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Abstract—Fuzzy c-means (FCM) is a simple but powerful 

clustering method using the concept of fuzzy sets that have been 

proved to be useful in many areas. There are, however, several 

well-known problems with FCM, such as sensitivity to 

initialization, sensitivity to outliers, and limitation to convex 

clusters. In this paper, a new clustering method, which is an 

extension of global fuzzy c-means (G-FCM) and kernel fuzzy c-

means (K-FCM), is proposed to resolve the shortcomings 

mentioned above. G-FCM is a variant of FCM that uses an 

incremental seed selection method and is effective in alleviating 

the sensitivity to initialization. There are several approaches to 

reduce the influence of noise and properly partition non-convex 

clusters and K-FCM is one of them. K-FCM is used in this paper 

because it can easily be extended with different kernels, which 

provide sufficient flexibility to allow for resolution of the 

shortcomings of FCM. By combining G-FCM and K-FCM, the 

proposed method, kernelized global FCM (KG-FCM), can 

resolve the shortcomings mentioned above. The usefulness of 

KG-FCM is demonstrated by experiments using artificial and 

real world data sets. 

Keywords— Fuzzy C-Means; Global Initialization; Kernel 

Method; Non-Convex Cluster; Noise Robustness  

I.  INTRODUCTION 

Clustering, also known as cluster analysis, assigns an 
unlabeled data set X = {x1; … , xN} into K(1 < K < N) 
homogeneous clusters based on a similarity measure [1] and 
has formed an important area in pattern recognition, image 
processing, and, most recently, data mining. A variety of 
clustering algorithms has been proposed, including fuzzy c-
means (FCM), which is the main concern of this paper. 
Although FCM is an efficient algorithm, there are several 
difficulties with it: (1) choosing the initial cluster seeds; (2) 
suppressing noise; (3) accommodating non-convex clusters; 
and (4) determining the optimal number of clusters. In this 
paper, we try to solve the problems all but the last problem 
assuming the number of clusters is known. To address the 
remaining problems, global fuzzy c-means (G-FCM), which is 
an extension of global k-means (GKM), is further extended 
using kernelized fuzzy clustering. G-FCM uses a deterministic 
approach to select a set of initial seeds to resolve the 
initialization problem. Kernelized fuzzy clustering is a non-
linear counterpart of fuzzy clustering and can accommodate 
non-convex clusters. Some kernelized clustering methods also 
has noise robustness according to the kernel used. Although 
there have been attempts to solve the shortcomings in FCM, 
they tried to solve one problem at a time. By combining global 
and kernelized clustering, however, the proposed method can 
resolve the shortcomings simultaneously. 

 

 

It has long been known that FCM is only guaranteed to 
converge on a locally optimal solution, which is sensitive to 
initial state. Since the problem of obtaining a globally optimal 
initial state and a globally optimal solution has been shown to 
be NP-hard, the initialization method for a sub-optimal 
solution is more practical and of great value. There exist 
various initialization methods for clustering, which can be 
categorized into three groups [2]: random sampling methods, 
distance optimization methods, and density estimation 
methods. In random sampling methods, probably the most 
widely adopted ones, multiple runs of clustering with random 
initial seeds are conducted, and the best or aggregated one is 
selected as the final clustering result [3]. Although they are 
simple and statistically sound, they depend heavily on the 
number of runs, and the computational cost is very high. 

Distance optimization methods are used to maximize the 
distance among the seeds. As many clustering methods, 
including FCM, try to minimize the intra-cluster variance 
without optimizing the inter-cluster separation, it is natural to 
maximize the inter-cluster distance beforehand. The MaxMin 
procedure [4] and its variants, in which a data point having the 
largest distance to the existing set of seeds is iteratively added, 
are the most widely used ones. Although they are simple and 
efficient, some of them also require multiple runs and the 
resulting set of seeds tends to be placed on the boundary of 
data. 

