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Abstract:- The Fibonacci and Lucas polynomials are famous for possessing wonderful and amazing properties and
identities. In this paper, Generalized Fibonacci polynomials are introduced and defined by

U, (X)=xu 1 (X)+Uu,,(X),n22 with u(x)=a  andu(x)=2a+1,where a is any integer.Further,
some basic identities are generated and derived by standard methods.
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1.INTRODUCTION

Fibonacci numbers are a popular topic for mathematical enrichment and popularization. They are famous for
a host of interesting and surprising properties and show up in text books, magazine articles, and web sites.
Various sequences of polynomials by the name of Fibonacci and Lucas polynomials occur in the literature
over a century. The Fibonacci and Lucas polynomials are closely related and widely investigated. Fibonacci
polynomials appear in different frameworks. These polynomials are of great importance in the study of many
subjects such as algebra, geometry, combinatorics, approximation theory, statistics and number theory itself.
Moreover these polynomials have been applied in every branch of mathematics.

The Fibonacci polynomials satisfy the following recurrence formula:

f (X)=xf (X)+f (x),n>2 with f (x)=0,f(x)=1 (1.1)

The Lucas polynomials [1] are defined by the recurrence formula
| (X)=xl,(x)+L,,(x), n=2 with | (x)=2,1,(X)=x (1.2)

Generating function of Fibonacci polynomials is given by

i £ (Ot =t(L-xt—t7) . (1.3)
n=0

Generating function of Lucas polynomials is given by
> -1
L ()" =(2-xt)(1-xt—t*) ", (1.4)
n=0

Explicit sum formula for Fibonacci polynomials is given by

f.(x)= [g[n_k_ljx"”", (L.5)

k
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Explicit sum formula for Lucas polynomials is given by

In(x):% d [n_ij”‘”, (1.6)

—n-k{ k
where K a binomial coefficient and [x] is define as the greatest integer less than or equal to X.

Fibonacci-Like polynomials [11] is defined by the recurrence relation:

s, (X)=xs,;(X)+5,,(X), n>2. with s (X)=2and s (X)=2x. (1.7)
Generalized Fibonacci-Like polynomial [12] is defined by the recurrence relation:

b, (x)=xb,, (x)+b,,(x), n>2. with b, (x)=2b and b (x)=s, (1.8)

where b and S are integers.

The Fibonacci and Lucas polynomials possess many fascinating properties which have been studied in [2]
to [12]. In this paper, generalized Fibonacci-Like polynomials are introduced with some basic identities.

2. GENERALIZED FIBONACCI POLYNOMIALS

Generalized Fibonacci polynomials U, (X) are defined by the recurrence relation
u, (x)=xu,,(x)+u,,(x),n>2. with u (x)=a and u,(x)=2a+1, (2.1)

where a is integer.

The first few terms of generalized Fibonacci polynomials are as follows:
u,(x) =a,

u,(x) =2a+1,

u,(x) = (2a+1x+a,

u,(x) = (2a+1)x* +ax +(2a+1),

u,(x) =(2a+1)x* +ax’ +2(2a+1) X +a,

u.(X) = (2a+1)x* + ax’ +3(2a+1) x* + 2ax+(2a +1), and so on.

For x =1 and a = 0, we obtain Fibonacci Sequence.
The characteristic equation of recurrence relation (2.1) isA°—xA—-1=0. Which has two real roots

X+VX° +4 X—VX +4
og=————and f=——
2 2
Also, aff=-1, a+B=X, a—-B=\NX"+4, o’ + B> =x*+2. (2.2)
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Binet’s formula of generalized Fibonacci polynomials is given by

2

u(x)=Aa"+Bg"=A 5

(2a+1)—ap and B — aa —(2a+1)

Here, A=
a-p a-p
(a2

Also, AB:(a+—3a:1) A+B=uy(x)=a.
(a—p)

Generating function of generalized Fibonacci polynomials is given by

Z 0, (X" = a+(2a +1—2ax)t
e 1-xt—t

Now we obtain hypergeometric representation of generating function.
By generating function (2.5), we have
= a+(2a+1-ax)t
Zun (X)tn — ( S )
= 1-xt—t

= [a+ (2a+1—aX)'E][l—(Xth)t]il

=[a+(2a+1- ax)t]i (x+1)"t"

