Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

Genetic Algorithm for Hybrid on-Chip Memory

Naveen Vijay, Silpi Dutta, Prabhakar Poudel, Ranjan J

Department of Computer Science and Engineering
T. John Institute of Technology
Bengaluru, India

Abstract— In an era of computation, speed is a major criterion.
With the advent of chip multiprocessor (CMP) systems, it’s
exigent for an innovative strategy to bypass the improficiency in
present memory system & architecture. In accordance to the
above, frequent on chip memory access have increased
analytical challenges in delivering high memory access
performance with compact power and latency. The generalized
concept of Scratch Pad Memory (SPM) can be configured from
SRAM, MRAM & Z-RAM to evolve a heterogeneous SPM
architecture. In this paper, we focus on uplifting latency &
reducing power consumption. We have used, Adaptive Genetic
Algorithm for Data Allocation (AGADA) for allocating data to
above mentioned memory units forming the architecture along
with test results.

Keywords — Chip multi processor, scratch pad memory,
genetic algorithm, data allocation.

l. INTRODUCTION

Chip multi-processor (CMP) is a single computing
component with two or more actual cores (processor units)
which are used for reading and executing program
instruction. This CMP has two important metrics of
performance that are low power consumption and short
latency memory access [1].

To overcome the problem and to bridge the processor-
memory speed gap traditional computing system adopted the
cache mechanism. Caches cause notorious problem to CMP
system. Therefore, an alternative technique is used to replace
a cache that is Scratch Pad Memory (SPM) [2], software
controlled on chip memory.

This SPM has two major advantages: first, SPM does not
have the comparator and tag SRAM technique and second,
SPM generally guarantees single cycle access latency
[5].SPM is used widely in CMP system because of SPM
beneficial advantages in size, power consumption and
predictability [4].

The most crucial task for compilers is to manage SPM
characteristics in form of data allocation on current system.
Hybrid SPM architecture must resolve certain problems like
no of write operations to MRAM (Magneto resistive random
access memory), memory access latency etc.

Data is allocated on each memory module to reduce the
total memory access cost. Data allocation employs a method
called multi dimensional dynamic programming method
(MDPDA) [9] to overcome hybrid SPM data allocation
problems. This method consumes a significant amount of
time and space. Hence, we employed genetic algorithm for
data allocation.

Roopashree S
Assistant Professor
Department of Computer Science and Engineering
T. John Institute of Technology
Bengaluru, India

Genetic algorithm is a class of computational models
which organize a solution candidate of a problem in a specific
data structure, example: linear binary, tree, linked list etc and
applying some operations on them. Generally, genetic [10]
algorithm based on initialization, selection, reproduction and
termination. The major contributions of this paper include:

(1) A hybrid SPM architecture that consists of SRAM,
MRAM, and Z-RAM. This architecture produces high access
performance with low power consumption.

(2) A novel genetic algorithm based data allocation strategy
to reduce memory access latency and while reducing the
number of write operations to MRAM. The reduction of
writes on MRAM will efficiently prolong their lifetime.

1. CACHE MEMORY

The most widely used systems in the current generation
have a very fast memory known as the Cache Memory. In
computing cache is a component that stores data so future
requests for that data can be served faster. Cache Memory also
called CPU memory is a Random Access Memory (RAM)
that a systems microprocessor can access more quickly than it
can access regular RAM. The memory is typically integrated
directly with the CPU chip or can be placed on a separate
chip. A CPU cache is used to reduce the average time to
access data from the main memory. The cache is smaller,
faster memory which stores copies of data from frequently
used main memory locations for further reference that could
be made on that data.