Density estimation methods select a set of seeds based on 
local density, the estimation of which is crucial in these 

methods. The k-nearest neighbor or -radius ball is generally 
used to decide neighboring points [5], and each requires one 
additional parameter. G-FCM [6] also belongs to this group, 
which iteratively adds a data point optimizing the original 
objective function for clustering as a seed. Due to its 
deterministic property, it does not require multiple runs and 
does not need any extra parameter, i.e. does not have the 
shortcomings in other methods, and demonstrated better 
results than other methods. 

The global clustering method was first formulated for hard 
clustering [7,8] and extended to soft clustering [6]. These 
global methods, however, are still affected by noise and 
cannot accommodate non-convex clusters. The sensitivity to 
noise can be alleviated in several ways and adopting kernel 
methods is one of them. Kernel methods were originally 
proposed to convert linear methods into non-linear ones [9], 
but it is also well known that some kernels have outlier 
robustness together with their non-linear properties [10]. 
Another reason for adopting kernel methods is that they can 
be extended in several ways using different kernels. There 
exist other ways to accommodate non-convex clusters and 
clustering with non-Euclidean distance [11] and spectral 
clustering [12,13] are well-known and widely adopted ones 
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together with kernelized clustering [14]. However, non-
Euclidean distance is sensitive to noise, which is also 
demonstrated in the experiments, and spectral clustering has 
been proved to be equivalent to kernel clustering [15,16]. 

In this paper, G-FCM is extended to a kernel-based 
method, called kernelized global fuzzy c-means (KG-FCM), 
and realized using two different kernels. First, KG-FCM is 
implemented using the Cauchy kernel to improve noise 
robustness, called KG-FCM with Cauchy kernel (KG-FCM-
C). KG-FCM-C can be used to determine initial seeds 
efficiently and treat outliers in a robust way. KG-FCM is also 
implemented in another way using the random walk kernel 
[17,18] to accommodate non-convex clusters effectively, 
called KG-FCM with random walk kernel (KG-FCM-RW). 
KG-FCM-C is more noise resistant than existing methods and 
KG-FCM-RW is the most efficient one for clustering non-
convex clusters. 

In the next two sections, the hard and soft global clustering 
algorithms – global k-means and global fuzzy c-means, 
respectively – are briefly described. In Section 4, global fuzzy 
c-means is extended to kernelized global fuzzy c-means. 
Experimental results are given in Section 5 and discussions 
and further research are given in Section 6. 

II. GLOBAL K-MEANS (GKM) 
The k-means algorithm [19] is an iterative algorithm that 

finds K crisp and hyper-spherical clusters in the data such that 
an objective function defined in Eq. (1) is minimized: 

  

where I(xi  Ck) is an indicator function having a value of one 
if data point xi belongs to the kth cluster (Ck) and zero 
otherwise. Commonly, the K cluster centers, V = {v1, … , vK}, 
are initialized randomly with data points. Although k-means is 
one of the simplest learning algorithms and is still in use, one 
of its major problems is its sensitivity to initialization. To 
resolve this problem, several methods for initialization have 
been proposed and global k-means is one of them. Global k-
means [7,8] is an incremental approach to clustering that 
dynamically adds one cluster at a time through a deterministic 
search procedure. The assumption on which the method is 
based is that an optimal clustering solution to the k clustering 
problem can be obtained through N local searches using k-
means starting from an initial state with  

1. the (k - 1) seeds placed at the centers from the (k - 1) 
clustering problem and 

2. the remaining kth seed placed at a data point xi(1 < i < 
N). 

The original version of GKM requires O(N) executions of 
k-means for one new seed, which results in O(KN) executions 
of k-means and is not feasible with a large N. Thus a fast 
GKM algorithm was proposed, in which only one data point 
maximizing an objective function is considered as a new seed 
[7]. The objective function is defined as 

  

where dj
k-1 is the distance between xj and the center closest to 

xj among the (k-1) cluster centers obtained so far. The quantity 
Jl

k measures the guaranteed reduction in the objective function 
obtained by inserting a new cluster center at xl. The modified 
algorithm significantly reduces the number of k-means 
executions from O(KN) to O(K). The fast GKM algorithm is 
summarized in Fig. 1, where d is the dimensionality of data. 