=[a+(2a+1-ax)t] D t" Zn:(mx“‘ktk

k=0
— 2 l— t SN n—ktn+k
[a+(2a+ ax)]nz:;kz:;‘k!n_k!x
:[a+(2a+1—ax)t]iin+k!x”t”*2"
0 koo K!n!
=[a+(2a+1—ax)t]ii)imrk!t2k
o n! o k!
:[a+(2a+1—ax)t]ex‘inzlk!(tz)k
k=0 -
0 © 2\k
Z—tu”(x) " :[a+(2a+1—ax)t]e“2—n+k!u
“~ n! = n! k!
= U (X),, I+ k+1(t2)"
——" =|a+(2a+1-ax)t|e —_
54000 s ant-anr O
0 o) 2\ k
Z—tu”(x) " :[a+(2a+l—ax)t]eX‘Z(n+l)k@(t )
n=0 n! k=0 (1)k kl

(2.3)

(2.4)

(2.5)
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Hence, ZU (x)—_ a+(2a+l-ax)t]e ,F(n+1 L 1; t°). (2.6)

3. SOME IDENTITIES OF GENERALIZED FIBONACCI POLYNOMIALS

In this section, we present some recurrence relations and identities by generating function, and explicit sum
formula.

Theorem 3.1: Prove that
U, (X)—u, ,(x) =xu,(x), n>1. (3.1)
Proof: By generating function of generalized Fibonacci polynomials, we have

Zu (0t" =[a+(2a+1-axt](1-xt -t )
Differentiating both sides with respect to t, we get

Znu O0t" =[a+(2a+1-ax)t](x+2t)(1-xt - t)_2+(2a+1—ax)(1—xt—t2)_l
(1-xt- t)Znu ("t =[a+(2a+1- ax)t](x+2t)(1—xt—tz)_1+(2a+1—ax)
(1-xt—t )Znu ("™ = (x+2t) ZU ()" + (2a +1—ax)

Z nu, (xt"" - z nxu, (x)t" - z nu, (X" = z xu, (Xt" - Z 2u, (X" + (2a+1-ax)
n=0 n=0 n=0 n=0 n=0

Now equating the coefficient of t" on both sides we get,

(n +1)un+l(x) - nXun (X) - (n _1)un—l(x) = Xun (X) + 2un—1(x)
(n +1)un+1(x) - (n +1)un—l(x) = (n +1)Xun (X)

U, (x)—u, ,(x) = xu,(x)
This is required result.

Theorem 3.2: Prove that
Uy (X) =xu, (X)+u,(xX)+u,,(x), n>1 (3.2)

Proof: By (3.1), we have

U, (X)—u, ,(x) =xu,(x), n>1.

Differentiating both sides with respect to X, we get
u'n+1(><) — U5 (X) = XU, (X) + U, (%),

(X) =xu (x)+u (x)+un L (x).

n+1

Theorem 3.3: Prove that
nu (x)=xu (x)—2u ,(x),n>1 and xu_,(X)=(n+2u,,(x)—2u (x), n>1.

Proof: By generating function of generalized Fibonacci polynomials, we have
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Zu (0" =[a+(2a+1-axqt](1-xt -t )
Differentiating both sides W|th respect to t, we get

> nu, (0" = (2a+1-ax)(1-xt —tz)f1 +[a+(2a+1-ax)t](x+2t)(1-xt —tz)f2 (3.3)
n=0
Differentiating both sides with respect to X, we get

Zu (xt" =[a+(2a+1- ax)t](l Xt—t )zt—at(l_xt_tz)‘l
iu'n (0t"* =[a+(2a+1-ax)t](1-xt —tz)f2 ~a(l-xt —tz)f1

> u 00 +a(1-xt-t7) = [a+ ar1-ant(L-xt-tt) (3.4)

n=0

Using (3.4) in (3.3), we get

inun(x)t“‘l=(2a+1—ax)(1—xt—t2)_1+ X+ 2t {iun(x)t“ Tra(l-xt—t )‘1}

n=0 n=0

inun(x)t“‘l=(2a+1—ax)(1—xt—t2) (x+2t iun(x)t“‘l+a (x+2t)(@-xt—t*)™
n=0

n=0
Now equating the coefficient of " on both sides, we get
nu_ (x) = xu, (x)+2u_,(X). (3.5)

Again equating the coefficient of t" on both sides, we get
(n+u,.,(x) =xu,_, (X)+2u(X),

Xu;Hl(X) = (n +1)un+l(x) - 2un (X) (3.6)

n+1 n+l

Theorem 3.4: Prove that

(n+Yu, (x)=u, ., (X)+u _,(x), n>1.
Proof: By (3.1), we have

U,,(x)—u, ,(x) =xu,(x), n>1.

