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Abstract

In this paper, our aim is to study the dynamical behavior of third-order system of rational
difference equations

xn+1 =
αxn−2

β + γxnxn−1xn−2
, yn+1 =

α1yn−2

β1 + γ1ynyn−1yn−2
, n = 0, 1, · · · .

where the parameters α, β, γ, α1, β1, γ1 and initial conditions x0, x−1, x−2, y0, y−1, y−2 are
positive real numbers. Some numerical examples are given to verify our theoretical results.

Keywords and phrases: System of rational difference equations, stability, global character, rate of
convergence

2010 AMS Mathematics subject classifications: 39A10, 40A05.

1 Introduction and preliminaries

The theory of difference equations occupies a central position in applicable Analysis. There is no
doubt that the theory of difference equations will continue to play an important role in mathematics
as a whole. In applications Nonlinear difference equations of order greater than one are of great
importance. Such equations also appear naturally as numerical solutions of differential and delay
differential equations which model various diverse phenomena in biology, ecology,physiology, physics,
engineering and economics. It is very interesting to investigate the dynamical behavior of positive
solutions for system of higher-order rational difference equations.

C. Cinar [1] investigated the periodicity of the positive solutions of the system of rational difference
equations:

xn+1 =
1

yn
, yn+1 =

yn
xn−1yn−1

.

S. Stević [2] studied the system of two nonlinear difference equation:

xn+1 =
un

1 + vn
, yn+1 =

wn
1 + sn

,

where un, vn, wn, sn are some sequences xn or yn.
S. Stević [3] studied the system of three nonlinear difference equations:

xn+1 =
a1xn−2

b1ynzn−1xn−2 + c1
, yn+1 =

a2yn−2

b2znxn−1yn−2 + c2
, zn+1 =

a3zn−2

b3xnyn−1zn−2 + c3
,
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where the parameters ai, bi, ci, i ∈ {1, 2, 3} are real numbers.
Ignacio Bajo and Eduardo Liz [4] investigated the global behavior of difference equation:

xn+1 =
xn−1

a+ bxn−1xn
,

for all values of real parameters a, b.
S. Kalabuŝić, M. R. S. Kulenović and E. Pilav [5] investigated the global dynamics of the following

systems of difference equations:

xn+1 =
α1 + β1xn
A1 + yn

, yn+1 =
γ2yn

A2 +B2xn + yn
.

A. S. Kurbanli, C. Çinar, I. Yalçinkaya [7] studied the behavior of positive solutions of the system of
rational difference equation:

xn+1 =
xn−1

ynxn−1 + 1
, yn+1 =

yn−1

xnyn−1 + 1
.

N. Touafek and E.M. Elsayed [9] studied the periodic nature and got the form of the solutions of the
following systems of rational difference equations:

xn+1 =
xn−3

±1± xn−3yn−1
, yn+1 =

yn−3

±1± yn−3xn−1
.

Similarly, N. Touafek and E.M. Elsayed [10] studied the periodicity nature of the following systems of
rational difference equations:

xn+1 =
yn

xn−1(±1± yn)
, yn+1 =

xn
yn−1(±1± xn)

.

Recently, Q. Zhang, L. Yang, J. Liu [11] studied the dynamics of a system of rational third-order
difference equation:

xn+1 =
xn−2

B + ynyn−1yn−2
, yn+1 =

yn−2

A+ xnxn−1xn−2
, n = 0, 1, · · · .

Our aim in this paper is to investigate the dynamical behavior of positive solution for third-order
rational difference equations:

xn+1 =
αxn−2

β + γxnxn−1xn−2
, yn+1 =

α1yn−2

β1 + γ1ynyn−1yn−2
, n = 0, 1, · · · . (1)

where the parameters α, β, γ, α1, β1, γ1 and initial conditions x0, x−1, x−2, y0, y−1, y−2 are
positive real numbers.