Require: K : number of clusters, X : data set (N  d) 

1:    

2:   for k = 2 to K do 

3:      for l = 1 to N do 

4:          

5:      end for 

6:       

7:      Vk = Vk-1  {x} 

8:      [Vk]  k-means(X, Vk) 

9:   end for 
10: return VK 

Fig. 1. GKM: Fast global k-means 
 

III. GLOBAL FUZZY C-MEANS (G-FCM) 
With the introduction of fuzzy memberships, global fuzzy 

c-means (G-FCM) is a direct extension of global k-means 
(GKM) as FCM is a direct extension of k-means. k-means 
tries to minimize the sum of squared distances in Eq. (1), 
which can be extended to FCM by relaxing the indicator 
function to have continuous values with appropriate 
constraints. The objective function of FCM can be written as 

  

where m is a fuzzifier constant and uki is the membership of 
the ith point to the kth cluster satisfying 

  a

  b

  c
G-FCM uses the same algorithm as GKM, except for two 

things. First, FCM is used instead of k-means. Equations (5) 
and (6) show the update equations for FCM [20]: 

  

  

Another difference lies in the objective function for seed 
selection. Using Eq. (2), GKM tries to find a data point 
minimizing Eq. (1). Likewise, in G-FCM, one should find a 
data point minimizing Eq. (3). Equation (3) can be re-
formulated using Eq. (5) as [21] 

  
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The objective function for seed selection then becomes 

  

Therefore, Equation (8) should be divided in two 
according to the type of a center: one from the previous (k-1) 
clustering problem and the other from a data point. 

  

The data point x minimizing Eq. (9) is selected as the 
initial position of a new cluster center. The G-FCM algorithm 
is summarized in Fig. 2. One thing that should be noted is that 
memberships do not appear in the algorithm explicitly. 
However, all the algorithms proposed satisfy the constraints in 
Eq. (4) due to the re-formulation using Eq. (5). 

Require: K : number of clusters, X : data set (N  d) 

1:    

2:   for k = 2 to K do 

3:      for l = 1 to N do 

4:          

5:      end for 

6:       

7:      Vk = Vk-1  {x} 

8:      [Vk]  FCM(X, Vk) 

9:   end for 
10: return VK 

Fig. 2. G-FCM: Global fuzzy c-means 

IV. KERNELIZED GLOBAL FUZZY C-MEANS (KG-

FCM) 

Although global fuzzy c-means can be used to efficiently 
decide initial seeds, it still has drawbacks in that it is sensitive 
to outliers and it is limited to convex clusters. Several 
approaches have been proposed to alleviate these problems 
and kernel-based clustering was used in this paper. 

Kernel methods were first introduced to clustering by 
Girolami [14], who proposed kernel k-means. Other kernel-
based clustering algorithms were proposed after that [15]. The 
direct extension of FCM using kernels, kernel FCM (K-FCM), 
tries to minimize the following objective function: 

  

where () is a mapping function. The update equations for K-
FCM can be written as  

  

  

Due to the dimensionality of the mapped data, however, 
Eqs. (11) and (12) cannot be evaluated directly and one has to 
use a kernel trick to evaluate the values indirectly using 
kernels. To make KG-FCM noise-robust, instead of the 
commonly used Gaussian kernel, the Cauchy kernel was used, 
which results in kernel FCM with Cauchy kernel (K-FCM-C). 
The Cauchy kernel has been shown to be outlier-robust and 
able to effectively accommodate clusters with different 
densities compared to the Gaussian kernel [10]. The Cauchy 
kernel can be defined as 

  

where  is a kernel parameter. Using Eq. (13), the update 
equations can be written as [10] 

  

  

Although the coordinates of cluster centers in the feature 
space (Eq. (12)) cannot be evaluated due to dimensionality, 
the corresponding ones in the input space (Eq. (15)) can be 
calculated when the Cauchy kernel is used. In Eq. (15), the 

kernel function (xi, vk) works as a weighting function. The 

function (xi, vk) weights a data point based on the similarity 
between xi and vj, which results in noise robustness. To do a 
global search, Eq. (9) also should be kernelized as 

