

Glitch Reduction In Low-Power Low-Frequency Multipliers

M.RAKESH^{#1}, D.PITCHAIAH ^{*2}

^{#1} M.Tech .,DECS,Department of ECE ,Dr.S.G.I.E.T,Markapur, Prakasam Dt, AP, India

^{*2} Associate Professor, Department of ECE , Dr.S.G.I.E.T,Markapur, Prakasam Dt, AP, India

Abstract- Various 16-bit multiplier architectures are compared in terms of dissipated energy, propagation delay, energy-delay product (EDP), and area occupation, in view of low-power low-voltage signal processing for low-frequency applications. A novel practical approach has been set up to investigate and graphically represent the mechanisms of glitch generation and propagation. It is found that spurious activity is a major cause of energy dissipation in multipliers. Measurements point out that, because of its shorter full-adder chains, the Wallace multiplier dissipates less energy than other traditional array multipliers(8.2 μ W/MHz versus 9.6 μ W/MHz for 0.18 μ m CMOS technology at 0.75 V). The benefits of transistor sizing are also evaluated (Wallace including minimum-size transistors dissipates 6.2 W/MHz). By combining transmission gates with static CMOS in a Wallace architecture, a new approach is proposed to improve the energy-efficiency further (4.7 μ W/MHz), beyond recently published low-power architectures. The innovation consists in suppressing glitches via resistance–capacitance low-pass filtering, while preserving unaltered driving capabilities. The reduced number of Vdd-to-ground paths also contributes to a significant decrease of static consumption.

Index Terms—Arithmetic, glitch, low frequency, low power, multiplier, switching activity, transmission gate.

I. INTRODUCTION

Most digital signal processor (DSP) systems incorporate a multiplication unit to implement algorithms such as Convolution and Filtering. In many DSP algorithms, the Multiplier in the critical path and ultimately determines the performance of the algorithm. However, the demand for High-Performance portable systems incorporating multimedia capabilities has elevated the design for Low-Power to the forefront of design requirement in order to maintain reliability and provide longer hours of operation. Multipliers are on the critical path of many computational applications .Examples are Real-time Digital Signal Processing, Floating Point applications, or Computers. Designing Low-Power fast Multipliers has been a great theoretical and practical interest for computer scientists and engineers. Several algorithms and VLSI implementations have been proposed and practically used. The proposed High-Speed multiplication algorithm which postpones the carry-propagation to the last stage where two 2(n-1)-bit numbers are added using a fast carry-look-ahead adder (CLA).

Depending on the application, one of the parameters like speed, power consumption, or area might be of great

priority. Based on this criterion, the designer may decide to design the Multiplier.

Different Low Power Techniques:

1.1 Power Gating

Power Gating is effective for reducing leakage power. Power gating is the technique wherein circuit blocks that are not in use are temporarily turned off to reduce the overall leakage power of the chip. This temporary shutdown time can also call as "low power mode" or "inactive mode". When circuit blocks are required for operation once again they are activated to "active mode". These two modes are switched at the appropriate time and in the suitable manner to maximize power performance while minimizing impact to performance.

1.2 Multiple Threshold CMOS (MTCMOS) Circuits

MTCMOS logic is effective standby leakage control technique, but difficult to implement since sleep transistor sizing is highly dependent on discharge pattern within the circuit block. They showed dual V_t domino logic avoids the sizing difficulties and inherent performance associated with MTCMOS. High V_t cells are used where leakage has to be prevented whereas low V_t cells are employed where speed is of concern. Both cells are effectively used in MTCMOS technique. In active mode of operation the high V_t transistors are turned off and the logic gates consisting of low V_t transistors can operate with low switching power dissipation and smaller propagation delay

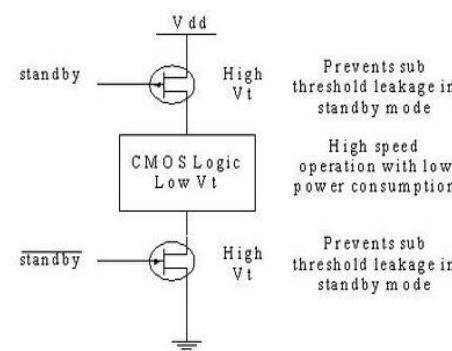


Fig 1.1 MTCMOS technique

1.3 Multi Threshold (MVT) Voltage Technique

Multiple threshold voltage techniques use both Low V_t and High V_t cells. Use lower threshold gates on critical path while higher threshold gates off the critical path. This methodology improves performance without an increase in power. Flip side of this technique is that Multi V_t cells increase fabrication complexity.

