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Abstract—In an era of computation, speed is a major criterion. 

With the advent of chip multiprocessor (CMP) systems, it’s 

exigent for an innovative strategy to bypass the improficiency in 

present memory system & architecture. In accordance to the 

above, frequent on chip memory access have increased 

analytical challenges in delivering high memory access 

performance with compact power and latency. The generalized 

concept of Scratch Pad Memory (SPM) can be configured from 

SRAM, MRAM & Z-RAM to evolve a heterogeneous SPM 

architecture. In this paper, we focus on uplifting latency & 

reducing power consumption. We have used, Adaptive Genetic 

Algorithm for Data Allocation (AGADA) for allocating data to 

above mentioned memory units forming the architecture along 

with test results.  

 
Keywords — Chip multi processor, scratch pad memory, 

genetic algorithm, data allocation. 

I.  INTRODUCTION  

Chip multi-processor (CMP) is a single computing 

component with two or more actual cores (processor units) 

which are used for reading and executing program 

instruction. This CMP has two important metrics of 

performance that are low power consumption and short 

latency memory access [1].   

To overcome the problem and to bridge the processor-

memory speed gap traditional computing system adopted the 

cache mechanism. Caches cause notorious problem to CMP 

system. Therefore, an alternative technique is used to replace 

a cache that is Scratch Pad Memory (SPM) [2], software 

controlled on chip memory.  

This SPM has two major advantages: first, SPM does not 

have the comparator and tag SRAM technique and second, 

SPM generally guarantees single cycle access latency 

[5].SPM is used widely in CMP system because of SPM 

beneficial advantages in size, power consumption and 

predictability [4]. 

 The most crucial task for compilers is to manage SPM 

characteristics in form of data allocation on current system. 

Hybrid SPM architecture must resolve certain problems like 

no of write operations to MRAM (Magneto resistive random 

access memory), memory access latency etc. 

 Data is allocated on each memory module to reduce the 

total memory access cost. Data allocation employs a method 

called multi dimensional dynamic programming method 

(MDPDA) [9] to overcome hybrid SPM data allocation 

problems. This method consumes a significant amount of 

time and space. Hence, we employed genetic algorithm for 

data allocation.  

Genetic algorithm is a class of computational models 

which organize a solution candidate of a problem in a specific 

data structure, example: linear binary, tree, linked list etc and 

applying some operations on them. Generally, genetic [10] 

algorithm based on initialization, selection, reproduction and 

termination.The major contributions of this paper include:  

(1) A hybrid SPM architecture that consists of SRAM, 

MRAM, and Z-RAM. This architecture produces high access 

performance with low power consumption.  

(2)  A novel genetic algorithm based data allocation strategy 

to reduce memory access latency and while reducing the 

number of write operations to MRAM. The reduction of 

writes on MRAM will efficiently prolong their lifetime. 

II. CACHE MEMORY 

The most widely used systems in the current generation 
have a very fast memory known as the Cache Memory. In 
computing cache is a component that stores data so future 
requests for that data can be served faster. Cache Memory also 
called CPU memory is a Random Access Memory (RAM) 
that a systems microprocessor can access more quickly than it 
can access regular RAM. The memory is typically integrated 
directly with the CPU chip or can be placed on a separate 
chip. A CPU cache is used to reduce the average time to 
access data from the main memory. The cache is smaller, 
faster memory which stores copies of data from frequently 
used main memory locations for further reference that could 
be made on that data. 

 

Fig 1:  Cache Memory 

 There are two types of aftereffects for a search on a data 
stored on the caches which are the cache hit and the cache 
miss [3]. Cache hit occurs when the solicited data can be 
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found, while a Cache miss occurs it cannot. Cache hits are 
served by reading data from the cache, which is faster than 
recomputing a result or reading from a slower data store. 
Whilst a solicitation for a data has been made, the data is 
transferred between memory and cache in blocks of fixed size 
called cache lines. When a cache line is copied from memory 
into the cache, a cache entry is created. A cache entry will 
include the copied data as well as the requested memory 
location. When the processor needs to read or write a location 
in main memory, it first checks for a correlated entry in the 
cache. The cache in turn checks for the contents for a 
requested memory locations in the cache lines that might 
contain that address. If the processor finds that the memory 
location is in the cache, then there is a cache hit or else it’s a 
cache miss. In case of: 

 A cache hit, the processor immediately reads or 
writes   the data in the cache line. 

 A cache miss, the cache allocates a new entry and 
copies in data from the main memory and consequently the 
solicitation is fulfilled from the contents of the cache. 

