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 Abstract—Although fuzzy systems demonstrate their ability to 

solve different kinds of problems in various applications, there is 

an increasing interest on developing solid mathematical 

implementations suitable for control applications such as that 

used in fuzzy logic controllers (FLC). It is well known that, wide 

range of parameters is needed to be specified before the 

construction of a fuzzy system. To simplify in a systematic way 

the design and construction of a general fuzzy system, and 

without loss for generality a full parameterization process for a 

singleton type FLC is proposed in this paper.  The presented 

methodology is very helpful in developing a universal computing 

algorithm for a standard fuzzy like PID controllers. An 

illustrative example shows the simplicity of applying the new 

paradigm.  

 

Keywords—parameterization;fuzzy logic controller(FLC); 

singletone FLC  ; PID  

 

I.   INTRODUCTION 

 

Since Zadeh  introduced the basics of fuzzy sets [1] in 

1965, and the fuzzy logic concepts [2] in 1968; fuzzy logic 

has been successfully applied to a wide range of applications 

in various fields. Mamdani and Assilian [3] first applied the 

fuzzy logic control in to the control field, and since then 

fuzzy logic controllers have attracted a great deal of interest 

among many researchers.  Later on, fuzzy logic controller is 

proven to be an effected way in control engineering 

applications. 

There are mainly two types of a ruled base fuzzy system. 

One is the Mamdani type FLC [4], and the other is the 

Takagi-Sugeno (TS) [5]. Structure for the both types are the 

same, the only difference is related to the definition of the 

output in the consequent field of the rule base. TS type uses a 

crisp values for the output in the rule base, where it is a fuzzy 

linguistic in the case of Mamdani type.  

    Another type gaining a wider acceptance in control and 

industrial applications, which is called a singleton fuzzy 

controller [6] will be adopted and focused on by this paper.  

Although it defines a singleton membership function over the 

output, it is actually uses a constant real value called a 

singleton of the rule output, representing the position of the 

trivial output MF.  With this type several activation, 

accumulation and defuzzification methods yield identical 

results [7].  

 

As the field of fuzzy computing is an active research field, 

many methodologies are developed for constructing and 

computing the FLC. The designer of a fuzzy controller for 

certain control application is faced with the many design 

choices that the fuzzy set theory provides. Fundamental 

comparisons and suggestions are found in the literature, and 

they are well presented by [8-11,16-18]. These computing 

approaches are not unique; it is mainly due the lack of having 

a general good mathematical formulation for the fuzzy 

system construction algorithm.  

A solution for this problem may be solved if good 

parameterization process is developed.  The parameterization 

of a fuzzy system is insufficiently addressed in the literature.  

This work is a trial to solve this problem, and mainly devoted 

to present a fuzzy system for control applications, whether 

used in construction of the FLC, or in fuzzy system modeling 

or used in design and tuning of the FLC itself. 

 

II.      PROPLEM FORMULATION 

 

Fuzzy logic system (of which FLC is a special application) 

is a natural extension of fuzzy set theory to relations between 

fuzzy sets and rules. A FLC is characterized by four 

modules: [fuzzifier, inference engine, knowledge base, and 

defuzzifier].  A schematic representation of FLC is presented 

in Fig. 1.  

 
 

Fig. 1.  Basic structure of a FLC. 

 

The parameters of an FLC can be classified into four 

categories [12]: logical, structural, connective, and 

operational as can be shown in Table I.   

 

A. Parameterization Process of the FLC 

In the following, we will discuss the suggested FLC 

parameterization methodology specified for a singleton type 
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fuzzy system, from different aspects according to the 

classification of parameters summarized by Table I.  
                      

 

B. Parameterization of Input Membership Functions  

Consider the fuzzy system as shown in Fig. 2. which is a 

simplified form of Fig. 1 with input x and output u , 

where xn
x  is the fuzzy system input variables, 

un
u     is the fuzzy system output variables, and { xn , 

un } are the dimension of input and output variables. 