1.4 Multi Vdd (Voltage)

Dynamic power is directly proportional to power supply. Hence naturally reducing power significantly improves the power performance. At the same time gate delay increases due to the decreased threshold voltage. High voltage can be applied to the timing critical path and rest of the chip runs in lower voltage. Overall system performance is maintained. Different blocks having different voltage supplies can be integrated in SoC.

Multiple Voltage ASIC/SoC Design: Classification

- (a). Static Voltage Scaling (SVS)
- (b). Multi-level Voltage Scaling (MVS)
- (C). Dynamic Voltage and Frequency Scaling (DVFS)
- (d). Adaptive voltage Scaling (AVS)

II. Low Power Design Of Techniques

Types of Multipliers:

Multipliers are categorized relative to their applications, architecture and the way the partial products are produced and summed up. Based on all these, a designer might find following types of multipliers.

Array Multiplier

Array Multiplier is an efficient layout of a combination multiplier. It accepts all bits simultaneously. The longest product calculation delay in it depends on the speed of the adders. An n-bit multiplier requires 'n (n-1)' full adders and ' n^2 ' AND gates. It is possible to decompose Array multipliers in two parts. The first part is dedicated to the generation of partial products, and the second one collects and adds them. The collection of the partial products is made using a regular array.

Serial/parallel multiplier

In a serial/parallel multiplier, the multiplicand x arrives bit-serially while the multiplier ' a ' is applied in a bit-parallel format. A common approach used in such multipliers is to generate a row or diagonal of bit-products in each time slot and perform the additions concurrently. Suppose the data is positive $x>0$. Using carry save adders, shift and add algorithm can be applied as shown in Figure 2.11. Since x is processed bit-serially and co-efficient ' a ' is processed bit-parallel, this type of multiplier is called a serial/parallel multiplier.

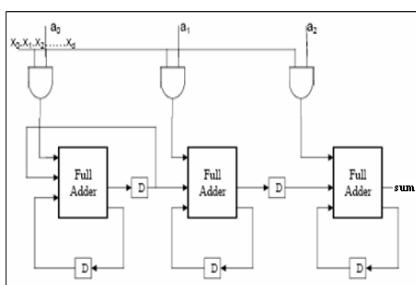


Figure 2.1: Serial/parallel multiplier

Transposed serial/parallel multiplier

This is an alternative form of serial/parallel multiplier, which adds the bit products column wise as shown in Figure 2.12. The disadvantage of this multiplier is ' a ' is a long sum-propagation path.

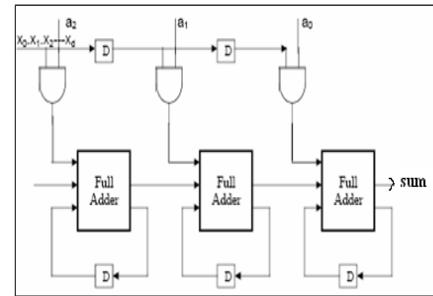


Figure 2.2: Transposed serial/parallel multiplier

This disadvantage can be alleviated by pipelining, at a cost of two D flip flops per stage. This multiplier structure can be modified into a serial/parallel or squarer where both the multiplier and the multiplicand arrive bit-serially.