CPU

Cache
Memory

Main
Memory

Fig 1: Cache Memory

There are two types of aftereffects for a search on a data
stored on the caches which are the cache hit and the cache
miss [3]. Cache hit occurs when the solicited data can be

Volume 3, | ssue 19

Published by, www.ijert.org 1

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

found, while a Cache miss occurs it cannot. Cache hits are
served by reading data from the cache, which is faster than
recomputing a result or reading from a slower data store.
Whilst a solicitation for a data has been made, the data is
transferred between memory and cache in blocks of fixed size
called cache lines. When a cache line is copied from memory
into the cache, a cache entry is created. A cache entry will
include the copied data as well as the requested memory
location. When the processor needs to read or write a location
in main memory, it first checks for a correlated entry in the
cache. The cache in turn checks for the contents for a
requested memory locations in the cache lines that might
contain that address. If the processor finds that the memory
location is in the cache, then there is a cache hit or else it’s a
cache miss. In case of:

o A cache hit, the processor immediately reads or
writes the data in the cache line.

. A cache miss, the cache allocates a new entry and
copies in data from the main memory and consequently the
solicitation is fulfilled from the contents of the cache.

. Though cache memories are so fast and so easy to
use they have a few critical drawbacks.

. Since cache memory is not accessed using direct
addressing they need to have a comparator and tag SRAM

[6].

. Although, caches save a large amount of energy by
not performing the complex decode operations to support the
runtime address mapping for references, it is considered to be
wastage of energy as their replacements save up to 40% more
energy than cache memory [7].

. Access solicits to cache sometimes suffer from
capacity, compulsory and conflict misses that incur a very
long latency.

To prevail over the hindrance of cache memory, a new
memory was developed called the Scratch Pad Memory
(SPM).

Ill. SCRATCH PAD MEMORY

Scratch Pad Memory architecture is a potential
replacement for traditional cache memory. SPM consists of a
module made up of different kinds of memory units. The
reason for the superiority of SPM over traditional cache
memory is the fact that the various units of a SPM chips are
programmed through software, in contrast to traditional
homogeneous cache memory, which are programmed
electronically. This helps a system with SPM to access
memory with non-uniform latency.

-—=-r---
SPM I
CPU |« "] (on-chip) :
|
|
Merr!nrj,f
Address
DRAM
— " space
(off-chip) :
|
|
|
NP A——

Fig 2: Scratch Pad Memory

Figure 2 shows the typical system with a scratchpad in
place of cache memory. Here, the memory access space is
always in a predetermined range, which facilitates access of
data through direct memory addressing. This enables faster
access as compared to the paged memory access method of
cache.

Since programmers and compilers need to interfere in the
memory retrieval process, the development of sophisticated
mechanisms is a must to SPM management in order to achieve
the above mentioned benefits. Data allocation in a SPM chip
can be programmatically done either during compile time or
during run time. Based on this, data allocation can be
classified into static data allocation and dynamic data
allocation respectively.

Static data allocation is the simpler of the two approaches,
where the memory blocks are loaded into the memory during
the initialization stage and remain unchanged during
execution. This approach is fairly easy to implement and does
not require as many resources as compared to dynamic data
allocation.

Memory mapping is determined during run time in the
case of dynamic data allocation. In addition to allocation of
data dynamically, data can be reloaded into SPM at some
required break points to guarantee the execution of the
application. Therefore, the algorithm used for dynamic data
allocation must know the contents of the memory at during
allocation. This, together with the exorbitant cost for data
mapping, makes dynamic allocation a problematic task.

[Synchronization/Communication logic |

i

[Cores] ese [Core, |
SPM, SPM, SPI,
[SRAMEMRAMZRAM] | [SRAMIMRAMIZRAM] | [SRAMIMRAMIZRAM]
[S| [S [S

1
i
| OffChip DRAI |

Fig 3: Multi-core hybrid memory structure

The architecture we propose consist of a SPM module
made up of 3 separate memory units; namely SRAM, MRAM
and ZRAM [8]; which are tightly coupled with the individual
cores of the CMP system, as shown in the above figure. A

Volume 3, | ssue 19

Published by, www.ijert.org 2

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

core accessing an SPM coupled to it is called local access, and
a core accessing a SPM coupled to another core is known as
remote access. Remote access is usually implemented with the
help of an interconnection among the different cores. The
cores access the off-chip main memory through a shared bus.
We may assume that the data transfer cost between cores is
constant, since these CMP systems usually implement a multi-
channel ring structure to facilitate isolated data transfer
between cores. Local access is normally faster and more
power efficient as compared to remote access, while the
accessing of the main memory takes up the most power and
time. In order to ensure a memory hit in the case of a
heterogeneous module, the data must be written into the
memory module in advance. We propose an Adaptive Genetic
Algorithm for dynamic data allocation, which provides an
efficient system to manage memory in the above SPM system.

