International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 1 Issue 5, July - 2012

Generalized **y**-Axiom for Advanced Engineering Applications

S.MANIMEKALAI¹, R.ANANDHI²

¹(Mathematics, Dr.N.G.P Arts and Science College, India)

²(Mathematics, Dr.N.G.P Arts and Science college, India)

ABSTRACT

In this paper we discuss the properties, characterization of γ - open sets, relations between regular open set, γ - open set and semi open set, γ - adherent, γ -closure of a subset A of a topological space, γ - irresolute function between topological spaces and equivalence relation γ - correspondence on the set of a topologies of a set X. The inter relationship between γ -axiom and various Separation axioms.

AMS(2000) Subject Classification No:primary:81T45,secondary:57N17

Keywords – y-adherent, y-axiom, generalized y-open set, y-irresolute, y-open set

1. INTRODUCTION

A subset A of a topological space (X, τ) is said to be γ -open iff there exists a regularly open set R such

that $R\subseteq A\subseteq cl(R)$ The Paper is organized as follows.In section (2) Properties and characterization of γ -open sets and

relations between regular open sets, γ -opensets and semi open sets.

It is interesting to note that

(1)The complement of a γ -open set is again a γ -open set.

(2)Neither the union nor the intersection of two γ -open sets is γ -open. In Section (3), γ -adherant, μ -closure of a subset A of a topological space, γ -irresolute function between topological space and equivalence relation γ -correspondance on the set

of a topologies of a set X.Section (4) is devoted to the study of γ -axiom due to Sharma[27]. Separation axioms γT_0 , γT_1 and γT_2

which are generalizations of separation axioms $T_{0\!,}T_1$ and

 T_2 respectively are studied. It is interesting to note in a topological space all the three axioms γT_0 , γT_1 and γT_2 coincide. Therefore these axioms are referred as μ -axiom. The interrelationship between μ -axiom and various separation axioms semi T_2 , semi T_1 , semi T_0 and

 γT_0 are discussed.

2.γ-open sets

Definition : 2.1

A subset A of a topological space (X, τ) is said to be γ -**open** iff there exist a regularly open set R such that R \subseteq A \subseteq cl(R). **Theorem :2.2** A subset A of a topological space (X, τ) is said to be γ -open iff there exist a regularly closed set F such that $int(F) \subseteq A \subseteq F$. **Proof**: Assume A is a γ -open set. Since A is γ -open, there exist a regularly open set R such that $R \subseteq A \subseteq cl(R)$. $R=int(cl(R) \Longrightarrow cl(R) = cl(int(cl(R)))$ \Rightarrow F= cl(int(F)). we getA⊆F Hence $int(F) \subseteq A \subseteq F$. Hence there exist a regularly closed set F such that $int(F) \subseteq A \subseteq F$ Let R=int(F) Consider int(cl(R))=int(cl(int(F)))=int(F)=R, Hence $R \subseteq A \subseteq cl(R)$ Hence A is γ -open. Theorem :2.3 A necessary and sufficient condition for a set A in a topological space (X,τ) is said to be γ -open is, $int(cl(A)) \subseteq A \subseteq cl(int(A)).$ **Proof**: Assume A is a γ -open set in (X, τ). Since A is γ -open, there exists a regularly open set R such that $R \subseteq A \subseteq cl(R)$. $int(cl(R)) \subseteq int(cl(A))$ $R \subseteq int(cl(A))$ $A \subseteq cl(R) \implies int(cl(A)) \subseteq int(cl(R))=R$ Hence $int(cl(A)) \subseteq R$ Hence $int(cl(A)) \subseteq A$ $R \subseteq A, R \subseteq int(A) \Longrightarrow cl(R) \subseteq cl(int(A))$ $A\subseteq cl(R), A\subseteq cl(int(A))$ Hence $int(cl(A)) \subseteq A \subseteq cl(int(A))$ Conversely assume $int(cl(A)) \subseteq A \subseteq cl(int(A))$ Let R = int(cl(A))Then $R = int(cl(A)) \subseteq A \subseteq cl(int(A)) = cl(R)$. Therefore $R \subseteq A \subseteq cl(R)$. Theorem :2.4 A is γ -open in a topological space (X, τ) iff A is semiopen as well as semi closed in (X, τ) .