III. Low Power Design Of 1-Bit Full Adder

Most often, Full adder is a part of the critical path that determines the overall performance of a system. 1-bit full adder is one of the most critical components of a processor that determines its throughput. In this project a new 1-bit 10-transistor full adder is proposed which consumes less power than the standard implementations of full adder cell. The proposed adder is tested and compared with the high transistor count and existing 10-transistor adders under the same conditions. The addition of 2 bits A and B with C yields a SUM and a CARRY bit. The integer equivalent of this relation is shown as

$$\text{SUM} = (A \odot B).C + (A \oplus B).C \quad (1)$$

$$\text{CARRY} = (A \oplus B).C + (A \odot B).A \quad (2)$$

Proposed 1-bit full adder

The circuit diagram of the new 1-bit full adder is shown in figure 4.1 and its layout in figure 4.2. The proposed adder implements equations (1) and (2) using complementary CMOS and MUX based design logic with only 10-transistors. The adder is useful in larger circuits such as multipliers despite the threshold problem. The number of direct connections from VDD to the ground is reduced in the new design to minimize the power consumption due to short circuit current. Also the generation of SUIM from CARRY is avoided as in the CMOS adder. The adder uses internally generated signal (A XOR B) and (A XNOR B) to control the output transistor gates. The same (W/L=5λ / 2λ) ratio is used for all the designs and our design is compared on the same platform in 70nm technology in MICROWIND. The SUM and CARRY signals are generated separately after the generation of (A XOR B) so as to reduce the delay. The SUM and CARRY waveforms are shown in figure 4.2. In the design, the second CMOS inverter in the critical path of the generation of the SUM helps in reducing the threshold loss. The new adder works well at frequencies up to 2GHZ with low supply voltages in 70nm CMOS technology. Performance analysis of all the adder designs is carried out in 70nm CMOS technology in

controlled by the signal s , while the pFET M_p is controlled by the complement s . When wired in this manner, the pair acts as a good electrical switch between the input and the output variables x and y respectively. The operation of the switch can be understood by

analyzing the two cases for s . If $s=0$, the nFET is OFF; since $s=1$, the pFET is also OFF, so that the TG acts as an open switch. In this case, there is no relationship between x and y . For the opposite case

where $s=1$ and $s=0$, both FETs are on, and the TG provides a good conducting path between x and y . Logically, this is identical to the switching of an nFET so that we may write

4.7 Compressors

Compressors are mostly used in multipliers to reduce the operands while adding terms of partial products. A compressor C_i is a combinatorial device that compresses N input lines in the position i to 2 output lines i.e. sum and carry. In addition, there are L inputs lines coming to the compressor to different levels j .

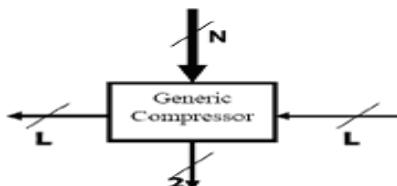


Figure 5.9 : A generic compressor

4.7.1 More compression

Based on the previous discussion, further complex compressors can be built by using basic compressors like [3:2] and [4:2] compressors. For example, a [6:2] compressor can be built using two [3:2] and one [4:2] compressors.

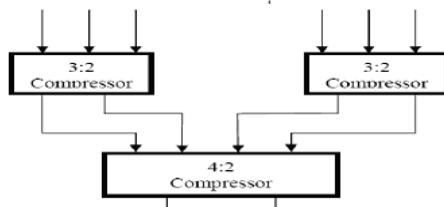


Figure 5.13 : A [6:2] compressor

4.8 Multiplier Power Reduction

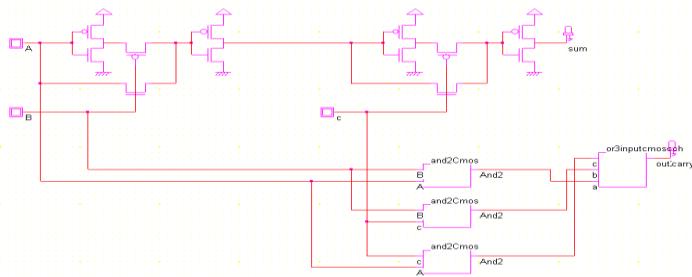
The design of digital CMOS has focused on delay reduction and power dissipation. In multipliers, delay increases as the size of the multiplier grows in terms of bits, but it can vary depending on the implementation. Power is proportional to the amount of circuitry of the multiplier and the way that it is connected to perform the multiplication. Since the amount of adder blocks is proportional to the square of the size of the number of bits (n^2), multipliers tend to be fairly large, power consuming blocks.