IV. CHROMOSOME MODEL

A chromosome for the data allocation problem is a set of
defined parameters which is able to represent a solution. The
parameters here are the data blocks and the size of each
memory module including all on-chip memory modules and
the off-chip main memory. Therefore, we define a gene in a
chromosome as a pair of these two parameters. That is, a
chromosome represents an allocation scheme. There are
numerous ways to represent a chromosome. Intuitively, we
can use a matrix to represent a chromosome, where the rows
indicate the main memory and all on-chip memory units of a
SPM in each processor core. The columns indicate data
allocation on the corresponding memories.

V. SELECTION

The selection process is carried out to form a new
population, through strategically = choosing some
chromosomes from the old population with respect to the
fitness value of each individual. It is utilized to enhance the
overall quality of the population. In our genetic algorithm,
we will use a rank based roulette wheel selection scheme with
elitism to select chromosomes. In this method, an imaginary
wheel with total
360 degrees is applied, on which all chromosomes in the
population are placed, and each of them occupied a slot size
according to the value of the corresponding fitness function.
Let PS denote the population size and Ai represent the angle
of the sector occupied by the i ranked chromosome. The
chromosome-to-sector mapping is consistent to the fitness of
each chromosome, and the 1st ranked chromosome has the
highest fitness value, therefore allocating to the sector 1 with
the largest angle A:. The (PS) ™ ranked chromosome has the
lowest fitness value and is allocated to the sector
PS—1withallest angle Aps . The fitter an individual is, the
more area of it will be assigned on the wheel, and thus the
more possible that it will be selected when the biased roulette
wheel is spun.

_ A
p Ai +1 (l)

1-p
ﬂzszi)

A _Mx

C1-p" - ¥

Where Ai<1,p<1,and 0 <i<PS

Algorithm-1: Algorithm for Genetic Selection

Input: An old population Oldpo, and the size of the
population PS.

Output: A selected chromosome k.

1: Define the total fitness SumFit as the sum of fitness values
of all individuals in the current population;
:fori=1—PSdo

SumFit = SumFit + Oldpey(i).FT ;

:end for

: Generate a random number RanN between 1 to SumFit;
:fork=1— PSdo

DUTAWN

7: if ¥, Oldeay(i).F T> RanN then
8: break;

9: end if

10: end for

11: return chromosome Kk;

VI. CROSSOVER

Crossover is a crucial step after selection. We can find the
individual with higher fitness function with this operation.
Conventionally, crossover operation includes signal point
crossover, two point crossover, and uniform crossover. The
rationale is that the “good” characteristics of the parents
should be well preserved and passed down to children.
However, the rational selection may lead to the local optimal
problem. To avoid this problem, the crossover operations are
carried out with a specific probability, which is often referred
to as crossover rate, denoted by PC. We randomly select
pairs of chromosomes as parents to generate new individuals.
In this section, we will use an adaptive cycle crossover
strategy to perform the crossover operation with a tunable
Ccrossover rate.

The basic idea of cycle crossover works as follows.

Qc (FTmax - FTbestC)
(FTmax - I:Tavg)

Where FTmax is the maximal fitness value in the current
population, FTpesic is the fitness value of the parent with
higher fitness value between the two crossover parents, FT ayg
is the average fitness value of the current population, and_c is
a positive constant less than 1. We start at the first allele of
parent 1 and copy the gene to the first position of the child.
Then, we look at the allele at the same position in parent 2.
We cannot copy this gene to the first position of the child
because it has been occupied. We will go to the position with
the same gene in the parent 1 and suppose it is at the position
i. We copy the gene in parent 2 to the position i of the child.
We then apply the same operation on the gene in position i of
parent 2. The cycle is repeated until we arrive at a gene in
parent 2 which has already been in the child. The cycle