International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 1 Issue 5, July - 2012

Proof :

Assume А is γ-open, we get $int(cl(A)) \subseteq A \subseteq cl(int(A))$ (by theorem 2..3) \Rightarrow $int(cl(A)) \subseteq A$ and $A \subseteq cl(int(A))$. $A \subseteq cl(int(A))$, for R = cl(A), we have $R \subseteq A \subseteq cl(R)$ $int(cl(A)) \subseteq A$, R=cl(A),for we have $int(R) \subseteq A \subseteq cl(A) = R$ Conversely assume A is semi open as well as semi closed. $R \subseteq A \Longrightarrow cl(R) \subseteq cl(int(A))$ Hence $A \subseteq cl(R) \subseteq cl(int(A))$ $int(R) \subseteq A \subseteq R$ for some closed set R $A \subseteq R \Longrightarrow cl(A) \subseteq R$ Then $int(cl(A))\subseteq int(R)\subseteq A$ Hence $int(cl(A)) \subseteq A \subseteq cl(int(A))$ Hence by theorem 2.3, we have A is γ -open. Corollary :2.5 A set A in a topological space (X, τ) is γ -open iff A=s-cl-s-int(A) and A=s-int-s-cl(A). **Remark : 2.6** By definition of a γ -open set it follows that every regularly open set is a γ -open set and every γ -open set is semi open set, i.e., R O (X, τ) \subseteq V O(X, τ) \subseteq S O \subseteq (X, τ) However the converse of the above statements are not true in general as shown by the following examples. Example: 2.7 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ Then $\{a,c\}$ is a γ -open set but not regularly open. Example : 2.8 Let $X = \{a, b, c\}$ & $\tau = \{\emptyset, X, \{a\}\}$ then the set $\{a,b\}$ is a semi open which is not γ -open. Theorem :2.9 A γ-open set A is if regularly open $A\subseteq int(cl(A))$ **Proof**: Assume A is γ -open, there exists a regularly open set 0 such that $O \subseteq A \subseteq cl(O)$ and $A\subseteq int(cl(A))$ $int(cl(A)) \subseteq O \subseteq A \Longrightarrow int(cl(A)) \subseteq A$ Hence A is regularly open. Theorem :2.10 A semi open set A is γ -open if $int(cl(A)) \subseteq A$ **Proof**: Since A is semi open, there exists an open set O such that $O \subseteq A \subseteq cl(O)$ Hence $A \subseteq cl(O) \subseteq cl(int(A))$ Hence $A \subseteq cl(int(A))$ By our assumption, $int(cl(A)) \subseteq A$ Hence $int(cl(A)) \subseteq A \subseteq cl(int(A))$ Hence by theorem 2.3, we get A is γ -open. Theorem :2.11 A semi closed set A is yopen if $A \subseteq cl(int(A))$ **Remark : 2.12** Neither the union nor the intersection of two yopen sets is γ -open. Example : 2.13 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ then $\{a,c\}$ and {b,c} are γ-open sets. But $\{a,c\} \cap \{b,c\} = \{c\}$ is not a γ -open sets. Example: 2.14