Dynamic power consumption of digital CMOS circuits is expressed by Eq.(5.17). Static power consumption is neglected because which is relatively too small, only one device is conducting at a time. So, there's no need to calculate static power; only dynamic power

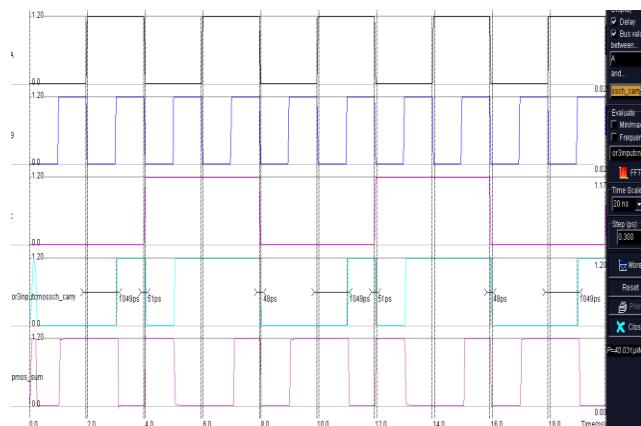
exists since there is never a direct path between V_{DD} and GND in steady state.

$$P_{dyn} = V_{DD}^2 f_{op} \sum_n \alpha_n C_n + V_{DD} \sum_n i_{sc} \quad 5.17$$

the number of nodes and alpha is the number of switching activities. An equivalent equation can be expressed as


$$P_{dyn} = C_L V_{DD}^2 f_{op} + t_{sc} V_{DD} I_{peak} f_{op} + V_{DD} I_{leakage} \quad 5.18$$

In this equation, I_{peak} determined by the saturation current of the pmos and nmos transistors, which depend on their sizes, process technology, temperature, etc. and the ratio between input and output slopes. When load capacitance is small, power is dominated by I_{sc} , short circuit current. I_{sc} is less than 10% of total dynamic current under the condition of fast rising time and falling time. Therefore short circuit current is neglected for convenience of calculation. Because supply voltage and operation frequency are fixed when the application is specified, the power consumption is determined by node capacitance and transition activities (probability).


5. Results and Discussions

5.1 CELL-1 STRUCTURE

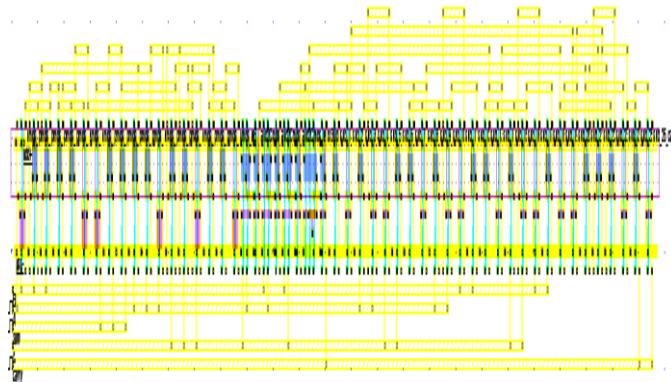
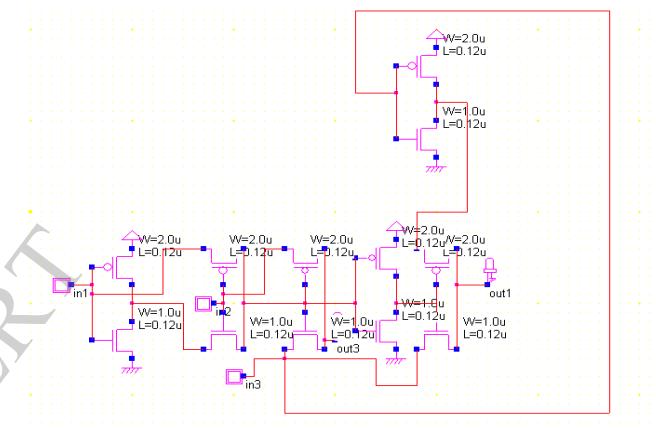
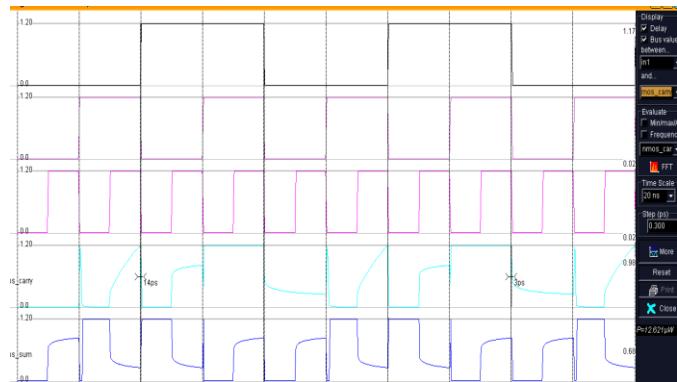