  

which can be simplified as 

  

The final consideration is the evaluation order of the 
update equations. At the beginning of a k clustering problem, 
the membership in Eq. (14) must be calculated first to 
incorporate the current problem into the prior information – 
the optimal clustering result from the (k-1) clustering problem 
and the data point minimizing Eq. (17). Figure 3 summarizes 
K-FCM-C. Kernelized global FCM with Cauchy kernel (KG-
FCM-C) is summarized in Fig. 4. Together with its non-linear 
property, the proposed algorithm can be used to decide initial 
seeds efficiently and is more robust to outliers than existing 
methods. However, it still cannot efficiently accommodate 
non-convex clusters due to its noise suppressing property. 
This problem can be tackled by the introduction of a random 
walk kernel. 
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Require: K : number of clusters, X : data set (N  d), VK-1 : 

initial centers ((K – 1)  d),  : data point index 

1:   Vk = Vk-1  {x} 

2:   repeat 

3:      for k = 1 to K do 

4:         for i = 1 to N do 

5:             

6:         end for 

7:          

8:      end for 

9:   until U satisfies the convergence criterion 
10: return VK, UK 

Fig. 3.K-FCM-C: Kernel FCM with the Cauchy kernel 

 

Require: K : number of clusters, X : data set (N  d) 

1:    

2:   for k = 2 to K do 

3:      for l = 1 to N do 

4:          

5:      end for 

6:       

7:      Vk = Vk-1  {x} 

8:      [Vk, Uk]  K-FCM-C(X, Vk-1, , k) 

9:   end for 
10: return VK, UK 

Fig. 4. KG-FCM-C: Kernelized global FCM with the Cauchy kernel 

The random walk distance is a graph theoretic distance, in 
which each data point is considered as a node and the distance 
between two points is defined using Markov property. The 
random walk distance was formally established by Klein and 
Randic [17] and is also known as resistance distance following 
the electronic circuit analogy. Of the two distance measures 
that can be computed following the property of Markov chain, 
the average commute time is used in this paper. The average 
commute time is defined as the average time that a random 

walker, starting at node i, will take to enter node j( i) for the 
first time and go back to node i [18]. The traditional shortest 
path distance does not consider the number of paths 
connecting two nodes, but the random walk distance decreases 
as the number of paths increases or the length of a path 
decreases. The average commute time can be calculated in 
terms of the pseudo-inverse of Laplacian matrix, L+, as in Fig. 

5. In Fig. 5, i denotes the distance to the (2d + 1)th nearest 
neighbor from xi, where d is the dimensionality of data. By 
deciding the parameter in this way, one can efficiently reduce 
the effect of noise and accommodate clusters with different 
densities [22]. To obtain more detailed information, refer to 
[18] and the references therein. Using the average commute 
time, the random walk kernel can be defined as 

  

where  is a kernel parameter. The update equation for K-
FCM with random walk kernel (K-FCM-RW) can be written 
in a way similar to Eq. (14) as 

  

Require: K : number of clusters, X : data set (N  d 

1:   Build an affinity matrix A, 

 
2:   Calculate a diagonal degree matrix D,  

 
3:   Calculate a Laplacian matrix L = D – A and its pseudo-inverse L+. 

4:   Build an average commute time matrix DC, 

, where . 

5:   return DC 

Fig. 5. Average commute time 
 

The cluster center cannot be evaluated in the feature space 
nor in the input space when the random walk kernel is used, 

however, RW(xi, vk) can be evaluated as a weighted sum of 
dot-products between data points, 

  
Equation (20) can be used to update membership values in 

Eq. (19) and to calculate the objective function for seed 
selection in Eq. (16). The algorithm in Fig. 3 also should be 
modified, because the coordinates of centers cannot be 
evaluated in K-FCM-RW and the membership values describe 
the centers indirectly. Thus, the set of centers, V, in Fig. 3 
should be replaced with the membership matrix U, whose kth 
column represents the membership vector to the kth cluster. 
The initial value U1 in kernelized global FCM with random 

walk kernel (KG-FCM-RW) can be initialized with an (N  1) 
vector of ones. Figure 6 summarizes K-FCM-RW and Fig. 7 
does KG-FCM-RW. 