Let X={a,b,c} and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}$ then $\{a\}$ and $\{b\}$ are γ -open sets but {a}U{b}={a,b} is not a γ -open set. Theorem :2.15 The complement of γ -open set is again a γ -open set. **Proof**: Assume A is γ -open, there exists a regularly open set R such that $R \subseteq A \subseteq cl(R)$ Therefore we have $X-R \supseteq X-A \supseteq X-cl(R)$ Hence $int(X-R)\subseteq X-A\subseteq X-R$ R is regularly open, X-R is regularly closed. Hence by Theorem 2.2, and from (1), we have A is γ-open. **Theorem :2.16** If A is a γ -open set then (a) int(cl(A))=int(A) (b) cl(R)=cl(A), where R is a regularly open set such that $R \subseteq A \subseteq cl(R)$. Theorem :2.17 If A and R are regularly open sets and S is γ -open such that $R \subseteq S \subseteq cl(R)$, then $A \cap S = \emptyset$, implies $A \cap S = \emptyset$. **Proof** : Assume A and R are regularly open sets and S is γ --open such that $R \subseteq S \subseteq cl(R)$ Since $A \cap R = \emptyset$, therefore $R \subseteq X$ -A. Hence X-A is closed. Therefore $R \subseteq X$ -A implies $cl(R) \subseteq X$ -A $S \subseteq cl(R)$, we get $S \subseteq X$ -A. Hence $A \cap S = \emptyset$. Theorem :2.18 Intersection of a γ -open set S and regularly open set U is a γ -open set. **Proof**: Since S is γ -open, there exists a regularly open set R Case(i): $S \cap U = \emptyset$ Let $S \cap U = \emptyset$ It is obvious that then $S \cap U$ is a γ -open set. Case(ii): S∩U≠Ø we get $R \cap U \neq \emptyset$ (by Theorem 2.17) Since $R \subseteq S$, we get $R \cap U \subseteq S \cap U$ If $x \in S \cap U$, then either x belongs to U and R (or) x belongs to U and S-R. Case (a): x belongs to U and R. Then $x \in U \cap R \subseteq cl(U \cap R)$ Hence $U \cap R \subseteq S \cap U \subseteq cl(U \cap R)$ Therefore, $S \cap U$ is a γ -open set. Case (b): x belongs to U and S-R. Then x belongs to U and x is a limit point of R, since $S \subseteq cl(R)$. Let N be a γ -neighbourhood of x. Then N \cap U is a γ -neighbourhood of x and (N \cap U) \cap R $\neq \emptyset$ which implies N \cap (U \cap R) $\neq \emptyset$ Hence x belongs to $cl(U \cap R)$ Hence $R \cap U \subseteq S \cap U \subseteq cl(R \cap U)$ Hence $S \cap U$ is a γ -open set. **Theorem :2.19** If B is a subset of a topological space (X, τ) such that A \subseteq B \subseteq cl(A). Then B is γ open if A is γ -open. Hence the claim. **Definition : 2.20**

Vol. 1 Issue 5, July - 2012

Let (X, τ) be a topological space. Then the set of all regular open set forms a base for a topology τ on X called the semi regularization topology of X such that $\tau^* \subseteq \tau$. The space (X, τ^*) is called the semi regularization space of (X, τ) .

Definition : 2.21

A topological space (X, τ) is said to be **semi regular** iff $\tau = \tau^*$.

Lemma : 2.22

R O (X,)=int V O (X, τ), where int V O (X, τ) denotes the collection of the interior of γ -open sets in a topological space (X, τ) .

Proof:

Let (X, τ) be a topological space.

Claim: R O (X,)=int V O (X, τ)

Let $A \in int V O(X, \tau)$.

Then A=int(B) for $B \in int V O(X, \tau)$.

A=int(B)=int(cl(B)) (by theorem 2.1.16(a))

Therefore $A \in R O(X, \tau)$

HenceintVO(X,) \subseteq RO(X, τ)(1)

Then $R \in V O(X_{i})$, (by Remark 2.1.6)

Therefore
$$R \in int V O(X, \tau)$$

Hence R O $(X, \tau) \subseteq$ int V O (X, τ)(2)

From (1) and (2), we have R O (X, τ)=int V O (X, τ)

Remark : 2.23

By Lemma 2.22, we get that the collection of γ -open sets generates a topological space on (X, τ). Theorem :2.24

In a semi regular space (X, τ) , int $VO(X, \tau)$ generates topology τ on X.

Proof:

Assume (X, τ) is a semi-regular space.

To prove int V O (X, τ) generates topology τ on X. By Lemma 2.22 collection of int V O (X, τ) forms a base for a topology τ on X such that $\tau \subseteq \tau$. Since X is semi-regular, $\tau = \tau^{2}$

Hence int V O (X, τ) generates the topology τ .