The 4X4 bit Array Multiplier has two different cells which are named as cell-1 and cell-2. The implementation of cell-1 consists of conventional 36 transistor full adder as shown in figure 5.1. The output wave form and the layout for the cell-1 are given in figures 5.2 and 5.3 respectively.

Figure 5.1 Schematic view of the designed cell-1 structure


Figure 5.2 Simulated input and output waveforms of the cell1


Figure 5.3 Layout view of the cell 1

5.2 CELL-2 STRUCTURE

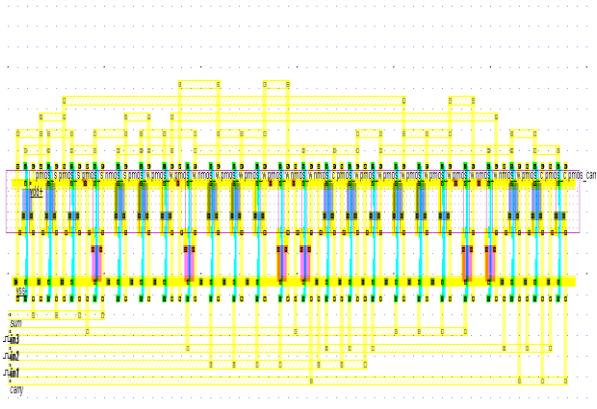
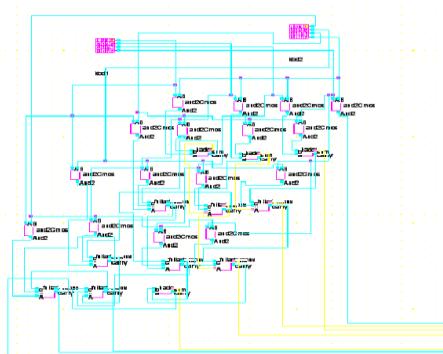
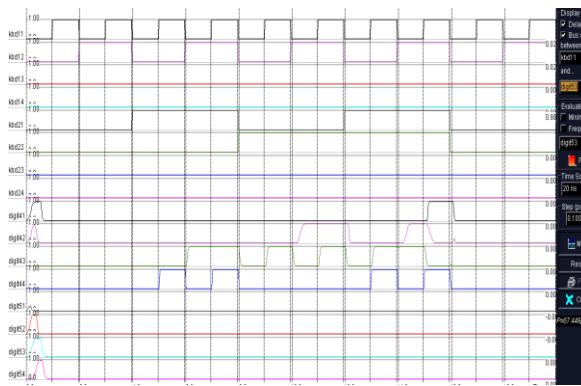

The second type of cell named as cell-2 consists of 10-Transistor full adder cells and MTCMOS cells. The full adders used in cell-2 can be designed by using 10-Transistors and the design and the symbol for the corresponding design is presented in section 5.1. The schematic view of the cell-2 structure is as shown in figure 6.4. The output wave form and the layout for the cell-2 are given in figures 6.6 and 6.7 respectively.

