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Abstract: The objective of this paper is to establish the 

formulation of the problem of nonlinear transverse vibration of 

a clamped-clamped (CC) Bernoulli-Euler beam carrying two 

concentrated masses and taking into account the associated 

rotatory inertia. The method used is based on the principle of 

Hamilton and spectral analysis for non-linear free vibration 

occurring at large displacement amplitudes. The problem is 

reduced to solution of a nonlinear algebraic system using the so-

called second formulation applied previously to nonlinear 

transverse vibration of continuous structures, such as beams and 

plates, nonlinear longitudinal vibration of 2-dof and multi- dof 

systems and to nonlinear transverse vibration of 2-dof systems. 

The backbone curves, corresponding to the nonlinear 

fundamental mode of a CC beam carrying one concentrated 

mass, is presented to determine the error in the measurement of 

the nonlinear frequency. 

Keywords— Nonlinear transverse vibration, concentrated 

masses, Hamilton’s principle, second formulation, Newton-

Raphson, spectral analysis, resonant frequencies, mode shapes, 

large displacement amplitude, backbone curve, nonlinear algebraic 

system. 

I. INTRODUCTION 

Free vibration problems are of considerable interest to 
engineers and modelers have been much studied. When the 
deflections of the structure under examination are small 
enough, a wide range of linear analysis tools, such as modal 
analysis, can be used, and analytical results are often available. 
As the deflections become larger, geometrical nonlinearities 
enter into play and induce many effects that are not observed 
in linear systems. In such situations, numerical approximate 
methods must be used. In this paper, a method, based on the 
principle of Hamilton and spectral analysis, is used to 
investigate nonlinear free vibrations occurring at large 
displacement amplitudes of CC beams carrying concentrated 
masses. The problem is reduced to solution of a nonlinear 
algebraic system using the so-called second formulation 
developed in [6] and applied to nonlinear transverse vibration 
of continuous structures, such as beams and plates, nonlinear 
longitudinal vibration of 2- dof and multi-dof systems, and to 
nonlinear transverse vibration of 2-dof systems. 

A big amount of research [7-16] has been conducted to analyze 
the vibration of beams carrying concentrated masses, because 
of their practical interest in representing various physical 
systems, like, for example, the wings of aircrafts carrying 
engines. Most of these studies have treated only the linear 
case. In this paper, a method is presented for determining 
the nonlinear frequency of vibration of a CC Bernoulli-Euler 
beam carrying two concentrated masses. A general solution 
of the nonlinear problem is made, and the nonlinear 
frequency amplitude curve is presented, corresponding to the 
nonlinear fundamental mode of the CC beam carrying one 
concentrated mass, with a view to determine the corrections 
to a nonlinear frequency measurements using accelerometers 
 

II. NONLINEAR FORMULATION 
 

In a series of previous works, the non-linear mode shapes and 
resonant frequencies of beams with various boundary 
conditions have been examined both theoretically and 
experimentally [1-6]. The theory was based on Hamilton’s 
principle and spectral analysis and had led to a series of 
amplitude dependent mode shapes and resonant frequencies. 
Similar methods are used here to formulate the geometrically 
nonlinear vibration problem of a CC Bernoulli-Euler beam 
carrying concentrated masses and taking into account the 
corresponding rotatory inertia.  
 
 
 
 
 
 
 
 
 
 
 
 

 
The uniform beam, with two concentrated masses m1  and m2 

shown in Fig.1, is made of a material of mass density ρ, 
Young’s modulus E, length L, cross sectional area S, thickness e 
and second moment of area of cross section I. Is is the moment 
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of inertia of the attached mass ms , for s equals 1 and 2, while 
rs is its radius of gyration with respect to the neutral axis of the 
beam. Let x be the coordinate along the neutral axis of the beam 
measured from the right end, w(x, t) be the transverse deflection 
of the beam, measured from its equilibrium position, and ψ be 
the slop defined as the partial derivative of w with respect to x. 
Neglecting the beam axial and rotary inertia, the kinetic energy 
of the system can be written as: 
 
 
 
 
                                                                                               (1) 
 