          Though cache memories are so fast and so easy to 
use they have a few critical drawbacks. 

 Since cache memory is not accessed using direct 
addressing they need to have a comparator and tag SRAM 
[6]. 

 Although, caches save a large amount of energy by 
not performing the complex decode operations to support the 
runtime address mapping for references, it is considered to be 
wastage of energy as their replacements save up to 40% more 
energy than cache memory [7]. 

 Access solicits to cache sometimes suffer from 
capacity, compulsory and conflict misses that incur a very 
long latency. 

To prevail over the hindrance of cache memory, a new 
memory was developed called the Scratch Pad Memory 
(SPM). 

III. SCRATCH PAD MEMORY 

  Scratch Pad Memory architecture is a potential 
replacement for traditional cache memory. SPM consists of a 
module made up of different kinds of memory units. The 
reason for the superiority of SPM over traditional cache 
memory is the fact that the various units of a SPM chips are 
programmed through software, in contrast to traditional 
homogeneous cache memory, which are programmed 
electronically. This helps a system with SPM to access 
memory with non-uniform latency. 

 

Fig 2: Scratch Pad Memory 

Figure 2 shows the typical system with a scratchpad in 
place of cache memory. Here, the memory access space is 
always in a predetermined range, which facilitates access of 
data through direct memory addressing. This enables faster 
access as compared to the paged memory access method of 
cache.  

Since programmers and compilers need to interfere in the 
memory retrieval process, the development of sophisticated 
mechanisms is a must to SPM management in order to achieve 
the above mentioned benefits. Data allocation in a SPM chip 
can be programmatically done either during compile time or 
during run time. Based on this, data allocation can be 
classified into static data allocation and dynamic data 
allocation respectively. 

Static data allocation is the simpler of the two approaches, 
where the memory blocks are loaded into the memory during 
the initialization stage and remain unchanged during 
execution. This approach is fairly easy to implement and does 
not require as many resources as compared to dynamic data 
allocation. 

Memory mapping is determined during run time in the 
case of dynamic data allocation. In addition to allocation of 
data dynamically, data can be reloaded into SPM at some 
required break points to guarantee the execution of the 
application. Therefore, the algorithm used for dynamic data 
allocation must know the contents of the memory at during 
allocation. This, together with the exorbitant cost for data 
mapping, makes dynamic allocation a problematic task. 

 

Fig 3: Multi-core hybrid memory structure 

The architecture we propose consist of a SPM module 
made up of 3 separate memory units; namely SRAM, MRAM 
and ZRAM [8]; which are tightly coupled with the individual 
cores of the CMP system, as shown in the above figure. A 
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core accessing an SPM coupled to it is called local access, and 
a core accessing a SPM coupled to another core is known as 
remote access. Remote access is usually implemented with the 
help of an interconnection among the different cores. The 
cores access the off-chip main memory through a shared bus. 
We may assume that the data transfer cost between cores is 
constant, since these CMP systems usually implement a multi-
channel ring structure to facilitate isolated data transfer 
between cores. Local access is normally faster and more 
power efficient as compared to remote access, while the 
accessing of the main memory takes up the most power and 
time. In order to ensure a memory hit in the case of a 
heterogeneous module, the data must be written into the 
memory module in advance. We propose an Adaptive Genetic 
Algorithm for dynamic data allocation, which provides an 
efficient system to manage memory in the above SPM system. 

IV. CHROMOSOME MODEL 

A chromosome for the data allocation problem is a set of 

defined parameters which is able to represent a solution. The 

parameters here are the data blocks and the size of each 

memory module including all on-chip memory modules and 

the off-chip main memory. Therefore, we define a gene in a 

chromosome as a pair of these two parameters. That is, a 

chromosome represents an allocation scheme. There are 

numerous ways to represent a chromosome. Intuitively, we 

can use a matrix to represent a chromosome, where the rows 

indicate the main memory and all on-chip memory units of a 

SPM in each processor core. The columns indicate data 

allocation on the corresponding memories. 

V. SELECTION 

The selection process is carried out to form a new 

population, through strategically choosing some 

chromosomes from the old population with respect to the 

fitness value of each individual. It is utilized to enhance the 

overall quality of the population.  In our genetic algorithm, 

we will use a rank based roulette wheel selection scheme with 

elitism to select chromosomes. In this method, an imaginary 

wheel with total  

360 degrees is applied, on which all chromosomes in the 

population are placed, and each of them occupied a slot size 

according to the value of the corresponding fitness function. 