Let us consider six-dimensional discrete dynamical system of the form:

xn+1 = f(xn, xn−1, xn−2, yn, yn−1, yn−2), (2)

yn+1 = g(xn, xn−1, xn−2, yn, yn−1, yn−2), n = 0, 1, · · · ,

where f : I3×J3 → I and g : I3×J3 → J are continuously differentiable functions and I, J are some
intervals of real numbers. Furthermore, a solution {(xn, yn)}∞n=−2 of system (2) is uniquely determined
by initial conditions (xi, yi) ∈ I × J for i ∈ {−2,−1, 0}. Along with the system (2) we consider the
corresponding vector map F = (f, xn, xn−1, xn−2, g, yn, yn−1, yn−2). An equilibrium point of (2) is a
point (x̄, ȳ) that satisfies

x̄ = f(x̄, x̄, x̄, ȳ, ȳ, ȳ)

ȳ = g(x̄, x̄, x̄, ȳ ȳ, ȳ)

The point (x̄, ȳ) is also called a fixed point of the vector map F .
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Definition 1. Let (x̄, ȳ) be an equilibrium point of the system (2).
(i) An equilibrium point (x̄, ȳ) is said to be stable if for every ε > 0 there exists δ > 0 such that for

every initial condition (xi, yi), i ∈ {−2,−1, 0} ‖
0∑

i=−2

(xi, yi)−(x̄, ȳ)‖ < δ implies ‖(xn, yn)−(x̄, ȳ)‖ < ε

for all n > 0, where ‖.‖ is the usual Euclidian norm in R2.
(ii) An equilibrium point (x̄, ȳ) is said to be unstable if it is not stable.
(iii) An equilibrium point (x̄, ȳ) is said to be asymptotically stable if there exists η > 0 such that

‖
0∑

i=−2

(xi, yi)− (x̄, ȳ)‖ < η and (xn, yn)→ (x̄, ȳ) as n→∞.

(iv) An equilibrium point (x̄, ȳ) is called global attractor if (xn, yn)→ (x̄, ȳ) as n→∞.
(v) An equilibrium point (x̄, ȳ) is called asymptotic global attractor if it is a global attractor and

stable.

Definition 2. Let (x̄, ȳ) be an equilibrium point of the map

F = (f, xn, xn−1, xn−2, g, yn, yn−1, yn−2)

where f and g are continuously differentiable functions at (x̄, ȳ). The linearized system of (2) about
the equilibrium point (x̄, ȳ) is

Xn+1 = F (Xn) = FJXn,

where Xn =



xn
xn−1

xn−2

yn
yn−1

yn−2

 and FJ is Jacobian matrix of the system (2) about the equilibrium point (x̄, ȳ).

To construct corresponding linearized form of the system (1) we consider the following transfor-
mation:

(xn, xn−1, xn−2, yn, yn−1, yn−2) 7→ (f, f1, f2, g, g1, g2), (3)

where f = αxn−2

β+γxnxn−1xn−2
, g = α1yn−2

β1+γ1ynyn−1yn−2
, f1 = xn, f2 = xn−1, g1 = yn, g2 = yn−1. The Jacobian

matrix about the fixed point (x̄, ȳ) under the transformation (3) is given by

FJ(x̄, ȳ) =

 A A B 0 0 o
1 0 0 0 0 0
0 1 0 0 0 0
0 0 o C C D
0 0 0 1 0 0
0 0 0 0 1 0


where A = − αγx̄3

(β+γx̄3)2
, B = αβ

(β+γx̄3)2
, C = − α1γ1ȳ3

(β1+γ1ȳ3)2
and D = α1β1

(β1+γ1ȳ3)2
.

Theorem 1. For the system Xn+1 = F (Xn), n = 0, 1, · · · , of difference equations such that X̄ be a
fixed point of F . If all eigenvalues of the Jacobian matrix JF about X̄ lie inside the open unit disk
|λ| < 1, then X̄ is locally asymptotically stable. If one of them has a norm greater than one, then X̄
is unstable.