 
 
The beam total strain energy can be written as the sum of the 
strain energy due to the bending denoted as Vlin, plus the axial 
strain energy due to the axial load induced by large deflexion 
denoted as VNlin  
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The transverse displacement function is expanded as a series 
of basic spatial functions (the linear modes) and the time 
function is supposed to be harmonic: 

w(x, t) = qi (t)wi (x) = ai wi sin(ωt)                (4) 

Where the usual summation convention for the repeated 

indices is used. One obtains after discretization of expressions 

(1) to (3) 
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The dynamic behavior of the structure is governed by 

Hamilton’s principle, which is symbolically written as: 

                                         

2

0
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                             (11) 

In which indicates the variation of the integral. Introducing 

the assumed series (4) into the energy condition (11) via 

equations (5-7), integrating the trigonometric functions 

sin²(wt), cos²(wt) and sin4(wt) over the range [0,1] reduces the 

problem to that of finding the minimum of the function  

given by: 
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By writing: 

 
                                  r=1, ……,n                                       (13) 
 
 
And taking into account the properties of symmetry usually 
satisfied, equations (13) appear to be equivalent to the 
following set of nonlinear algebraic equations: 
 
                                                                r=1 , 2, …, n      (14) 
 

Putting bi j ({A}) = ak al bi jkl , the nonlinear geometrical rigidity 

matrix [B] is defined. Each term of matrix [B] is a quadratic 

function of the column matrix of coefficients  

{A} = [a1 a2  ... an ]T. Introducing matrix [B] in equations (14) 

leads to the following matrix equation: 

            22 3 ( ) 2K A B A A M A                (15) 

 
Where [K] and [M] are the classical rigidity and mass 

matrices respectively, which are well known in linear theory. 

To obtain non-dimensional parameters, we put: 
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* * *,ij ij ijklm k and b    are non-dimensional tensors given by: 
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In which the non−dimensional parameters α, Ms and Cs are 

defined by: 

 
                                                                                          (20) 
 
 
Substituting these equations into equation (15) leads to: 
 
                                                                                          (21) 

 

III.  DETERMINATION OF THE LINEAR MODE 

SHAPES OF THE SYSTEM BEAM-MASSES 

Before examining the nonlinear case, we start in this section 

by determination of the linear mode shapes, in order to use 

them as basic functions in the nonlinear theory. The 

transverse displacement function w of the beam shown in 

figure1 can be defined at each span by: 
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The general solution for transverse vibration in each span, for 
the ith mode can be written as: 

 
 
                                                                                           (23) 
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With: 
 

                                                      i= 1, 2,….                              (26) 
 

βi are the eigenvalue parameters for the system beam-masses. 
The constants ai  are determined by the boundary conditions. 
At η1  and η2  the beam is carrying a concentrated mass and 
the continuity conditions (displacement, slope, moment and 
shear discontinuity) are used as in [7] for s=1, 2: 
 
 
                                                                                           (27) 
 
 
                                                                                           (28) 

 
 
                                                                                           (29) 
 
 
 
                                                                                           (30) 
 
 
 

The boundary conditions are: 
 

                          (31) 
 
 

                         (32) 
 
 

                            (33) 
 
 

                           (34) 
 
 

Substituting Eq. (23-25) into Eqs. (27-34), one obtains, after 
appropriate non-dimensionalization, a linear homogeneous 
system of equations which can written in a matrix form as 
follows: 
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The non-triviality condition is established by solving: 

 

                                      Det[T] = 0                                     (36) 

 
Where [T ] is the 12×12 matrix of the coefficients ti j of the 
system and the roots βi are the eigenvalues of the problem. 
 