Require: K : number of clusters, X : data set (N  d), UK-1 : 

initial membership matrix (N  (K – 1)),  : data point index 

1:   Vk = Vk-1  {x} 

2:   repeat 

3:      for k = 1 to K do 

4:         for i = 1 to N do 

5:             

6:         end for 

7:      end for 

8:   until U satisfies the convergence criterion 
9:   return UK 

Fig. 6. K-FCM-RW: Kernel FCM with the random walk kernel 
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Require: K : number of clusters, X : data set (N  d) 

1:   U1 = [ 1 1 … 1 ]T 

2:   for k = 2 to K do 

3:      for l = 1 to N do 

4:          

5:      end for 

6:       

7:      [Uk]  K-FCM-RW(X, Uk-1, , k) 

8:   end for 
9:   return UK 

Fig. 7. KG-FCM-RW: Kernelized global FCM with the random walk kernel 
 

In this section, four kernelized algorithms were developed, 
two using explicit initialization (K-FCM-*) and two using 
global initialization (KG-FCM-*). A global method is a 
wrapper method of the corresponding explicit initialization 
method and decides initial seeds incrementally. Table 1 
compares the methods described in this paper. 

TABLE I.  COMPARISON OF CLUSTERING METHODS 

Method 
Cluster 

boundary 
Initialization Kernel 

FCM convex random - 

G-FCM convex global - 

K-FCM-C non-convex random Cauchy 

KG-FCM-C non-convex global Cauchy 

K-FCM-RW non-convex random random walk 

KG-FCM-RW non-convex global random walk 

 

V. EXPERIMENTAL RESULTS 

To investigate the effectiveness of the proposed method, 
the existing and proposed methods were implemented and 
tested using Matlab. We tested the methods in Table 1 using 
artificial and UCI data sets. 

A. Experiments using artificial data sets 
In the first set of experiments, the usefulness of the global 

search technique is shown.  
 

 

Fig. 8. A clustering result using FCM with random initial seeds represented as 
large dots 

 
 

Figure 8 shows a clustering result using FCM. The test 
data (D7) consists of seven well-separated clusters generated 

from Gaussian distributions with means  = [0 0 7 7 7 14 14; 

0 7 0 7 14 0 7] and equal covariance matrix  = I. The large 
dots represent the random initial seeds used in FCM. Although 
FCM usually finds the correct structure, it sometimes fails due 
to the convergence to a local optimum even in a data set with 
well-separated clusters. For example, only three clusters out of 
seven are correctly identified in Fig. 8. Figure 9 shows the 
initial seeds in G-FCM, which are decided in a deterministic 
way. Conceptually, KG-FCM works exactly the same way as 
in Fig. 9, but is difficult to visualize due to the dimensionality 
of the mapped data. 

 

Fig. 9. Incremental seed selection in G-FCM 
 

Table 2 summarizes the clustering results using D7. The 
numbers are averaged over 100 runs. FCM occasionally falls 
into a local optimum. K-FCM-C is a little better than FCM, 
but sometimes it also falls into a local optimum. K-FCM-RW 
is the least satisfactory because the random walk distance is 
based on the path connectivity between points, which is 
sensitive to outliers. The large variance for K-FCM-RW also 
corroborates this. The two global methods, G-FCM and KG-
FCM-C, always find the correct structure of D7. KG-FCM-
RW is much better than K-FCM-RW, but not as good as other 
global methods. 