Let PS denote the population size and Ai represent the angle 

of the sector occupied by the ith ranked chromosome. The 

chromosome-to-sector mapping is consistent to the fitness of 

each chromosome, and the 1st ranked chromosome has the 

highest fitness value, therefore allocating to the sector 1 with 

the largest angle A1. The (PS) th ranked chromosome has the 

lowest fitness value and is allocated to the sector 

PS−1withallest angle APS . The fitter an individual is, the 

more area of it will be assigned on the wheel, and thus the 

more possible that it will be selected when the biased roulette 

wheel is spun. 
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Where Ai < 1, ρ < 1, and 0 ≤ i ≤ PS 

 

Algorithm-1: Algorithm for Genetic Selection  

Input: An old population OldPop and the size of the 

population PS.  

Output: A selected chromosome k.  

1: Define the total fitness SumFit as the sum of fitness values 

of all individuals in the current population;  

2: for i = 1 → P S do  

3:  SumFit = SumFit + OldPop(i).FT ;  

4: end for  

5: Generate a random number RanN between 1 to SumFit;  

6: for k = 1 → PS do  

        

7:  if 
k

i 1 OldPop(i).F T ≥ RanN then  

8:   break;  

9:  end if  

10: end for  

11: return chromosome k; 

VI. CROSSOVER 

Crossover is a crucial step after selection. We can find the 

individual with higher fitness function with this operation. 

Conventionally, crossover operation includes signal point 

crossover, two point crossover, and uniform crossover. The 

rationale is that the “good” characteristics of the parents 

should be well preserved and passed down to children. 

However, the rational selection may lead to the local optimal 

problem. To avoid this problem, the crossover operations are 

carried out with a specific probability, which is often referred 

to as crossover rate, denoted by PC. We randomly select 

pairs of chromosomes as parents to generate new individuals. 

In this section, we will use an adaptive cycle crossover 

strategy to perform the crossover operation with a tunable 

crossover rate.  

 

 The basic idea of cycle crossover works as follows.  

 

 

 avgmax

bestCmax

FTFT

FTFTQ
=PC C



 
                                        (4) 

Where FTmax is the maximal fitness value in the current 

population, FTbestC is the fitness value of the parent with 

higher fitness value between the two crossover parents, FTavg 

is the average fitness value of the current population, and ̺ c is 

a positive constant less than 1. We start at the first allele of 

parent 1 and copy the gene to the first position of the child. 

Then, we look at the allele at the same position in parent 2. 

We cannot copy this gene to the first position of the child 

because it has been occupied. We will go to the position with 

the same gene in the parent 1 and suppose it is at the position 

i. We copy the gene in parent 2 to the position i of the child. 

We then apply the same operation on the gene in position i of 

parent 2. The cycle is repeated until we arrive at a gene in 

parent 2 which has already been in the child. The cycle 
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started from parent 1 is complete. The next cycle will be 

taken from parent 2. This crossover mechanism enables the 

child to efficiently inherit the characteristics from both 

parents. However, this approach is possible to generate 

invalid alleles for our data allocation problem, due to the size 

constraint of each memory unit. Because of the limitation of 

directly applying the cycle crossover method to our data 

allocation problem, we propose an adaptive cycle crossover 

strategy to guarantee valid data allocation. The critical idea of 

our approach is that we use a variable to keep the currently 

available space of each memory unit. For each genetic 

operation of data allocation, we will check if there is enough 

room for assigning the gene to the specific memory unit. If it 

is true, the data will be directly allocated. Otherwise, we will 

adaptive check the memory units of the neighboring 

processor cores and find a space for it. However, if all on-

chip memory units, including SRAMs and MRAMs, are full, 

the data will be assigned to the off-chip. 

 

Algorithm-2: Adaptive cycle crossover algorithm  

Input: Two parent chromosomes P1 and P2.  

Output: A new chromosome.  

1: Assume the length of each chromosome is L.  

2: while Child chromosome has empty position do  

3:   for i = 1 → L do  

4:  if Gene i in P1 has not been copied to the 

child chromosome then  

5:    Keep the gene and break;  

6:   end if  

7:  end for  

8:  if The memory unit associated with gene i is full 

then  
9:   Adaptively search an available position 

from neigh- boring memory units;  

10:  else  

11:  Copy gene i to the same position of the 

child;  

12:  end if  

13:  Get a gene Ge at position i in P2;  

14:  while Ge has already existed in the child do  

15: Locate the gene Ge in P1, suppose its position is j;  

16: Copy the gene Ge to the position j of the child;  

17: Get a new gene Ge at position j in P2;  

18: end while  

19: Apply the same process on P2 to copy genes to the child 

chromosome;  

20: end while  

21: return The child chromosome; 

 

 

The Crossover of the cycles is able to travel through both the 

parents. Hence the good feature of both of them can be 

examined carefully. But the downside of it is the relative long 

cost of examining each position of the parent chromosomes. 