Theorem :2.25

Let $A \subseteq Y \subseteq X$, where Y is a regularly open subspace of a topological space (X, τ). Then A \in V O (X, τ) implies A \in V O (Y, τ_{y}).

Proof:

Since A is γ -open in X, there is a regularly open set R in X such that $R \subseteq A \subseteq cl_x R$.

Hence $R \cap Y \subseteq A \cap Y \subseteq (cl_x R) \cap Y$

Hence $A \in V O(Y, \tau_y)$.

Theorem :2.26

If R is a regularly-open subspace of a topological space (X, τ) and V a γ -open set in X, then $R \cap V$ is γ -open in R.

Proof:

Assume R is a regularly open set in a topological space (X, τ) and V is γ -open set in X.

By Theorem 2.18, we get $R \cap V$ is a γ -open set in Х.

Since R is a regularly open subspace of X, we get $R \cap V$ is a γ -open set in R

(by theorem 2.18).

Theorem :2.27

Let Y be a subspace of a topological space (X, τ) and A \in V O (Y, τ_{y}). Then A \in V O (X, τ) iff Y is γ-open in X. **Proof**: Since $A \in V O(Y, \tau_y)$, we get $A \in V O(X, \tau)$ Hence Y is regularly open. Hence Y is a γ -open in Y. i.e., $Y \in V O(Y, \tau_y)$. $Y \in V O(X, \tau).$ Hence Y is γ -open in X. Conversely assume Y is γ -open in X. Since A \in V O (Y, τ_{v}), there exists a regularly open set R in Y such that $R \subseteq A \subseteq cl_v R$. Let R_1 be a regularly open set in X such that $R_1 \cap Y = R$. Then by Theorem 2.18, R is γ -open in X. Hence $R_1 \cap Y \subseteq A \subseteq cl_v(R_1 \cap Y) = \{cl_x(R_1 \cap Y)\} \cap Y \subseteq cl_x(R_1 \cap Y)$ implies $R \subseteq A \subseteq cl_x R$ (since $R = R_1 \cap Y$) By applying Theorem 2.19, we have $A \in V O (X,$ τ). Hence $A \in V O(X, \tau)$. **Definition : 2.28** A subset M of a topological space (X, τ) is called a γ -neighbourhood of x \subseteq X if there exists a

 γ -open set V in X such that $X \in V \subseteq M$

Theorem : 2.29

Let Y be a subspace of a X and A be a γ neighbourhood of x in Y. Then A is a γ neighbourhood of x in X iff Y is γ -open in X.

3.γ-irresolute functions

Definition : 3.1

A function f:X \subseteq Y is said to be γ -irresolute iff for any γ -open set V of Y, $f^{-1}(V)$ is γ -open in X. Theorem: 3.2

An almost-continuous and almost-open mapping f: $X \subseteq Y$ is γ -irresolute.

Theorem: 3.3

An identity mapping on a topological space (X, τ) is γ -irresolute.

Definition : 3.4

A point x in a topological space (X, τ) is said to be γ -adherent of a subset G of X if every γ -open set containing x has a non empty intersection with G.

Definition : 3.5

The set of all y-adherent points of a set G is called γ -closure of G or the intersection of all γ open sets containing G is known as y-closure of G and denoted as γ -cl(G).

Theorem: 3.6

If A is a subset of a topological space (X, τ) , then

 $A \subseteq s \text{-cl}(A) \subseteq \gamma \text{-cl}(A) \subseteq \delta \text{-cl}(A).$

Proof:

Since every regularly open set is γ -open and every γ -open set is semi open, the Theorem follows.

Definition : 3.7

A subset A in (X, τ) is said to be δ_{v} - closed if $A = \gamma - cl(A)$.

Remark : 3.8

Two different topologies τ_1 and τ_2 on a set X may have same class of

 $\gamma\text{-open sets}.$ This leads to define the notation of $\gamma\text{-}$ correspondence.

Definition : 3.9

Two topologies τ_1 and τ_2 on a set X are said to be γ –correspondent if V O (X, τ_1) = V O (X, τ_2).