Figure 5.4 Schematic view of the designed cell-2 structure


Figure 5.6 Simulated input and output waveforms of the cell-2

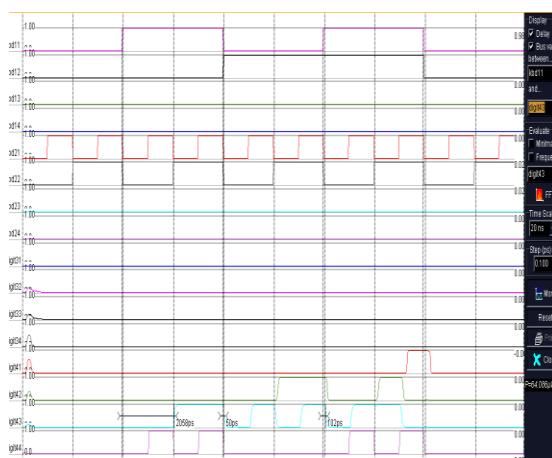

Figure 5.7 Layout view of the cell -2

5. 3 DESIGN OF 4X4 ARRAY MULTIPLIER BLOCK

5. 3. 1 4X4 ARRAY MULTIPLIER USING CELL-1 AND CELL-2.

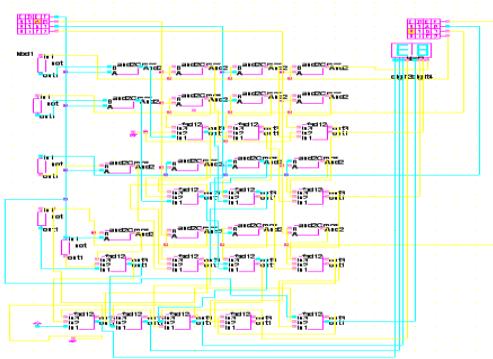
Figure 5.8 Schematic view of the designed 4X4 Array Multiplier

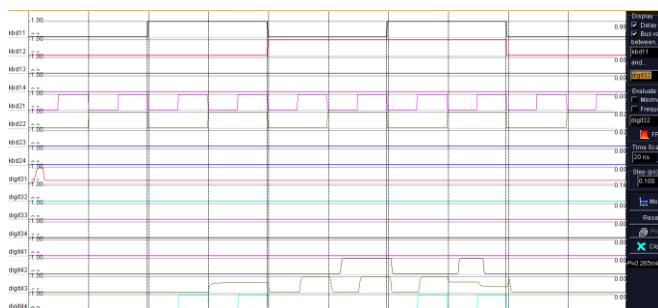
Figure 5.9 Simulated input and output waveforms of 4X4 Array Multiplier


Figure 5.10 Layout view of the 4X4 Array Multiplier

5. 4 DESIGN OF BRAUN MULTIPLIER BLOCK

5. 4. 1 BRAUN MULTIPLIER USING CELL-1 AND CELL-2


Figure 5.11 Schematic view of the designed Braun Multiplier


Figure 6.12 Simulated input and output waveforms of Braun Multiplier

5.5 DESIGN OF BAUGH WOOLEY MULTIPLIER BLOCK

5.5.1 BAUGH WOOLEY MULTIPLIER USING CELL-1 AND CELL-2.

Figure 5.13 Schematic view of the designed Baugh Wooley Multiplier

Figure 5.14 Simulated input and output waveforms of Baugh Wooley Multiplier

6. Conclusion

The 1-bit full adder is a very important component in digital signal processor (DSP) architecture and microprocessors. In this project, a new 10-transistor 1-bit full adder I proposed. The proposed design successfully embeds the buffering circuit, which helps in restoring the output voltage swings to satisfactory levels while retaining the transistor count as 10, the least reported so far. The cell is implemented in micro wind along with the various existing 1-bit full adder designs. The study is carried out for 70nm standard CMOS technology, which includes power. The new 10-transistor design, consumes the least power compared to the various other standard designs. Power optimization can be done at different levels at the design, i.e at system level, algorithm level, architecture level, logic level, ckt level, etc. Here a 1-bit full adder is designed for low power and minimum area. This can be called as a high performance design as the number of transistors is reduced in the circuit which consumes less power. Here it is observed that a 65-70% of area overhead is reduced as well the power. Different multipliers are constructed using this full adder for low power, which is an important block of the design as this is repeatedly used. To produce each and every partial product more than 50% of performance improvement is observed for every multiplier that is being constructed. When the circuit is in standby mode there is always a possibility for leakage current due to reverse bias of the PN junction. Eventhough different leakage reduction techniques available, an MTCMOS approach is chosen to reduce the leakage by placing MTCMOS cell as a header or footer. Here particularly nmos sleep transistor is used(comparatively less size to pmos) as an MTCMOS cell. Leakage power is also reduced thus by reducing the design to reduce still more power.

