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ABSTRACT: Terahertz (THz) radiation is part of the electromagnetic spectrum that lies between the infrared 

and microwave region. Its generation and theory is based on laser light and nonlinear optics. In this work, we 

used the Maxwell’s equations and nonlinear optical equations to generate a nonlinear Schrödinger equation 

(NLSE) for fourth order harmonics. The solution of the NLSE is used to generate a stationary THz pulse that 

has a delta shape with components of sech and Gaussian profiles. These shapes can be used as input pulses 

capable of generating and propagating dynamic THz pulse profiles in uniaxial medium, which could be 

employed in optical communications. 
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1. INTRODUCTION 

Electromagnetic wave propagation in nonlinear medium has been given attention in last few decades due to its 

important application in optical signal transmission [1]. The terahertz ( = 10
12

 Hz) lies between the infrared 

and the microwave regions of the electromagnetic spectrum [2 – 4].  Its science and applications are usually 

based on laser light. The science also includes the emission, transmission, amplification, detection, 

modulation and switching of light. Liu et al, [5] described the THz radiation as a wave that has the capability 

of penetrating through many commonly – used non polar materials such as paper, textile, plastic, leather, 

wood, and ceramic. Many THz and microwave imaging techniques have gained importance as promising tools 

for various applications, including imaging in pathological diagnosis, dentistry, tomography and material 

inspection and characterization [6 ,7]. According to Siegel [8], the universe is bathed in terahertz energy. Most 

of it is going unnoticed and undetected. 

According to Baldwin [9], optics recognizes three classes of crystals;  

- The cubic crystals, which are optically isotropic, and have their refractive indices the same in all the 

three axes. i.e nx = ny = nz = n. 

- The uniaxial crystals, which are optically anisotropic, and have two of the refractive indices to be the 

same, and are different from the other one. i.e nx = ny = no and nz = ne. Examples of such crystals are 

the trigonal, tetragonal and hexagonal lattice types. 
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- The biaxial crystals are also optically anisotropic and have all the three refractive indices different 

from each other. i.e zyx nnn  . Examples of such crystals are the orthorhombic, monoclinic and 

triclinic lattice types. 

Nonlinear optics is concerned with the response of matter to intense electromagnetic field such as the one 

obtained from laser light or THz radiation, in which the matter responds in a nonlinear manner to the incident 

radiation fields. It is a phenomenon that occurs at high optical intensities [10]. In these classes of crystals, the 

cubic crystal is centrosymmetric in nature, and hence allows for the propagation of laser light. The uniaxial 

and the biaxial crystals on the other hand are non – centrosymmetric, and allow for the propagation of THz 

radiation. 

The nonlinear equations of mathematical physics are major subjects in physical science. In nonlinear 

optics, the induced polarization P in a medium and the electric field E of the electromagnetic wave 

propagating in the medium are related by [11] 

                               
EP  0                                             (1) 

where   is the dielectric susceptibility of the medium that depends on the frequency, but independent of the 

field E, and o  is the permittivity of free space. Equation (1) is valid for the field strengths of conventional 

sources. With sufficiently intense laser or THz, equation (1) is no longer adequate, and hence needs to be 

generalized [12]. The polarization P induced in a medium by optical fields can be represented by a power 

series in the optical fields E in the form [13 – 15] 

                                           .)..( 6)6(5)5(4)4(3)3(2)2()1(

0 EEEEEEP                   (2) 

where
)1( is the linear susceptibility, and 

)2( , 
)3( ,

)4(  and so on are the nonlinear susceptibilities.   

In this paper, we are using the Maxwell’s equation which provide the most fundamental description of electric 

and magnetic fields. The propagation of THz radiation in a nonlinear medium is governed by the wave 

equation derived from Maxwell’s equation as  
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The solution of equation (3) is of the form 

                                           
)(),(),(),,,( ztietzAyxFtzyxE                                  (4) 

where A(z,t) is the amplitude of the pulse envelope, Г is a normalization constant, and F(x,y) is the field 

distribution in the (x,y) plane and corresponds to the mode structure.  