Example : 3.10

Let X={a,b,c} and $\tau_1 = \{\emptyset, \{a\}, \{b,c\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{c\}, \{a,c\}, \{b,c\}, X\}$, then V O (X, τ_1) = V O (X, τ_2).

Theorem : 3.11

The relation of γ -correspondence on the collection of all topologies on a set X is an equivalence relation.

4.γ**-axiom:**

Definition : 4.1

A topological space (X, τ) is said to be γT_0 if for each pair of distinct points x,y of X there exists a γ -open set G containing x but not y (or) a γ -open set T containing y but not x.

Definition : 4.2

A topological space (X, τ) is said to be γT_1 if for each pair of distinct points x,y of X there exists a γ -open set G containing x but not y (or) a γ -open set H containing y but not x.

Definition : 4.3

A topological space (X,τ) is said to be γT_2 if for each pair of distinct points x, y of X there exists a γ -open set G and H such that $x \in G, \ y \in H$ and $G \cap H = \emptyset$

Theorem: 4.4

For a topological space (X, τ) the following are equivalent.

- a) X is γT_0
- b) X is γT_1

c) X is γT_2

Proof:

Let (X, τ) be topological space. Let x , $y \in X$ such that $x \neq y$. Since X is γ -T₀, i.e., $x \in G$ and $y \notin G \Longrightarrow x \notin$ X-G and $y \in X$ -G Let X-G be H. Then $y \in H$ also $G \cap H = \emptyset$ Hence for $x \neq y \in X$ there exists γ -open set G containing x but not y and a y-open set H containing y but not x. Hence X is γT_1 . Assume X is γT_1 Let x , $y \in X$ such that $x \neq y$. Since X is γT_1 , there exists a γ -open set G containing x but not y and a γ -open set H containing y but not x. Since $x \in G$ and $y \notin G$, we get $x \notin X$ -G and $y \in$ X-G. Let H=X-G. Then H is a γ -open set since G is a open set. Also $G \cap H = \emptyset$ Hence there exists γ -open sets G and H such that $x \in G, y \in H \text{ and } G \cap H = \emptyset$

Therefore X is γT_2 .

As γT_2 axiom is stronger than γT_0 axiom, the result follows.

Remark : 4.5

The three axioms γT_0 , γT_1 , γT_2 coincide. Hence we shall refer the three axioms as γ -axiom. **Definition : 4.6**

A topological space (X, τ) is said to be γ space if for each pair of distinct points x , y of X there exists a γ -open set G containing x but not y.

Proposition : 4.7

A γ -space X is semi T₂.

Proof:

Since every γ -open set is semi open, we have X is semi T_2 .

Example: 4.8

Let $X=\{a,b,c,d\}$, and $\tau =\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{b,c,d\}, X\}$. Then X is a semi T₂ space but not a γ -space.

Remark: 4.10

(i) Since every γ-space is semi T₂ and semi T₂ implies semi T₁, we get every γ-space is semi T₁.
(ii) Every semi T₁ space need not be a γ-space.
Example : 4.11

Let X={a,b,c,d}, and $\tau = \{\emptyset, \{a\}, \{c\}, \{a,c\}, \{c,d\}, \{a,c,d\}, \{b,c,d\},X\}$. Then the space X is a semi T₁ space which is not a γ -space.

Example : 4.12

Let X={a,b,c} and $\tau = \{\emptyset, \{a\}, X\}$. Then X is a semi T₀ space but not a γ -space.

Proposition :4.13

Every rT_0 space is a γ -space.

Proof:

Let X be a rT_0 space.

Then for each pair of distinct points x, y of X there exists a regularly open set G containing x but not y.

Since every regularly open set is a γ -open set , G is a γ -open set.

Then for each pair of distinct points x , y of X there exists a $\gamma\text{-open}$ set G containing x but not y.

Hence X is a γ -space.

Hence every rT_0 space is a γ -space.

Remark: 4.14

The converse of proposition 4.13 is not true.

