributes control information to 

achieve low memory. 

 The centralized and tree-based algorithms by 

Garg [4, 5] limited their solution to deal with resource 

requirements of the single clusters. 

In this model two algorithms are designed that 

manages multiple clusters, one is for resource discovery 

and utilization in between node groups that labeled as  

“Grid level Data Provision resource exploit and utilization 

[DPREU] model” and  other one is for resource 

replication and utilization between nodes with in node 

groups  that labeled as node group level “Data provision 

resource replication and utilization” [DPRRU] model. 

 A network is  modeled as an undirected 

weighted graph  G = (V;E;w) where V is the set of the 

nodes (vertices) and E is the set of the communication 

links between them and w(e) is the weight of the edge e 2 

E. Each node hosts a processor with limited initial 

knowledge. 

The communication between any two nodes 

happens by sending/receiving messages along the edge 

between them in the graph G. We assume that the 

communication is synchronous and occurs in discrete 

pulses (time steps). This assumption is not essential for 

time complexity analysis. One can use a synchronizer to 

obtain the same time bound in an asynchronous network 

at the cost of some increase in the message complexity 

[13]. We assume that   O (log n) bits can be transferred in 

one step per edge and a node can send messages through 

its entire incident links at the same time. 

Initially all the nodes in the distributed systems 

are grouped into clusters. Minimal spanning trees are 

constructed separately for each cluster. Inter cluster graph 

is build by reading the coast between each cluster. By 

applying DPREU a cluster is selected as root where global 

data is placed. DPRRU replicates the data in each cluster 

that is accessed by all the nodes present in each cluster. 

By using DPREU average cost between each cluster is 

noted. Inter cluster graph is constructed which is MST for 

the whole network. With this the time complexity can be 

reduced. DPRRU places the data in each and every cluster 

at the root node of minimal spanning tree. Thus providing 

access of data for other local nodes. 

     

V  CONCLUSION AND RESULTS 

 

 A simple randomized approximation scheme for 

constructing a low-weight k-connected spanning sub 

graph with this paper, it also presents an efficient 

implementation in a complete network of processors. The 

proposed algorithm has low time and message complexity 

while giving a relatively good approximation ratio for the 

metric graphs, random geometric graphs, and random 

edge-weight graphs. It is interesting to see whether the 

ideas in this paper can be used to design an efficient 

distributed algorithm for the more challenging problem of   

finding a k-connected sub graph in an arbitrary general 

graph. 

 The local nature of the NN-scheme seems 

suitable for designing a simple and efficient dynamic 

algorithm (especially in a distributed setting), where the 

goal is to maintain a k-connected graph of good quality, as 

nodes are added or deleted. This looks promising for 

future work.   

 These   algorithms   are   also   suitable   for   

constructing   Minimal spanning tree using multiprocessor 

computer systems. There are many reasons for 

constructing minimal spanning trees in computer 

communications networks since minimal spanning tree 

routing is useful in distributed operating systems for 

performing broadcast in adaptive routing algorithms for 

transmitting delay estimates, and in other networks like 

packet Radio Networks. 

Below figure (Fig.1) is a result of DPREU and 

DPRRU algorithms. An Inter cluster graph is constructed 

considering all the clusters. The time and message 

considerations are done by taking 80 nodes, grouping 

those to nine clusters. In the second step MST are 

constructed for each cluster separately. Then DPREU is 

applied to construct Inter cluster graph reading the cost 

between clusters and making one cluster as root (the 

highlighted cluster) considering the threshold. At last 

DPRRU places the data at root node for each cluster. 

As there is an overhead in distributed 

communication as the processors may not be stable, this 

paper suggest an idea to group the nodes into clusters thus 

making communication management easier which leads to 

less number of messages sent and received between 

processors . These algorithms are also scalable as the new 

nodes can be placed or deleted in any cluster. Additionally 

these algorithms are congestion free and have balanced 

workload as all the processors share the work equally. 

Finally these algorithms are used as distributed 

termination detection this is known when local states are 

of no interest then no messages are sent or received and 

the message counter is equally zero.   
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Fig.1 
INTERCLUSTER GRAPH CONSTRUCTED BY APPLYING DPREU 

ALGORITHM 
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