 

IV. NUMERICAL DETAILS AND APPLICATION 
 

The values of the parameters i were computed by solving 
numerically the nonlinear transcendental equation (36), using 
the standard Newton-Raphson iterations. The corresponding 
parameters i for i = 1, .. , 6, in a case of CC Bernoulli-Euler 

beam with one concentered mass in the middle, are given in 

table 1 and the corresponding curves are plotted in Fig. 2. The 

parameters m*
ij , k*

ij and b*
ijkl have been computed numerically 

using Simpson’s rule in the range [0, 1] and the nonlinear 

algebraic system (21) has been solved using the so-called 

second formulation, developed and used for the first time in 

[6]. It is based on an approximation which consists on writing 

the contribution vector as: {A}=[a1, 2, 3, …6] and neglecting 
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in the expression of equations (21) the second terms with 

respect to , i.e., terms of the type aiajkb1jkr when considering 
the first nonlinear mode, in equation (21). Separating in the 

nonlinear expression a terms proportional to a1
3, terms 

proportional to a1
3i and neglecting terms proportional to a1ij 

leads to: 
 

                  
* * 2 *

1 111 1 11i j k ijkr r i ira a a b a b a b                           (37) 
 

After substituting and rearranging, equation (21) can be 
written in matrix form as: 

 

 * 2 * * 3 *

1 1 111

3 3
2

2 2
RI RI RI RI i

K M A A a b                 (38) 

 

In which [K*
RI ] = [k*

i j] and [M*
RI] = [m*

i j] are reduced rigidity 

and mass matrices associated with the first nonlinear mode, 

obtained by varying i and j in the set (2-6), [*
1] is a 5x5 square 

matrix, depending on a1, whose general term 
i j is equal to 

a2
1ib*

11ir, and {(-3/2)a3
1b*

i111} is a column vector representing 

the right side of the linear system (38) in which the reduced 

unknown vector is {ARI}T = [2, 3, 4, 5, 6] . The modal 

contributions can be obtained easily by solving the linear 

system (38) of five equations and five unknowns. Higher 

nonlinear mode shapes may be obtained in a similar manner, 

using appropriate reduced matrix in each case. 

 

Table I Eigenvalues parameters i for M1=5.2/62.64, M2=0 

C1=C2=0 
i i 

1 4.3432856603 

2 7.8532046240 

3 10.6425729185 

4 14.1371654913 

5 16.7730466476 

6 20;4203522872 

 

 
 

As has been mentioned in the introduction, various 

applications may be made of the present model, which would 

exceed the scope of the present work. In this paper, an 

application has been chosen of the present model in order to 

try and answer a question which has been often raised 

concerning the experimental measurements of the dynamic 

structural response in the nonlinear range. The current practice 

at the Institute of Sound and Vibration Research (ISVR) in a 

series of significant research projects was the use of non-

contacting optical vibration transducers (OVT) in order to 

measure the nonlinear mode shapes and frequencies of beams 

and plates. The question examined here was: How would the 

results of measurements have been affected if a very light 

accelerometer has been used instead of the OVT? To answer 

this question, an application has been made of the theory 

developed above to the beam tested by Bennouna whose 

characteristics, reported in [17], are: 2×20×580mm, made of 

aluminium alloy DTD5070. To which a 5.2 g piezoelectric 

accelerometer of type (A/32/S) has been attached at the beam 

middle point and calculations have been made of the beam 

backbone curves of the CC beam with and without the attached 

mass of the accelerometer. The results are shown in Fig. 3. It 

can be seen that for amplitude of vibration of the order of two 

times the beam thickness, the error induced by the presence of 

the added mass on the nonlinear frequency is about 4.44%. 

This confirms the sensitivity of the nonlinear testing to small 

perturbations and the necessity of being very careful in their 

interpretation. 

 

 
 

V. CONCLUSION 
 

A theoretical model for large vibration amplitudes of  

bernoulli-euler beam carrying masses and taking into account 
the rotary inertia has been developed, based on Hamilton’s 

principle and spectral analysis, to obtain numerical results. The 

theory effectively reduces a nonlinear free vibration problem 

to a set of nonlinear algebraic equations. 

An application has been made of the theory to estimate the 

effect of an attached accelerometer on measurements carried 

out on beams at large vibration amplitudes. The results have 

shown that the nonlinearity may induce a significant effect of 

the mass added on the measurement results, confirming that it 

may be much more accurate to use non contacting transducers, 

as it was commonly practiced at the ISVR. 
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