Hence, we have proposed another simpler crossover 

operation, which is a modified version of the Partially 

Mapped Crossover (PMX). The algorithm to it is quite easily 

understandable. 

 

 

Algorithm 3 Modified PMX algorithm 

Input: Two parent chromosomes P1 and P2. 

Output: A new chromosome C. 

1: Assume the length of each chromosome is L; 

2: Randomly generate a crossover point 0 ≤ cp ≤ L; 

3: for all Genes in the segment starting from the crossover 

   point in P1 do 

4:  Examine the gene at the same position of P2; 

5:  if The two genes have not been copied to C then 

6:  Fill the positions of the child C by 

swapping the two genes in P1; 

7:  end if 

9: end for 

10: Map the remaining genes in P1 to C  
11: return The child chromosome C; 

 

VII. MUTATION 

Once the crossover operation has been completed, the 

good features which are eliminated during crossover will be 

recovered by performing a genetic mutation. The mutation 

algorithm will also prevent premature convergence in a local 

optima. Mutation is performed by randomly flipping bits 

within a chromosome at a specific probability called a 

mutation rate, similar to crossover. Mutation rate is defined to 

be a tunable parameter, the value of which can be changed 

using the equation for PM defined as follows. 

 
 avgmax

bestMmaxm

FTFT

FTFTQ
=PM



 
                                  (5) 

 

where FTbestM is the fitness level of the selected chromosome, 

and Qm is positive constant between 0 and 1. 

 

Algorithm 4 Algorithm for Genetic Mutation 

Input: A Chromosome in population and mutation rate PM. 

Output: A new chromosome. 

1: Randomly select two genes i and j in the input 

    Chromosome; 

2: Generate a random number RanN between 0 and1; 

3: if RanN ≤ PM then 

4:  Form a new chromosome by swapping the memory 

                units of gene i and gene j; 

5: end if 

6: return The new generated chromosome; 

 

However, we must note that the probability of mutation is 

lesser than the probability of crossover, since for every 

crossover, a mutation is performed with the probability PM. 

Since we define the genes in this algorithm as a datum and a 

memory unit pair, mutation is performed by either swapping 

the data or the memory units of the selected gene. We will 

thus swap the number of memory units of two genes to 

achieve a mutated gene.  

VIII. CONCLUSION 

The whole procedure of our AGADA algorithm can be 

summarized. First, we need to generate the initial population. 

In this procedure, a number of chromosomes will be 
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generated randomly. These chromosomes are random 

permutations of pairs of data and all memory units of a CMP 

system. After the initialization, the fitness value of each 

individual will be calculated. Then, a search process will be 

iteratively applied to determine the best solution for the data 

allocation problem until a termination condition is reached. 

The termination criterion includes two conditions:  

 The number of new generations exceeds a 

predefined maximum number of iterations 

 After a certain number of search (typically 500 or 

even more), a better solution is still unreachable. In each 

generation, the crossover and mutation operation will be 

carried out in terms of the predefined crossover rate PC and 

mutation rate PM. 

Finally, based on the new population, the fitness value of 

each individual will be calculated and the selection operation 

will be employed to generate a new population 

Algorithm 5 Adaptive Genetic Algorithm for Data 

Allocation 

(AGADA) 

Input: A set of data items, a CMP system with P processor 

cores, and each core has a hybrid SPM. Any SPMi has a 

SRAM with size of SSi and a MRAM with size of SMi. 

Output: A data allocation. 

 

1: Generate initial population; 

2: NewPoP ←Φ; 

3: Determine the fitness of each individual; 

4: while Termination criterion is not met do 

5:  for i = 0 → PS do 

6:  Randomly select two chromosomes i and j 
from current population; 

7:  Optionally apply the crossover operation 

on chromosomes i and j with probability 

PC; 

8: Optionally apply the mutation operation on 

the new chromosome with probability PM; 

9:  end for 

10:  Evaluate all individuals and perform selection; 

11: end while 

12: return the best allocation has obtained; 
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