Different multipliers designs are compared for different technologies and it is observed that overall power reduction is more compared to conventional designs.

REFERENCES

- [1].Flavio Carbognani, Felix Buerger, Norbert Felber, Hubert Kaeslin,Member,IEEE,&Wolfgang Fichtner,Fellow,IEEE“Transmission Gates Combined With Level-Restoring CMOS Gates Reduce Glitches in Low-Power Low-Frequency Multipliers”IEEE TRANSACTIONS ON VERY LARGE SCAL,INTEGRATION(VLSI)SYSTEMS,VOL.16,NO.7,JUL Y2008.
- [2].John P.Uyemura“CMOS LOGIC CIRCUIT DESIGN”Springer international edition-2005
- [3]. John P.Uyemura“Chip Design for Submicron VLSI”THOMSON INDIA EDITION-2007.

[4].Neil H.E.WESTE, David Harris, Ayan Banerjee“CMOS VLSI DESIGN”Third edition PEARSON Education INDIA EDITION-2006.

[5].Douglas A.Pucknell, Kamran Eshragian“BASIC VLSI DESIGN”Prentice Hall of INDIA PVT LTD THIRD EDITION-2005.

[6] M. Alioto and G. Palumbo, “Analysis and comparison on full adder block in Submicron technology,” *IEEE Trans. Very Large Scale Integer. (VLSI) Syst.*, vol. 10, no. 6, pp. 806–823, Dec. 2002.

[7] J.-H. Chang, J. Gu, and M. Zhang, “A review of 0.18- μ m full adder Performances for tree structured arithmetic circuits,” *IEEE Trans. Very Large Scale Integer. (VLSI) Syst.*, vol. 13, no. 6, pp. 686–695, Jun. 2005.

[8] A. M. Shams, T. K. Darwish, and M. A. Bayoumi, “Performance analysis of Low-power 1-bit CMOS full adder cells,” *IEEE Trans. Very Large Scale Integer. (VLSI) Syst.*, vol. 10, no. 1, pp. 20–29, Feb. 2002.

[9] J. Sulistyo and D. Ha, “5 GHz pipelined multiplier and MAC in 0.18m Complementary static CMOS,” in *Proc. IEEE International Symposium On Circuits and Systems (ISCAS)*, Bangkok, Thailand, May 2003, pp.117–120

[10] C. S. Wallace, “A suggestion for a fast multiplier,” *IEEE Trans Comput.* vol. 13, no. 1, pp. 14–17, Feb. 1964.

[11] P. C. H. Meier, R. A. Rutenbar, and L. R. Carley, “Exploring multiplier Architecture and layout for low power,” in *Proc. IEEE Custom Integer.Circuits Conf. (CICC)*, May 1996, pp. 513–516.

[12] M. S. Elrabbaa, I. S. Abu-Khater and M. I. Elmasry, *Advanced Low-Power Digital Circuit Techniques*, Kluwer Academic Publishers, 2000.

[13] K. Roy and S. C. Prasad, *Low-Power CMOS VLSI Circuit Design*, John Wiley & Sons, 1999.

[14] A. P. Chandrakasan and R. W. Brodersen, *Low-Power Digital CMOS Design*,Kluwer Academic Publishers, 1995.

[15] D. A. Pucknell and K. Eshraghian, *Basic VLSI Design*, Upper Saddle River: Prentice Hall, 1994.

[16] A. Bellaouar and M. I. Elmasry, *Low-Power Digital VLSI Design Circuits and Systems*, Kluwer Academic Publishers, 1997.

[17] W. Wolf, *Modern VLSI Design Systems on Silicon*, Upper Saddle River: Prentice Hall, 1998.

[18] J. B. Kuo and J. H. Lou, *Low Voltage CMOS VLSI Circuits*, John Wiley & Sons, 2000