 A stationary solitary wave solution for the fourth order nonlinear Schrödinger equation (NLSE) for 

equation (4) has been worked out to generate a stationary pulse profile for THz radiation. The components of 

this shape can be used as an input pulse to generate the dynamic THz pulse profiles, which can be employed 

in communications. 
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2. GENERATION OF DIMENSIONLESS NLSE FOR THE FOURTH ORDER 

We Used equations (3) and (4) to obtain two equations; one for the field distribution function F(x,y) given as 

                                  022
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and the other one, the perturbed propagation equation for the amplitude of the pulse envelope A(z,t) given as 
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Equation (5) is in rectangular or Cartesian coordinate whose solutions are consistent with LP01 (≡ HE11) mode 

theory [16], and is of little or no interest in this work. The corresponding dimensionless field amplitude of 

equation (6) is defined as 
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where Ao is the maximum field amplitude, τo is the dimensionless pulsewidth, N is the solitary order,  α2 is a 

nonlinear parameter, while  β2 is the magnitude of the group velocity. From equations (6) and (7), we 

generated the dimensionless NLSE for the fourth order as thus 
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The terms on the R.H.S of equations (8) are the perturbation terms, and if they are neglected, equation (8) 

becomes 
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where U is the dimensionless amplitude (height),   is the dimensionless pulse distance,  v is the nonlinear 

coefficient, and is the pulsewidth.  δ = ± 1 defines normal and anomalous dispersion propagation. For δo = ± 
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1 implies n1 > 0 or n1 < 0, and δ1 = ± 1 implies n3 > 0 or n3 < 0. For most nonlinear applications, it is the 

anomalous dispersion that is applicable [16]. This means that in this work δ = - 1. But however in equation 

(9), the fourth and the fifth terms represent the second and the fourth nonlinearities for  
 2  and 

 4  

respectively, and consequently, the values of 
 2  and 

 4  generated by [17] for the uniaxial crystals are 

positive. This implies that δo and δ1 that respectively represent the coefficients for 
 2  and 

 4 should take 

positive value. And hence δo = +1 and so also is δ1 = +1. 

 

3. STATIONARY SOLITARY WAVE SOLUTION FOR FOURTH ORDER NLSE. 

Many problems in natural and engineering sciences are modelled by partial differential equations  

[18, 19].  The dimensionless NLSE for the fourth order is already defined in equation (9).

  

For a localized and 

dynamically distortionless profile of the optical pulse, ansatz equation of the following form is required [16] 

and [20] 

                        ,exp,, 2
1

iQU       (10) 

where Q(ξ,τ) = [q(ξ,τ)]
2
 is the dimensionless field intensity with q(ξ,τ) having the meaning of dimensionless 

field amplitude of the modulating function, ϕ (ξ,τ) is the phase function. This solution is also known as the 

stationary pulse solution equivalent to an incident pulse. Using equation (10) in (9) produces an equation that 

has two parts, one imaginary, and the other real, which are identically equal to zero. The real part produces an 

equation of the form 

                         




















































2

2
3

1
2

1

2

22

2 248
QvQ

Q

Q

Q

Q
oo  (11) 

while the imaginary part is given as 
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In equation (11), β is the wave number shift. But, since waveforms take only real values [21], equation (12) is 

ignored, and from equation (11), one obtains 
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By simplifying equation (13) and using the relation      
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From equation (13), β can be written as            

              2
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Further simplification of equation (13), using δ = -1 and with the substitution of equation (15) in (13) yields 
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From equation (16) 
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which was evaluated as 
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Equation (18) is the stationary solitary wave solution for fourth order nonlinear Schrödinger equation for THz 

radiation. 

 

4. GENERATION OF RESULTANT THz STATIONARY PULSE SHAPE 

To generate the stationary THz pulse shape, the following expressions were used in equation (18) 
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From equation (18), a plot of the dimensionless field amplitude q(τ) against the pulsewidth τo  provides  the 

resultant THz stationary pulse shape, and is shown in Fig. 1. 
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Fig.1: The resultant THz stationary pulse profile 

Fig. 1 is the resultant stationary pulse profile for THz radiation that is of delta shape, with both components of 

sech and Gaussian shapes in it. 

 

5. CONCLUSION 

In this paper, we used Maxwell’s equations to develop a nonlinear Schrödinger equation (NLSE) for fourth 

order harmonics. The solution of the NLSE was used to generate a stationary THz pulse that has delta shape 

with sech and Gaussian components. These components can be used as input pulses to generate dynamic THz 

pulse profiles that can be propagated in nonlinear uniaxial media as carrier waves. 
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