Differentiating both sides with respect to X, we get

g (X) = Uy 5 (X) = XU, (%) + U, (%),

xu, (X)+u,(X)=u_,(x)-u_,(X). (3.7)
Using (3.5) in (3.7), we get

nu (x)—2u_,(x)+u (x)=u,,(x)—u_ ().

nu, (X)+u,(x) =u_,(X)+2u_,(X)—u,_,(x),

(n+1)un(x) = U;H_]_(X)-FU;]_]_(X). (38)
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Theorem 3.5: Prove that

xu, (X)=2u,,(X)—(n+2)u_(x), n>0.

Proof: Using (3.5) in (3.8), we get

(+2u, (9 =0, 00+ 5[, (0 - xu, (9],

2(n+1)u, (X) = 2u,,, () +[ nu, () = xu, ()],

XU, (X) =2u_,(x)+nu,(x)—(2n+2)u_(x),

XU, (X) =2u_,(X)+(n—2n-2)u, (x), (3.9)
Theorem 3.6: Prove that

(n+xu (x)=nu,_,(x)—(n+2)u__,(x), n>1.

Proof: Using (3.8) in (3.2), we get

(D) Uy (0 = XU, () = Uy, (0 = Uy () + U4 (X),

(n+2u,,; () = (N +1)xu, () = (N +DU,  (X) = Uy (¥) +U, 4 (X),

(N+1)uy, (¥) = (N + 1)U, (X) = Uy (X) = Uy (X) = (N+D)xu, (%),

U, () —(n+ 2)u () = (n-+)xu, (x),

(n+xu (x) =nu,_,(X)—(n+2)u (). (3.10)

Theorem 3.7: (Explicit Sum Formula) The explicit sum formula for generalized Fibonacci polynomials is
given by

u,(x) :aZ[n;kaHk. (3.11)

Proof: By generating function (2.5), we have

Zu (0" =[a+(2a+1-axt](1-xt - t)
=[a+(2a+1-ax)t][1- (x+t)t]"
=[a+(2a+1-ax)t] i(xﬂ)“t”
:[a+(2a+1—ax)t]i Zn:(njx”ktk

12,2,

=[a+(2a+1-ax)t

S N+ k! ngn+
:[a+(2a+1—ax)t]zz k!n!Xt 2
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NS

. 3
=[a+(a+1-ax)t]>] n;k!x”‘z‘(t”

= in - 2k!
lin-
u (X) _ az(n . kJXn_Zk'

k=0

Equating coefficients of t" on both sides, we get required explicit formula.

Theorem 3.8: For positive integern > 0 , prove that

n -n -n+1, .4
u,(x)=ax 2F1(7, Sy -n; 7) (3.12)
Proof. By explicit sum formula (3.11), it follows that
n[n/Z] n-k! -2k
Un(X):aX ;mx
Ly @, (),
=ax
= (-n), (-1 (1), k!
n k -n -n+1
ez ()5 e
=ax 2%
S (0. q
UG
. 2 2 ) 2 ) x2
=aX
k=0 (_n)k k!
n -n -n+1 -4
Hence, u (x)=ax 2F1(7, 5 ; —n; 7}
Theorem 3.9: For positive integern > 0 , prove that
> " . c c+1 n+l n+2_ t°
—=a(l-xt) ,F,| =, N+1; ; ; : 3.13
2.(0) .U (x) y=a(l=xt) " { L= (l_xt)zJ (3.13)

n
Proof. Multiplying both sides of the explicit sum formula by (C)n—| and summing between the limit
n!

n=0 to h =00, we obtain
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e aw o
;(C)nun(x)m_agkzok!n_ZK!( )n F
ShS n+k! ng n+2k
- e t
anzz(;kzok!n!n+2k!(c)”+2kx

ot St (5) (552 [ (] 0

e 555 o

o tn e c c+1 n+l n+2 t?
, —=a(l-xt) ,F| =, —=,n+L i ; '
Hence Z(c)nun(x) a( X) 3 2(2 n+ > (lXt)ZJ