PC =

(4)

Volume 3, | ssue 19

Published by, www.ijert.org 3

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

started from parent 1 is complete. The next cycle will be
taken from parent 2. This crossover mechanism enables the
child to efficiently inherit the characteristics from both
parents. However, this approach is possible to generate
invalid alleles for our data allocation problem, due to the size
constraint of each memory unit. Because of the limitation of
directly applying the cycle crossover method to our data
allocation problem, we propose an adaptive cycle crossover
strategy to guarantee valid data allocation. The critical idea of
our approach is that we use a variable to keep the currently
available space of each memory unit. For each genetic
operation of data allocation, we will check if there is enough
room for assigning the gene to the specific memory unit. If it
is true, the data will be directly allocated. Otherwise, we will
adaptive check the memory units of the neighboring
processor cores and find a space for it. However, if all on-
chip memory units, including SRAMs and MRAMs, are full,
the data will be assigned to the off-chip.

Algorithm 3 Modified PMX algorithm

Input: Two parent chromosomes P1 and P2.

Output: A new chromosome C.

1: Assume the length of each chromosome is L;

2: Randomly generate a crossover point 0 < cp <L;

3: for all Genes in the segment starting from the crossover
point in P1 do

4 Examine the gene at the same position of P2;

5: if The two genes have not been copied to C then

6: Fill the positions of the child C by

swapping the two genes in P1;

7: end if

9: end for

10: Map the remaining genes in P1 to C
11: return The child chromosome C;

Algorithm-2: Adaptive cycle crossover algorithm

Input: Two parent chromosomes P1 and P2.

Output: A new chromosome.

1: Assume the length of each chromosome is L.

2: while Child chromosome has empty position do

3: fori=1—Ldo

4. if Gene i in P1 has not been copied to the
child chromosome then

5 Keep the gene and break;

6: end if

7: end for

8: if The memory unit associated with gene i is full

then

9: Adaptively search an available position

from neigh- boring memory units;

10: else

11 Copy gene i to the same position of the
child;

12: end if

13: Get a gene Ge at position i in P2;

14: while Ge has already existed in the child do
15: Locate the gene Ge in P1, suppose its position is j;
16: Copy the gene Ge to the position j of the child;
17: Get a new gene Ge at position j in P2;

18: end while

19: Apply the same process on P2 to copy genes to the child
chromosome;

20: end while

21: return The child chromosome;

VIl. MUTATION

Once the crossover operation has been completed, the
good features which are eliminated during crossover will be
recovered by performing a genetic mutation. The mutation
algorithm will also prevent premature convergence in a local
optima. Mutation is performed by randomly flipping bits
within a chromosome at a specific probability called a
mutation rate, similar to crossover. Mutation rate is defined to
be a tunable parameter, the value of which can be changed
using the equation for PM defined as follows.

Qm (FTmax - I:TbestM)
(FT .. —FT

PM = 5)

avg

where FTuestm is the fitness level of the selected chromosome,
and Qnm is positive constant between 0 and 1.

Algorithm 4 Algorithm for Genetic Mutation

Input: A Chromosome in population and mutation rate PM.

Output: A new chromosome.

1: Randomly select two genes i and j in the input
Chromosome;

2: Generate a random number RanN between 0 and1;

3: if RanN < PM then

4: Form a new chromosome by swapping the memory

units of gene i and gene j;
5:end if
6: return The new generated chromosome;

The Crossover of the cycles is able to travel through both the
parents. Hence the good feature of both of them can be
examined carefully. But the downside of it is the relative long
cost of examining each position of the parent chromosomes.
Hence, we have proposed another simpler crossover
operation, which is a modified version of the Partially
Mapped Crossover (PMX). The algorithm to it is quite easily
understandable.

However, we must note that the probability of mutation is
lesser than the probability of crossover, since for every
crossover, a mutation is performed with the probability PM.
Since we define the genes in this algorithm as a datum and a
memory unit pair, mutation is performed by either swapping
the data or the memory units of the selected gene. We will
thus swap the number of memory units of two genes to
achieve a mutated gene.

