ISSN: 2278-0181

ICONNECT - 2017 Conference Proceedings

GC-MS Analysis of Pentatropis Microphylla

^{1*}Kalaivanan C, ¹Assistant Professor, Department of Chemistry, K. Ramakrishnan College of Technology, Tiruchirappalli

³Kokila S. ³Assistant Professor. Department of Microbiology, Chennai Medical College Hospital & Research Centre (SRM Group), Tiruchirapplli

Abstract— Background

The present study was aimed to determine the presence of biomolecules in the ethanolic leaves extract of Pentatropic microphylla **Materials and Methods**

Pentatropic microphylla leaves extract was used. Gas Chromatography Mass Spectrum equipment used for identification and determine the bio active compounds. Results

The GC-MS results have shown the different type of secondary metabolites. A total of 28 bio active compounds were identified by GR-MS. Out of 28 compounds 2 compounds highly potent 1,6-Anhydro-á-D-glucopyranose (28.7332%) and Propane, 1,1,3-triethoxy (25.9192%) respectively. Conclusion

From the results, it is evident that Pentatropic microphylla contains various phytocomponents and is recommended for further evaluation of its anti diabetic or anticancer activity. Key words: Pentatropic microphylla, 1,6-Anhydro-á-Dglucopyranose, Propane, 1,1,3-triethoxy

INTRODUCTION

Thousands of secondary plant products have been identified and it is estimated that thousand of these compounds still exist. Since secondary metabolites from natural resources have been elaborated with in living system, they are often perceived as showing more "drug-likeness and biological friendliness than totally synthetic molecules" making those good candidates for further drug development (Koehn 2005).

microphylla **Pentatropis** belongs to Asclepiadaceae twining, perennial herb. Leaves are 1-3.5 cm long, 0.5-2.5 cm wide broadly oblong or ovate elliptic.

Plant material - Pentatropis microphylla leaves was collected in Tiruchirappalli District of Tamil Nadu.

PLANT SAMPLE EXTRACTION

The samples were cleansed through tap water and air dried at room temperature for 3 weeks and grounded into powder. The 20gm dried powder material was extracted successively using ethanol solvent to soxhlet extractor. The

²Sundhararajan A, ²Assistant Professor, Department of Biochemistry, Chennai Medical College Hospital & Research Centre (SRM Group), Tiruchirapplli

> ⁴Ahmed John S. ⁴Professor. PG & Research Department of Botany, Jamal Mohamed College (Autonomus), Tiruchirappalli

crude extract was stored at 40 C until use. Take 2 mg of crude extract to dissolve 5ml of absolute alcohol for few Minutes and then filtered through Whatman filter paper No.1, before filtering, the filter paper along with sodium sulphate is wetted with alcohol. The filtrates are then concentrated by bubbling nitrogen gas into the solution and reduce the volume to 1ml. The extract contains both polar and non-polar phytoconstituents.

GC MS ANALYSIS

GC-MS analysis was carried out on a GC Clarus 500 Perkin Elmer system comprising a AOC-20i auto sampler and gas chromatograph interfaced to a mass spectrometer (GC-MS) instrument employing the following conditions. Column Elite-5ms fusedsilica capillary column (30mmx0.25mm ID x 1µ M df, composed 5% Phenyl 95% dimethylpolysiloxane), operating in electron impact mode at 70 eV helium (99.999%) was used as carrier gas at a constant flow of 1ml/min and an injection volume of 0.5 µ 1 was employed (split ratio of 10:1) injector temperature 250°C, ion source temperature 280 °C. The oven temperature was programmed from 110 °C (isothermal for 2min), with an increase of 10°C/min, to 200°C, then 5°C/min to 280°C, ending with a 9min isothermal at 280°C. Mass spectra were taken at 70 eV, a scan interval of 0.5 seconds and fragments from 45 to 450 Da. Total GC running time was 36 minutes.

IDENTIFICATION OF ACTIVE COMPOUNDS

Interpretation on mass spectrum GC-MS was conducted using the database of National Institute Standard and Technology (NIST) having more than 62,000 patterns. The spectrum of the unknown compound was compared with the spectrum of the known compound stored in the NIST library. The name, molecular weight and structure of the compounds of the test material were ascertained.

RESULTS AND DISCUSSION

The results were shown in Figure 1. Totally twenty eight compounds were identified in the ethanolic leaves extract of Pentatropis microphylla by GC-MS analysis. The

ISSN: 2278-0181

active principles were compared with standard library and identified. The active principles retention time (RT), molecular formula, molecular weight (MW) and concentration (%) are presented in the Table 1. Among the twenty eight compounds two compounds were identified as most prevailing compounds such us 1,6-Anhydro-á-D-glucopyranose (28.7332%) and Propane, 1,1,3-triethoxy-(25.9192%).

As many researchers reported that most of the biomolecules have anti microbial or anti diabetic activity. Since, there is no evidence or previous study conducted in this plant. Hence, the authors recommended further research to identify its anti diabetic or anti cancer activity.