2 Main results

Let (x̄, ȳ) be an equilibrium point of system (1), then for α > β and α1 > β1 system (1) has following

two equilibrium points: P0 = (0, 0), P1 = (A,B), where A = (α−βγ )
1
3 and B = (α1−β1

γ1
)
1
3 .
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Theorem 2. Let (xn, yn) be positive solution of system (1), then for every m ≥ 0 the following results
hold:

0 ≤ xn ≤ (
α

β
)m+1x−2, if n = 3m+ 1,

0 ≤ xn ≤ (
α

β
)m+1x−1, if n = 3m+ 2,

0 ≤ xn ≤ (
α

β
)m+1x0, if n = 3m+ 3,

0 ≤ yn ≤ (
α1

β1
)m+1y−2, if n = 3m+ 1,

0 ≤ yn ≤ (
α1

β1
)m+1y−1, if n = 3m+ 2,

0 ≤ yn ≤ (
α1

β1
)m+1y0, if n = 3m+ 3,

Proof. The results are obviously true for m = 0. Suppose that results are true for m = k ≥ 1, i.e.,

0 ≤ xn ≤ (
α

β
)k+1x−2, if n = 3k + 1,

0 ≤ xn ≤ (
α

β
)k+1x−1, if n = 3k + 2,

0 ≤ xn ≤ (
α

β
)k+1x0, if n = 3k + 3,

0 ≤ yn ≤ (
α1

β1
)k+1y−2, if n = 3k + 1,

0 ≤ yn ≤ (
α1

β1
)k+1y−1, if n = 3k + 2,

0 ≤ yn ≤ (
α1

β1
)k+1y0, if n = 3k + 3,

Now, for m = k + 1 using (1) one has

0 ≤ x3k+4 =
αx3k+1

β + γx3k+3x3k+2x3k+1
≤ αx3k+1

β
≤ (

α

β
)k+2x−2,

0 ≤ x3k+5 =
αx3k+2

β + γx3k+4x3k+3x3k+2
≤ αx3k+2

β
≤ (

α

β
)k+2x−1,

0 ≤ x3k+6 =
αx3k+3

β + γx3k+5y3k+4y3k+3
≤ αx3k+3

β
≤ (

α

β
)k+2x0,

0 ≤ y3k+4 =
α1y3k+1

β1 + γ1y3k+3y3k+2x3k+1
≤ α1y3k+1

β1
≤ (

α1

β1
)k+2y−2,

0 ≤ y3k+5 =
α1y3k+2

β1 + γ1y3k+4y3k+3y3k+2
≤ α1y3k+2

β1
≤ (

α1

β1
)k+2y−1,

0 ≤ y3k+6 =
α1y3k+3

β + 1 + γ + 1y3k+5y3k+4y3k+3
≤ α1y4k+3

β1
≤ (

α1

β1
)k+2y0,

Theorem 3. For the equilibrium point P0 of Equation (1) the following results hold:
(i) If α < β and α1 < β1, then equilibrium point P0 of the system (1) is locally asymptotically

stable.
(ii) If α > β or α1 > β1, then equilibrium point P0 is unstable.
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Proof. (i) The linearized system of (1) about the equilibrium point P0 is given by:

Xn+1 = FJ(P0)Xn,

where Xn =



xn
xn−1

xn−2

yn
yn−1

yn−2

 and FJ(0, 0) =



0 0 α
β 0 0 o

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 α1

β1
0 0 0 1 0 0
0 0 0 0 1 0


.

The characteristic polynomial of FJ(P0) is given by

P (λ) = λ6 − (
α

β
+
α1

β1
)λ3 +

αα1

ββ1
.. (4)

The roots of P (λ) are ±α
β and ±α1

β1
repeated roots. Since |αβ | < 1 and |α1

β1
| < 1, whenever α < β and

α1 < β1. Thus, by Theorem 1 P0 is locally asymptotically stable.
(ii) It is easy to see that if α > β or α1 > β1, then there exists at least one root λ of Equation (4)

such that |λ| > 1. Hence, by Theorem 1 if α > β or α1 > β1, then (0, 0) is unstable.

Theorem 4. If α < β or α1 < β1, then positive equilibrium point P1 of Equation (1) is unstable.

Proof. The linearized system of (1) about the equilibrium point P1 is given by:

Xn+1 = FJ(P1)Xn,

where Xn =



xn
xn−1

xn−2

xn−3

yn
yn−1

yn−2

yn−3


and FJ(P1) =



−1 + β
α −1 + β

α
β
α 0 0 0

1 0 0 0 0 0
0 1 0 0 0 0

0 0 0 −1 + β1
α1
−1 + β1

α1

β1
α1

0 0 0 1 0 0
0 0 0 0 1 0


,

One of the roots of characteristic polynomial of FJ(P1) is given by β1
α1

. Hence, by Theorem 1 if
β1 > α1 then P1 is unstable.