TABLE II.  EXPERIMENTAL RESULTS USING D7 (M = # OF 

CLUSTERS CORRECTLY IDENTIFIED) 

Method M var(M) 

FCM 6.82 0.4925 

G-FCM 7.00 0.0000 

K-FCM-C 6.92 0.3168 

KG-FCM-C 7.00 0.0000 

K-FCM-RW 6.42 3.1164 

KG-FCM-RW 6.96 0.0788 
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To test noise robustness, some noise points were added to 
D7 and the previous experiments were repeated. Noise points 
were sampled from a uniform distribution and the noise ratio 
is given as the ratio of the number of noise points to the 
number of data points. Figure 10 shows the number of 
correctly identified clusters with respect to noise ratio. For a 
clear comparison, two subsets out of six methods are plotted 
on different scales and the numbers are averaged over 100 
runs. From Fig. 10(a), we can conclude that the global 
methods are more robust to noise than the random 
initialization methods, and KG-FCM-C is best. As the noise 
ratio increases, the random initialization methods tend to fall 
into a local optimum, while the global methods do not suffer 
noise problems and find the right structure. In Fig. 10(b), we 
can see that K-FCM-RW collapses as the noise ratio increases. 
Although the global initialization helps, KG-FCM-RW also 
fails to find the right structure in noisy conditions. 

 

(a) 

 

(b) 
Fig. 10. Number of clusters correctly identified with respect to noise ratio 

using D7 

Another merit of kernel clustering methods is that they can 
cluster irregularly shaped clusters, including non-convex 
clusters. Figure 11 shows clustering results using a data set 
consisting of two elongated clusters (Dparallel). The data 
consists of two clusters generated from Gaussian distributions 

with means  = [0  3; 0 3] and equal covariance matrix  = [5 
-4; -4 5]. For Dparallel, by the introduction of another distance 
measure, for example, Mahalanobis distance instead of 
Euclidean distance, FCM can also cluster the elongated 
clusters correctly. Kernel-based clustering methods have 
another merit, however, outlier robustness. Figure 12 
summarizes error rates for Dparallel with respect to the distance 
between two cluster centers (dbetween) and Fig. 13 does the 
same for the variances of error rates. The error rate is defined 
as the number of mis-clustered points divided by the number 
of data points. As there are only two clusters in Dparallel, the 
number of correctly identified clusters does not show clear 
comparison among the methods. Therefore, we used error rate 
in this experiment. 

In this experiment, the methods using global initialization 
showed almost the same result as the corresponding methods 
with random initialization, so the results of the global methods 
are not plotted. As is clear from Fig. 12, FCM with 
Mahalanobis distance achieves the best result when dbetween is 
small because the distance is specialized for Gaussian 
distributions. However, it sometimes fails to separate the two 
clusters even when the dbetween is sufficiently large, because the 
number of data points in Dparallel is not large enough to 
estimate parameters, including the covariance matrix. The 
overall large variance also supports that. Another interesting 
point in Fig. 13 is that the variance for K-FCM-C decreases as 
dbetween increases. On the other hand, FCM and K-FCM-RW 
have peaks, which can be considered as a threshold that 
determines marginal performance. FCM with Mahalanobis 
distance shows relatively large variances for all values of 
dbetween and does not show a clear relationship between dbetween 
and the variance of error rate. 

  

(a) (b) 

Fig. 11. Clustering results using (a) FCM and (b) K-FCM-C with random 
initialization 

 

 

Fig. 12. Error rate with respect to the distance between two cluster centers in 
Dparallel 

 

Fig. 13. Variance of error rate with respect to the distance between two cluster 
centers in Dparallel 
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 Although the random walk kernel is noise-sensitive, it is 

suitable for non-convex clusters. Figure 14 shows a sample 
data set that is not convex (Dnon-convex). FCM and K-FCM-C 
cannot separate the two clusters in Fig. 14 for two different 
reasons. First, FCM fails to separate the clusters mainly due to 
the mean squares measure, so FCM tends to separate Dnon-convex

 in a vertical direction (Fig. 15(a)). Second, K-FCM-C fails to 
separate the clusters due to its noise suppressing property. As 
a result, K-FCM-C considers the points at the end of semi-
circles as outliers and tends to separate Dnon-convex

 

in a 
horizontal direction (Fig. 15(b)). Figure 16 shows the error 
rate with respect to the distance depicted in Fig. 14. As the 
distance decreases, the error rate of FCM increases. K-FCM-C 
is slightly better than FCM, but also fails to separate two 
clusters although the cluster boundaries in K-FCM-C are not 
convex. Only K-FCM-RW can correctly separate the non-
convex clusters, but it also fails when two clusters are too 
close.