Theorem 3.10 (Catalan’s Identity): Let U, (X) be the n" term of generalized Fibonacci polynomials, then

ulf(x) _un+r (X)un—r (X) = %[(Za—knur (X) - aur+1(x)]! n>rx1

(3.14)

Proof: Using Binet’s formula (2.5), we have

uw(x)-u,, (x)u,_ (X)=(Aa"+BB")> - (Ax"™" + BB )(Ax"" +BB"")
= AB(ap)' (2-a'B " —a ')
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2

=-AB(-1)""(a'- ")

_ (a.2 +3a+1) 1 n-r r r 2

=—(- _,B
()

=(a’ +3a+1)(—1)“‘r (;‘O; :?)2)

al’_ﬂl’ — (2a+1)ur(x)_aur+1(x) — (2a+1)ur(x)_aur+1(x)
Since o~ (2a+1)° —a(2a+1)-a’ (@’ +3a+1)

) ) B (_ )n—r ) ,
U000, 00U 09 = [, (9 -2, ] o>t

Theorem 3.11( Cassini’s Identity): Let U, (X) be the n" term of generalized Fibonacci polynomials, then

w2 (x)-u_,(x)u _,(x)=(-1)"(a*+3a+1),n>1 (3.15)

Proof. If r =1 in the Catalan’s ldentity, then obtained required result.

Theorem 3.12( d’Ocagne’s ldentity): Let U, (X) be the n™ term of generalized Fibonacci polynomials,
then

Uy XU (X) = U, (XU, (X)) = (=1)"[(2a+1)u,,_,(X)—au,_,,(x)],m>1,n>0,m>n.  (3.16)

Proof: Using Binet’s formula (2.5), we have

U (U, () —Up s (00U, (X) = (A" + BA™)(Aa™ + BE™) — (Aa™ + BS™)(Aa" + B")
— AB(amﬂml +an+1ﬂm _anﬂmﬂ _am+l n)

_ AB(Olﬂ)n [ﬂ(am—n _ﬂm—n)a(am—n _ﬂm—n )]
= AB(-1)" (B-a)(a™"-p"")

_(@®+3a+

D (o B g g
s (D" (a=p)(a""-p"")

(am—n _ﬂm—n)

=@’ +3a+1) (D" 5
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a"" =g (2a+Du, , (X)—au, ., (X) _ (2a+Du, () —au, 4 (X)
a-f (2a+1)’ ~a(2a+1)-a’ (@ +3a+1)

, We obtain

Since,

Uy OXOU 2 (X) = U, (XU (x) =(=1)"[(2a+1)u,, ,(X)—au,_,,,(x)],m=1,n>0,m>n.

Theorem 3.13 (Generalized ldentity): Let U, (X) be the n" term of generalized Fibonacci polynomials,

then
U, (U, (X) —u,_, (U, (x) = (@ +3a+1)(-1)" " [(2a+1u, (x) —au,,(X)][(2a+Du, ., () —au, ,.,..(X)], n>m=r>1

(3.17)

Proof: Using Binet’s formula (2.5), we have

Up, (X)Uy () =Up,_ (XU, (X) = (A + BS")(Aa" +BS") - (Aax™ " +BS™ " )(Aa™" +BS™),

= AB(a' —ﬂ'){%—%}

B (@ Y@ )
= AB(_l)*r (amﬂm)(ar _ﬂr)(ﬂn—pw _an—p+r)
= —AB(—l)"’ (amﬂm)(ar _ﬂr)(an—mr _ﬂn_pﬂ—)

_(a®+3a+l)

(- pB)

Using subsequent results of Binet’s formula, we get

(_1)—r (amﬁm)(ar _ﬂr)(an—pw _ﬁm_pH)

a'-p"  (2a+u,(x)—au,,(x) and "™t =g (2a+)u, ., (X)—au, ... (X)
a-p (@’ +3a+1) ' a-p (@’ +3a+1) '

Since,

U, (U, (X) —u,_, (u,,, (x) = (@ +3a+1)(-1)" " [(2a+1u, (x) —au, ,(X)][(Ra+Du,_,,, () —au, ,.,..(X)], n>m=r>1

The identity (3.13) provides Catalan’s identity, Cassini’s and d’Ocagne and other identities.
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4. CONCLUSION

In this paper, generalized Fibonacci polynomials
is introduced and presented some basic results.
Further some recurrence relations and identities
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