Theorem 5. Let α < β and α1 < β1, then the equilibrium point P0 of Equation (1) is globally
asymptotically stable.

Proof. For α < β and α1 < β1, from Theorem 3 P0 is locally asymptotically stable. From Theorem
2, it is easy to see that every positive solution (xn, yn) is bounded, i.e., 0 ≤ xn ≤ µ and 0 ≤ yn ≤ ν
for all n = 0, 1, 2, · · · , where µ = max{x−2, x−1, x0} and ν = max{y−2, y−1, y0}. Now, it is sufficient
to prove that (xn, yn) is decreasing. From system (1) one has

xn+1 =
αxn−2

β + γxnxn−1xn−2
,

≤ αxn−2

β
< xn−2.

This implies that x3n+1 < x3n−2 and x3n+4 < y3n+1. Also

yn+1 =
αyn−2

β + γynyn−1yn−2
,

≤ αyn−2

β
< yn−2.
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This implies that y3n+1 < x3n−2 and y3n+4 < x3n+1. Hence, the subsequences {x3n+1}, {x3n+2}, {x3n+3}
and {y3n+1}, {y3n+2}, {y3n+3} are decreasing.Therefore the sequences {xn} and {yn} are decreasing.
Hence, lim

n→∞
xn = lim

n→∞
yn = 0.

3 Rate of Convergence

In this section we will determine the rate of convergence of a solution that converges to the unique
positive equilibrium point of the system (1). The following result gives the rate of convergence of
solution of a system of difference equations

Xn+1 = (A+B(n))Xn, (5)

where Xn is an m-dimensional vector, A ∈ Cm×m is a constant matrix, and B : Z+ → Cm×m is a
matrix function satisfying

‖B(n)‖ → 0 (6)

as n→∞ ,where ‖ · ‖ denotes any matrix norm which is associated with the vector norm

‖(x, y)‖ =
√
x2 + y2

Proposition 1. (Perron’s Theorem)[?] Suppose that condition (6) holds. If Xn is a solution of (5) ,
then either Xn = 0 for large n or

ρ = lim
n→∞

(‖Xn‖)1/n, (7)

or

ρ = lim
n→∞

‖Xn+1‖
‖Xn‖

(8)

exists and is equal to the norm of one the eigenvalues of the matrix A.

Assume that lim
n→∞

xn = x̄ and lim
n→∞

yn = ȳ. First we will find a system of limiting equations for

the map F . The error terms are given as

xn+1 − x̄ =

2∑
i=0

Ai (xn−i − x̄) +

2∑
i=0

Bi (yn−i − ȳ) , yn+1 − ȳ =

2∑
i=0

Ci (xn−i − x̄) +

2∑
i=0

Di (yn−i − ȳ) .

Set e1
n = xn − x̄ and e2

n = yn − ȳ, one has

e1
n+1 =

2∑
i=0

Aie
1
n−i +

2∑
i=0

Bie
2
n−i, e

2
n+1 =

2∑
i=0

Cie
1
n−i +

2∑
i=0

Die
2
n−i.

where A0 = −
αγx̄

2∏
i=1

xn−i

β+γ

2∏
i=0

xn−i

(β+γx̄3)

, A1 = − αγx̄2xn−2β+γ

2∏
i=0

xn−i

(β+γx̄3)

, A2 = − αββ+γ

2∏
i=0

xn−i

(β+γx̄3)

,

Bi = 0 for i ∈ {0, 2}, Ci = 0 for i ∈ {0, 2}, D0 = −
α1γ1ȳ

2∏
i=1

yn−i

β1+γ1

2∏
i=0

yn−i

(β1+γ1ȳ3)

, D1 = − α1γ1ȳ2yn−2β1+γ1

2∏
i=0

yn−i

(β1+γ1ȳ3)

,

D2 = − α1β1β1+γ1

2∏
i=0

yn−i

(β1+γ1ȳ3)

,
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Taking the limits, we obtain lim
n→∞