 

 Fig. 14. Non-convex clusters and the distance between two clusters

 

 

  

(a)
 

(b)
 

Fig. 15. Clustering results using (a) FCM and (b) K-FCM-C
 

 

 

Fig. 16. Error rate with respect to the distance between two clusters Dnon-convex

 
 

B.
 

Experiments using real world data sets
 

The proposed methods were also applied to some UCI data 
sets available from the UCI Machine Learning Repository 
[23]. To compare the results using different clustering 
methods, an information-based distance, a simplified variation 
of information (VI) was used. As VI is a true metric on the 
space of clusterings and retains the comparability over 
different experimental conditions, it has strength over other 
measures. As we compared a clustering to ground truth, a 
modified VI was used. To obtain more detailed information 
about VI measure, refer to [24] and the references therein.
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Suppose two different clusterings, C

 

= {C1, … , CK} and 

C

 

= {C1, … , CK} (corresponds to the set of known labels), 

which cluster the data into K

 

and K

 

clusters respectively. The 
probability of a point

 

being in cluster Ck

 

equals p(k) = Nk

 

/

 

N, 
where Nk

 

is the number of points belonging to the kth cluster 
and N

 

is the number of data points. The numbers satisfy

 

  

The information contained in clustering C

 

can be 

represented as the entropy of the random variable p(k),

 

  

and the amount of information common to both clusterings 
can be represented as the mutual information of the two 

random variables, p(k) and p(k),

 

  

where p(k, k) =|Ck

 



 

Ck| / N

 

is the probability that a point 

belongs to Ck

 

in clustering C

 

and to Ck

 

in clustering C. Then 
the difference between the two terms represents the amount of 
information that is not described by a clustering C:

 

  

Equation (24) is zero if and only if the two clusterings are 

identical when K

 

= K, and can be considered as a distance of 

a clustering (C) from another clustering or ground truth (C). 
As the number of clusters in C

 

increases, the mutual 
information increases and DI

 

decreases. Experimentally, 

clustering with large number of clusters, K

 

> K, showed a 

smaller DI

 

than that with the same number of clusters, K

 

= K, 
but the relative performance did not change. Therefore, the 

 

number of clusters (K) is set to be equal to the number of 

classes (K) in this paper. Table 3 summarizes the 

experimental results using UCI data sets. DI values for 
random methods in Table 3 are averaged over 100 runs.

 



 

Iris: On average, the global method is better than the 
corresponding random method, and the kernel-based methods 
are better than the input space method. KG-FCM-RW is best 
for the iris data because the iris data is relatively noise-free 
and one of the three clusters is clearly separated from the 
others. One interesting thing is that K-FCM-RW is likely to 
fall into a local optimum. Conversely, FCM and K-FCM-C 
rarely fall into a local optimum.

 



 

Wine: As before, the kernel-based methods show better 
results, and KG-FCM-C shows the best result. One thing that 
should be noted is that K-FCM-RW with random initialization 
hits the minimum and, on average, K-FCM-RW is better than 
KG-FCM-RW. 

 



 

Breast cancer: Although the number of classes is only 
two, the dimensionality is higher than those in previous data 
sets. Again, the global methods are better than the random 
methods, but K-FCM-RW performs worst.

 

This is mostly due 
to the small size of the data, which distributes the data 
sparsely in high dimensional space and makes it difficult to 
estimate the connectivity information. In this experiment, KG-
FCM-C also fails to achieve the minimum of K-FCM-C.

 



 

Yeast: Only 5 of 10 classes were used in this experiment. 
The results are almost the same as the previous ones using the 
breast cancer data. As the number of clusters increases, K-
FCM-RW becomes more unstable and K-FCM-RW performs 
worst in this experiment.