VIIl. CONCLUSION

The whole procedure of our AGADA algorithm can be
summarized. First, we need to generate the initial population.
In this procedure, a number of chromosomes will be

Volume 3, | ssue 19

Published by, www.ijert.org 4

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

generated randomly. These chromosomes are random
permutations of pairs of data and all memory units of a CMP
system. After the initialization, the fitness value of each
individual will be calculated. Then, a search process will be
iteratively applied to determine the best solution for the data
allocation problem until a termination condition is reached.
The termination criterion includes two conditions:
. The number of new generations
predefined maximum number of iterations

. After a certain number of search (typically 500 or
even more), a better solution is still unreachable. In each
generation, the crossover and mutation operation will be
carried out in terms of the predefined crossover rate PC and
mutation rate PM.

Finally, based on the new population, the fitness value of
each individual will be calculated and the selection operation
will be employed to generate a new population

exceeds a

(1]

(2]

(3]

(4]

(5]

(6]

Algorithm 5 Adaptive Genetic Algorithm for Data
Allocation

(AGADA)

Input: A set of data items, a CMP system with P processor
cores, and each core has a hybrid SPM. Any SPMi has a
SRAM with size of SSjand a MRAM with size of SM;.
Output: A data allocation.

1: Generate initial population;

2: Newpop «—D;

3: Determine the fitness of each individual,

4: while Termination criterion is not met do

5: fori=0— PS do

6: Randomly select two chromosomes i and j
from current population;

7: Optionally apply the crossover operation
on chromosomes i and j with probability
PC;

8: Optionally apply the mutation operation on

the new chromosome with probability PM;
9: end for
10: Evaluate all individuals and perform selection;
11: end while
12: return the best allocation has obtained;

(71

(8]

(9]

[10]

REFERENCES

J. Montanaro, R. T. Witek, K. Anne, A. J. Black, and E. M. Cooper,
“A160-MHz, 32-b, 0.5-w CMOS RISC microprocessor,” Digital
Technical Journal, vol. 9, no. 1, pp. 49-62, 1997.

M. Qiu, Z. Chen, and M. Liu, “Low-power low-latency data
allocation for hybrid scratch-pad memory,” IEEE Embedded
Systems Letters (ESL), vol. 6, no. 4, pp. 69-72, 2014.

M. Qiu, Z. Chen, Z. Ming, X. Qiu, and J. Niu, “Energy-aware data
allocation for mobile cloud systems,” IEEE System Journal, 2014, in
press.

R. Banakar, S. Steinke, B. S. Lee, M. Balakrishnan, and R.
Marwedel, “Scratchpad memory: design alternative for cache on-
chip memory in embedded systems,” in Proceedings of the 10
International Symposium on Hardware/Software Co-design
(CODES), May 2002, pp. 73-78.

P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient utilization of
scratch-pad memory in embedded processor applications,” in
Proceedings of the 1997 European Conference on Design and Test,
Mar. 1997, pp. 7-11.

C. R. Johns and D. A. Brokenshire, “Introduction to the cell
broadband engine architecture,” IBM Journal of Research and
Development, vol. 51, no. 5, pp. 503-520, 2007.

S. Udayakumaran and R. Barua, “Compiler-decided dynamic
memory allocation for scratch-pad based embedded systems,” in
Proceedings of the 2003 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES), Oct.
2003, pp. 276-286.

G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture
of the 3D stacked MRAM 12 cache for CMPs,” in Proceedings of the
36th Annual International Symposium on Computer Architecture
(ISCA), 2009, pp. 239-249.

J. Hu, C. J. Xue, Q. Zhuge, W. C. Tseng, and E. H. M. Sha,
“Towards energy efficient hybrid on-chip scratch pad memory with
non-volatile memory,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011, pp.1-6.
D. Whitley, “A genetic algorithm tutorial,”
Computing, vol. 4, no. 2, pp. 65-85, 1994

Statistics and

Volume 3, | ssue 19

Published by, www.ijert.org 5