Example : 4.15 Let X={a,b,c,d}, and $\tau = \{\emptyset, \{a\}, \{b\}, \{a,b\}, X\}$. Then X is a γ -space but not rT₀.

Remark : 4.16

The concepts of a space being a $\gamma\mbox{-space}$ and $T_0\mbox{-space}$ are mutually independent.

Example: 4.17

Let $X=\{a,b,c\}$, and $\tau = \{\emptyset,\{a\},\{a,b\}, X\}$. Then X is a T₀-space but not a γ -space.

Example: 4.18

Let $X=\{a,b,c,d\}, \quad \tau = \{\emptyset, \{a\}, \{b\}, \{a,b\}, X\}.$ Then X is a γ -space but it is not a T₀-space.

Remark: 4.19

The axiom of γ -space is independent of the T₁-axiom.

Example : 4.20

Let X be countable set, $\tau = \{\emptyset, X, A\}$ where A \subset X such that X-A is finite.

Example: 4.21

Let $X=\{a,b,c,d\}$ and $\tau =\{ \emptyset,\{a\}, \{b\}, \{a,b\},\{d\}, \{a,d\}, \{b,d\}, \{a,b,c\}, \{a,b,d\},X\}$. Then X is a γ -space but not T_1 .

Theorem: 4.22

A space X is a γ -space iff each singleton set in X is δ_{γ} -closed.

Proof:

Let X be a γ -space.

Let $x, y \in X$ such that $x \neq y$.

Since X is a γ -space, there exists a γ -open set containing y but not x.

Then $y \notin \gamma$ -cl{x}.

Hence γ -cl{x} \subseteq {x}

Therefore $\{x\} = \gamma - cl\{x\}$.

Hence $\{x\}$ is δ_v -closed.

 $Conversely \ let \ x \neq y \ \in \ X.$

Then by the hypothesis, {x} and {y} are $\delta_{\rm v}\text{-}$ closed.

i.e., $\{x\} = \gamma \operatorname{-cl}\{x\}$ and $\{y\} = \gamma \operatorname{-cl}\{y\}$.

Therefore $y \notin \gamma$ -cl{x} and $x \notin \gamma$ -cl{y}.

Hence there exists a γ -open set containing x but not y.

Hence X is a γ -space.

Theorem: 4.23

The necessary and sufficient condition for a space X to be a γ -space is that for each $x \in X$ there exist a γ -open set U of X containing x such that the subspace U is a γ -space.

Theorem : 4.24

Every regularly open subset Y of a $\gamma\mbox{-space X}$ is a $\gamma\mbox{-space}.$

Proof:

Let Y be regularly open subset of a γ -space X. **Claim:** Y is a γ -space.

Let $x, y \in X$ such that $x \neq y$.

Then $x \neq y \in X$.

Since X is a γ -space, there exist a γ -open set G containing x but not y.

Hence $G \cap Y$ is a γ -open set in Y (by Theorem 2.26), containing x but not Y.

Hence Y is a γ -space.

Theorem: 4.25

If f is a γ -irresolute function from a space X to a γ -space Y.Then X is a γ -space.

Theorem :4.26

The product of two γ -spaces is a γ -space.

CONCLUSION

This paper is an attempt to generalize μ -open sets due to Sharma [25] to fuzzyTopological spaces.

 μ -open sets and μ -axiom due to Sharma[25,26] are analyzed. μ -open sets, its properties

and characterizations are analyzed.

 μ -adherent, μ -closure of a subset A of a topological space, μ -irresolute function between topological

spaces and the relation μ -correspondence on the set of the topologies on a set X are analyzed.

separation axioms μT_{0} , μT_{1} and μT_{2} and their equivalence in topological spaces are discussed. Properties and characterizations of μ -spaces are analyzed.

REFERENCES

 Andrijevic.D- Semi pre open sets., Mat, Vesnik 38(1986), 24-32

[2] Azad, K.K – On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity. Journal of Mathematical analysis and Applications., 82(1981), 14-32.

[3] Balasubramaniam.G and Sundaram.P -On some generalizations of fuzzy continuous functions., fuzzy sets and systems., 86(1997), 93-100.