 
TABLE I.  PARAMETER CLASSIFICATION OF A FLC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.  A simplified input-output fuzzy block. 

 

The input membership functions are parameterized by: 

                                        


 ix nn

in   (1)               

where:    ),......2,1;max( xxi nimcn
i

   (2)            

and c  represents the standard number of parameters that 

define a certain type of MF, 
ixm is the number of fuzzy sets 

assigned for input ix . The i th row of in   includes all the 

parameters that characterize the MFs which are related to the 

i th input (shape, no. of sets, width of the fuzzy set, spacing 

and overlapping between the sets…). 

 

Example 1:    

For a fuzzy system with two inputs, each defined with three 

triangular MFs, then xn 2 ; 3
1
xm ; 3

2
xm  

and 3c .                            

A triangular MF is normally defined by three points (a, b, c). 

Therefore in  will be defined by 

92in  

 









232323222222212121

131313121212111111

cbacbacba

cbacbacba
in  (3) 

 

 As the triangular MF is characterized by its core (most fuzzy 

systems employ a normalized fuzzy sets to specify the entire 

partition of a fuzzy variables), a great number of reduction in 

the number of parameters defining the input MF can be 

introduced. Without loss of generality, this implementation is 

adopted in the work. Hence (3) will be reduced to:  

 









232221

131211

bbb

bbb
in  (4) 

  
C. Parameterization of Membership Degree  

In FLC computing, only the degree of membership is 

further processed. Often information is lost during this 

procedure, although it is not required that the MFs are 

normalized (i.e. their sum is equal to one for all x ), this 

property is called fuzzy partition and often is employed 

because it makes the interpretation and computation easier 

[7]. The degree of membership is obtained for the current 

input vector by:   

    i
x

m

xi
  (5) 

and, 

 .......,3,2,1),,;( )(

xx

i

inix nimx
ii

   (6)       

where .)(.; is a generalized MF producing degrees of 

membership for all fuzzy sets related to the input  ix   and 

            
ix  [

ixmk  ,......,.....,, 21 ] (7) 

is a vector of dimension
ixm , each element represents the 

degree of membership for fuzzy subset )(k  associated with 

input  ix  and evaluated using the input parameter  
)(i

in  at a 

given point in the range of the relative input. 

 

 

Example 2:  

Consider the previous example; membership degree   can 

be evaluated for input 1x  at a measured value 1cx  by using 

(7) as follows:  

                         )3,;(
11

)1(

1  xinTx mcx          

  3211
 x                 (8) 

where the index T  is put as an indicator targeting for using 

the triangular function in calculating the membership degree. 

     1]),[;( 11111111  kcbacxT  

 2]),[;( 12121212  kcbacxT  (9) 

       3]),[;( 13131313  kcbacxT  

The membership degree of each fuzzy set  )3,2,1( k  for a 

triangular MF is evaluated by:  

CLASS PARAMETERS 

LOGICAL REASONING MECHANISM, FUZZY 

OPERATORS, MEMBERSHIP FUNCTIONS 

TYPE, DEFUZZIFICZTION METHOD 

STRUCTURAL RELEVANT VARIABLES, NUMBER OF 

MEMBERSHIP FUNCTIONS, NUMBER OF 

RULES 

CONNECTIVE ANTECEDENT PART OF THE RULE, 

CONSEQUENT PART OF THE RULE, RULE 

WEIGHTS 

OPERATIONAL MEMBERSHIP FUNCTION VALUES 
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  (10) 

at least one value of the vector 
1x is not zero, otherwise the 

value of the input 1x  is not represented by any of the MFs 

(fuzzy sets) defined over the relative UOD.  

    For an  acceptable  (50%)  overlapping  between  MFs,  it  

is sufficient  to  parameterize  the inputs  by  their  cores  

only  as shown in Fig. 3.    