 

From the experiments using UCI data sets, we can 
conclude that: 

 



 

The global initialization is useful for deciding initial 
seeds, although the global methods sometimes fail to achieve 
the minimum of the corresponding random methods. This 
failure is mainly

 

due to the different sets of possible initial 
values, which originates from the fact that the random 
methods can only have data points as their initial positions but 
the global methods can have non-occupied positions.

 

TABLE III. 

 

EXPERIMENTAL

 

RESULTS

 

USING

 

UCI

 

DATA

 

SETS

  

Data set

 

N

 

d

 

K

 
Global

 

method

 
DI

 
Random

 

method

 DI

 

Min.

 

Average

 

Max.

 

Iris

 

150

 

4

 

3

 G-FCM

 

0.4041

 

FCM

 

0.4041

 

0.4042

 

0.4045

 

KG-FCM-C

 

0.3898

 

K-FCM-C

 

0.3898

 

0.3898

 

0.3898

 

KG-FCM-RW

 

0.2663

 

K-FCM-RW

 

0.6057

 

0.6164

 

0.6365

 

Wine

 

178

 

13

 

3

 G-FCM

 

1.2944

 

FCM

 

1.2944

 

1.3088

 

1.3386

 

KG-FCM-C

 

1.2284

 

K-FCM-C

 

1.2284

 

1.2368

 

1.3128

 

KG-FCM-RW

 

1.2683

 

K-FCM-RW

 

1.1542

 

1.2351

 

1.4986

 

Breast

 

cancer

 
569

 

30

 

2

 G-FCM

 

0.9329

 

FCM

 

0.9329

 

0.9339

 

0.9535

 

KG-FCM-C

 

0.8712

 

K-FCM-C

 

0.8243

 

0.9224

 

0.9535

 

KG-FCM-RW

 

0.9381

 

K-FCM-RW

 

0.9202

 

0.9393

 

0.9535

 

Yeast

 

180

 

8

 

5

 G-FCM

 

1.6129

 

FCM

 

1.6043

 

1.6139

 

1.7376

 

KG-FCM-C

 

1.5855

 

K-FCM-C

 

1.8001

 

1.8001

 

1.8001

 

KG-FCM-RW

 

1.8021

 

K-FCM-RW

 

1.6755

 

1.8430

 

1.9138

 

(N : # of data points, d : data dimension, K

 

: # of classes)
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 KG-FCM-C is more robust to outliers than other 
methods and shows better and more stable results on test data 
sets. 

 KG-FCM-RW shows better result on the iris data, which 
is clean and has a relatively well separated cluster structure. 
However, as the dimensionality of data or the number of 
clusters increases, it is more likely to fall into a local 
optimum. 

VI. DISCUSSION 
Fuzzy c-means (FCM) is a simple and efficient method for 

clustering. However there are also several well-known 
shortcomings with FCM. In this paper, we developed 
kernelized global fuzzy c-means (KG-FCM) to solve the 
problems in FCM: sensitivity to initialization, sensitivity to 
noise, and inability to accommodate non-convex clusters. KG-
FCM is based on global fuzzy c-means (G-FCM) then 
extended with the help of kernel methods. KG-FCM is 
implemented using two different kernels: the Cauchy kernel to 
suppress noise and the random walk kernel to accommodate 
non-convex clusters. Experimental results show that, on 
average, the global methods are superior to the random 
methods, and KG-FCM-C gave the best results for test data 
sets most of the time. KG-FCM-RW shows good results only 
when data are clean and have well-separated clusters, for 
example, the iris data. 

Although the proposed algorithm, KG-FCM, is better than 
existing methods, it can still be further improved. Initially, 
kernel methods were adopted because of the various effects 
obtained using different kernels. As is clear from the 
experiments, the Cauchy kernel is good at suppressing outliers 
and the random walk kernel is efficient at separating non-
convex clusters. However, each kernel has the other’s strength 
as its weakness. Still another kernel may combine the 
strengths of the two; this is under investigation. Another 
weakness of the global methods is that they sometimes show 
poorer results than the corresponding random methods. A 
different seed selection function may solve this problem, 
which is left for further research. 
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