Figure 1: Pentatropis microphylla Chromatogram

S.N o.	Peak Name	Retenti on time	Peak area	Peak area %
2	Ethanol, 2-propoxy-			
	Formula: C ₅ H ₁₂ O ₂ MW: 104	5.98	229568	1.5782
	Vinyl Ether			
	Formula: C ₄ H ₆ O	6.58	101218	0.6958
	MW: 70			
3	Pentane, 1,1-diethoxy-			
	Formula: C ₉ H ₂₀ O ₂	6.88	224878	1.5459
	MW: 160			
+	Glycerin Formula: C ₃ H ₈ O ₃	7.07	17364	0.1194
	MW: 92	7.07	17304	0.1134
5	Decane, 2,5,9-trimethyl-			
	Formula: C ₁₃ H ₂₈	7.73	190733	1.3112
	MW: 184			
6	Benzene, (1,1-			
	dimethylethoxy)- Formula: C ₁₀ H ₁₄ O	7.61	70437	0.4842
	MW: 150			
7	3,3-Diethoxy-1-propanol			
	Formula: C ₇ H ₁₆ O ₃	8.53	13328	0.0916
	MW: 148			
9	Benzeneacetaldehyde			
	Formula: C ₈ H ₈ O	8.67	87885	0.6042
	MW: 120 Propane, 1,1,3-			
	triethoxy-			25.919
	Formula: C ₉ H ₂₀ O ₃	8.93	3770368	2
	MW: 176			
10	Hexane, 1,1-diethoxy-			
	Formula: C ₁₀ H ₂₂ O ₂	9.20	29025	0.1995
11	MW: 174 Hydroperoxide, 1-			
11	methylbutyl			
	Formula: C ₅ H ₁₂ O ₂	9.83	28997	0.0031
	MW: 104			
12	4H-Pyran-4-one, 2,3-			
	dihydro-3,5-dihydroxy-6- methyl-	10.36	61812	0.1993
	Formula: C ₆ H ₈ O ₄	10.30	01012	0.1993
	MW: 144			
13	Tridecane			
	Formula: C ₁₃ H ₂₈	10.98	273151	0.4249
1.4	MW: 184		ļ	ļ
14	Salicylic acid, methyl ester			
	Formula: C ₈ H ₈ O ₃	11.13	1766373	1.8778
	MW: 152			
15	Pyrocatechol			12.142
	Formula: C ₆ H ₆ O ₂	11.23	210483	9
16	MW: 110		-	ļ
16	Dianhydromannitol Formula: C ₆ H ₁₀ O ₄	11.50	132329	1.4470
	MW: 146	11.50	134347	1.4470
17	Decane, 6-ethyl-2-			
	methyl-	14.42	2/0521	0.9097
	Formula: C ₁₃ H ₂₈	14.42	348531	0.9097
10	MW: 184			
18	3-Heptanone, 5-ethyl-4-			
	methyl- Formula: C ₁₀ H ₂₀ O	14.71	4179706	2.3960
	MW: 156			
19	1,6-Anhydro-á-D-			28.733
1)		16.33	347836	1 2X / 33

	Formula: C ₆ H ₁₀ O ₅			
	MW: 162			
20	diol, 2,5-dimethyl- Formula: C ₈ H ₁₈ O ₂ MW: 146	17.13	65379	2.3912
21	4-Tetradecanol Formula: C ₁₄ H ₃₀ O MW: 214	19.10	96666	0.4494
22	3,7,11,15-Tetramethyl-2- hexadecen-1-ol Formula: C ₂₀ H ₄₀ O MW: 296	21.10	547443	0.6645
23	Z-2-Dodecenol Formula: C ₁₂ H ₂₄ O MW: 184	21.43	137403	3.7634
24	3-Hexanol, 2,2-dimethyl- Formula: C ₈ H ₁₈ O MW: 130	22.79	567332	0.9446
25	Pentadecanoic acid, 2,6,10,14-tetramethyl-, methyl ester Formula: C ₂₀ H ₄₀ O ₂ MW: 312	23.12	116017	3.9001
26	Oxalic acid, allyl pentadecyl ester Formula: C ₂₀ H ₃₆ O ₄ MW: 340	24.61	122722	0.7976
27	Pentadecanoic acid, 2,6,10,14-tetramethyl-, methyl ester Formula: C ₂₀ H ₄₀ O ₂ MW: 312	25.61	39941	0.8436
28	Squalene Formula: C ₃₀ H ₅₀ MW: 410	31.89	769226	0.2746

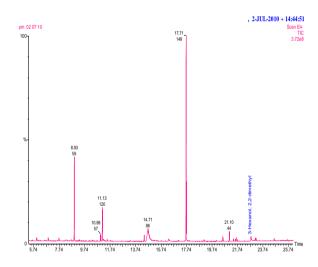


Figure 1: Pentatropis microphylla Chromatogram

REFERENCES

- Drahl C, Cravatt BF and Sorensen EJ 2005 Proteinreactive natural products. Angew Chem. Int. Ed. Engl. 44 5788-5809.
- [2] Ryu J, Kim JS, Kang SS Quality evaluation and components of *Euphoria longana*, Korean Journal of Pharmacognosy, Vol-33(3) 2002, 191-193
- [3] Sundhararajan A and Ahmed John S, Phytochemical Screening and Antibacterial Activity of *Pentatropis microphylla* against Human Pathogenic Bacteria, Journal of Eco Biology, Vol-27(1) 2010
- [4] Devi P, Nagarajan M, Christima AJM, Meera R, Merlin NJ, GCMS analysis of *Euphoria longan*, International Journal of pharmaceutical Research and development, Vol-8/OCT/004
- [5] Kirithikar KR and Basu BD, Indian medicinal plants. 2nd ed, Vol -,641