[4] Caldas.M , Jafari.S and Noiri.T - On some classes of sets via $\boldsymbol{\theta}$ -generalized open sets ., Mathematica, Tome., 49(72)(2007), 131-138.

[5] Cameron, D.E- Properties of s-closed spaces., Proc.Amer.Math.Soc. 72(1978), 581-586.

[6] Chang,C.L- Fuzzy topological spaces., J.Math.Anal.Appl, 24(1968), 182-190.

[7] Crossky,S.G and Hildebrand,S.K- semi topological properties., Found.Math 74(1972)., 233-254.

[8] Dontchev.J- Topological properties defined in terms of open sets^{*}., Yatsushiro T_0 topological conference., 23-24 August 1997, Japan.

[9] Ganguly.S and Saha.S- A note on semi open sets in fuzzy topological spaces., fuzzy Sets and systems., 18(1),(1986), 83-96.

[10] Hong-Yan Lia and Fu-Gul Shi- Some separation axioms in continuity in fuzzy bitopological spaces., fuzzy sets and systems., 79(2)(1996), 251-256.

[11] Jiling Cao, Maximillan Ganster and Lvan Rilly-On generalized closed sets., Topology and its Applications., 123(1)(2002), 37-46.

[12] Kuratowski.C.,- Topology., Acadamic Press. New York., 1(1966).

[13] Lelley, J.L- General Topology., Van Nostrand Prienceton N.J.(1995)

[14] Levine.N-Semi open sets and semi continuity in topological spaces., Amer Math Monthly., 70(1963), 36-41

[15] Levine.N-Generalized closed sets in topology, Rand Circ.Math.Paleromo, 2(19)(1970), 89-96

[16] Maheshwari, S.N and Prasad.R- Some

new separation axioms., Ann.Soc.Sci.,

Bruxelles., 89(1975), 395-402.

[17] M.A and Abd Ellah Mahmoud,F.S., Fath Alla, S.M- Fuzzy Topology on fuzzy set, fuzzy continuity and fuzzy semi separation axioms.,

Applied Mathematics and computation., 153(1) (2004), 127-140.

[18] Malghan,S.R and Benchalli,S.S- On new separation axioms., The J.of Karnataka University Sci., 23(1978), 38-47.

[19] Mashhour, A.S Abd EI-Monsef, M.E and EI-Deeb, S.N-On precontinuous and

weak precontinuous mappings., Proc.Math. and Phys.Soc.Egypt., 51(1981). [20] Mathew, Sunil.U and Johnson,T.F-Generalized closed fuzzy sets and simple extension of a fuzzy topology., J.Fuzzy Math., 11(2)(2003), 195-202.

[21] Navalagi,G.B- Semi precontinuous functions and proper generalized semi preclosed sets in topological spaces., International Journal of Mathematics and mathematical science., 29(2) (2003), 85-93

[22] Nijasad.O- On some classes of nearly open

sets., Pacific J.Math 15(1965), 961-970.

[23] Nouh,A.A- On Separation axioms in

fuzzy bitopological spaces., fuzzy sets and systems ., 80(2)(1996), 225-236.

[24] Sanjay Tahiliani- A study on some spaces related to β -open sets ., Note di Mathematician 27(1)

(2007), 145-152.

[25] Sharma,V.K- μ-open sets., Acta Ciencia Indica., 2(2006), 685-690.

[26] Sharma, V.K- μ-axiom., Acta Ciencia Indica., 33 (2007), 1807-1809.

[27] Singal,M.K and Nitti Prakash- Fuzzy preopen set and fuzzy preseparation axioms., Fuzzy sets and systems., 44(2)(1991), 273-281.

[28] Thakur.S.S and Malviya.R- Semi open sets and

semi continuity in fuzzy bitopological spaces.,

Fuzzy sets and systems., 79(2)(1996), 251-256.

[29] Zadeh,L.A- Fuzzy sets., Information and control., 8(1965) 338-353.

International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 1 Issue 5, July - 2012