Ai = − αγx̄3

(β + γx̄3)2
for i ∈ {0, 1}, lim

n→∞
A2 =

αβ

(β + γx̄3)2
,

lim
n→∞

Bi = 0 for i ∈ {0, 2}, lim
n→∞

Ci = 0 for i ∈ {0, 2}, lim
n→∞

Di = − α1γ1ȳ
3

(β1 + γ1ȳ3)2
for i ∈ {0, 1},

lim
n→∞

D2 =
α1β1

(β1 + γ1ȳ3)2
, So, the limiting system of error terms can be written as En+1 = FJ(0, 0)En,

where where En =



e1
n

e1
n−1

e1
n−2

e2
n

e2
n−1

e2
n−2

. Using proposition (1), one has following result.

Theorem 6. Assume that {(xn, yn)} be a positive solution of the system (1) such that lim
n→∞

xn = x̄,

and lim
n→∞

yn = ȳ, where (x̄, ȳ) = (0, 0). Then, the error vector En of every solution of (1) satisfies

both of the following asymptotic relations

lim
n→∞

(‖En‖)
1
n = |λFJ(x̄, ȳ)|, lim

n→∞

‖En+1‖
‖En‖

= |λFJ(x̄, ȳ)|,

where λFJ(x̄, ȳ) are the characteristic roots of the Jacobian matrix FJ(x̄, ȳ) about (0, 0).

4 Examples

In order to verify our theoretical results we consider several interesting numerical examples in this
section. These examples represent different types of qualitative behavior of solutions to the system of
nonlinear difference equations (1). All plots in this section are drawn with mathematica.

Example 1. Consider the system (1) with initial conditions x−2 = 7.9, x−1 = 0.19, x0 = 1.2, y−2 =
3.6, y−1 = 2.3, y0 = 9.1. Moreover, choosing the parameters α = 970, β = 990, γ = 110, α1 =
770, β1 = 790, γ1 = 90. Then, the system (1) can be written as:

xn+1 =
970xn−2

990 + 110xnxn−1xn−2
, yn+1 =

770yn−2

790 + 90ynyn−1yn−2
, n = 0, 1, · · · , (9)

n = 0, 1, · · · and with initial conditions x−2 = 7.9, x−1 = 0.19, x0 = 1.2, y−2 = 3.6, y−1 = 2.3, y0 =
9.1 .The plot of system (9) is shown in Figure (1) and its global attractor is shown in Figure(2).

Example 2. Consider the system (1) with initial conditions x−2 = 2.9, x−1 = 0.19, x0 = 1.2, y−2 =
3.6, y−1 = 5.3, y0 = 1.1. Moreover, choosing the parameters α = 197, β = 199, γ = 210, α1 =
177, β1 = 179, γ1 = 190. Then, the system (1) can be written as:

xn+1 =
197xn−2

199 + 210xnxn−1xn−2
, yn+1 =

177yn−2

179 + 190ynyn−1yn−2
, n = 0, 1, · · · , (10)

n = 0, 1, · · · and with initial conditions x−2 = 2.9, x−1 = 0.19, x0 = 1.2, y−2 = 3.6, y−1 = 5.3, y0 =
1.1 .The plot of system (10) is shown in Figure (3) and its global attractor is shown in Figure (4).
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Figure 1: Plot of system (9)

Figure 2: An attractor of system (9)

Figure 3: Plot of system (10)
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Figure 4: An attractor of system (10)
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Conclusion
In the paper, we investigate some dynamics of a six-dimensional discrete system. The system

has two positive equilibrium points. The linearization method is used to show that equilibrium point
(0, 0) is locally asymptotically stable. The main objective of dynamical systems theory is to predict
the global behavior of a system based on the knowledge of its present state. An approach to this
problem consists of determining the possible global behaviors of the system and determining which
initial conditions lead to these long-term behaviors. In case of higher-order dynamical systems, it is
very difficult to discuss global behavior of the system. Some powerful tools such as semiconjugacy
and weak contraction cannot be used to analyze global behavior of system (1). In the paper,using
simple techniques to prove the global asymptotic stability of equilibrium point (0, 0). Some numerical
examples are provided to support our theoretical results.
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