 

D. Parameterization of Rule Base Premise 

    Without loss of generality, completeness of the rule                       

 
Fig. 3.  Triangular input MF parameters represented by their cores. 

 

base (RB) will be assumed, by taking all the possibilities 

encountered by the predefined MFs over the input variables. 

This approach, which is adopted by the presented 

methodology, will cover both reduced and full RB 

representation by letting the certainty of each undefined rule 

to be zero, and set one otherwise.  

Also, most of FLCs used in control application are 

assumed to have fuzzy propositions connected with fuzzy 

and  connectives only. Thus the structure of the rules 

premise is defined by: 

                                 xR nn

rules


                         (11)                     

where Rn  denotes the total number of rules in the RB, and 

xn  represents the number of inputs used in constructing the 

FLC. Noting that  Rn  is defined by: 

 



x

i

n

i

xR mn
1

 (12) 

a row of rules , connects the index of the input fuzzy sets for 

each input variable defined by each rule, and hence reflects 

the degree of membership 
ix  function to be taken into 

considerations for evaluating the premise certainty (truth 

value) of the specified rule, defined some times in the 

literature as degree of fulfillment )(dof  or firing strength.  

Accordingly, the firing strength of the rule is performed 

using the generalized T-norm or T-conorm function given by: 

 

R

j

rulesxxxx

j njT
nxi

,..2,1),;,....,....,,( )()(

21
  (1

3)              

where (13) operates the T-norm or T-conorm between the 

elements of the vectors defined by rules . This operation 

represents the aggregation stage of the inference engine.   

 

Example 3  

Consider the same previous example, for which the premise 

part of the complete RB will be constructed as follows:                            







1

1
rules   

2

1
  

3

1
  

1

2
  

2

2
  

3

2
  

1

3
  

2

3
  

T






3

3
 









2

1

x

x
(14) 

                                                                                          

where the dimension of the RB according to (12) is 9Rn . 

Then, to compute the dof  for rule 6j , we will proceed 

as follows: 

1
st
 -Access (14) given j  equal six, then get the index for the 

MF defined for each input variable   2 k     for 

input 1x ,  and  3k   for input 2x . 

2
nd-

Apply the T-norm on the degree of memberships    

(
1x and

2x ) as given by (6), choosing product operator 

(or minimum) to represent the T-norm, then (13) gives 

the following: 

 
  );,( )6(6

21 rulesxxT     (15) 

 )()( 2312

)6( xx    (16) 

Hence, certainty of the 6
th

 rule is evaluated by the product of 

the 2
nd

 MF  value (defined by 2mf ) for input 1 (calculated at 

the measurement value of input 1x ) and the 3
rd

 MF  value 

(defined by 3mf ) for input 2 (calculated at the measurement 

value of input 2x ).  

 

E. Parameterization of the Rule Base Output 

After the dof  has been calculated for all the rules, and, for 

the inference engine process to be completed, it is required 

now to consider the outputs of the RB.  

Now, consider the output parameters vector by defining:   

 uR nn

out


  (17) 

where un  represents the number of controller outputs, Rn  

represents the dimension of the rule base.  

The i th  row within out   is defined by: 

           uiniji

i

out njhhh
u

,....2,1];[ 1

)(   .      (18)    

where  ijh  is  a constant  real value representing the place of 

the singleton MF selected from  a number  of 
jum  fuzzy sets 

defined over  the output  ju  at rule i . 

Since the output membership value is always one at the core 

and zero elsewhere, hence the outputs in the RB are always 

defined by their singletons which are represented by: 
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 kij ch    ;   k =1,2,3 ….  
jum   (19) 

Example 4 

For a singleton FLC structure with one output ( 1un ) 

defined over five MFs ( 5
1
um ), then the RB consequence 

of the previous example could be represented by the 

following parameterization vector: 

out   [ 11h   21h  31h   .  .  .  .     81h   91h ]
T

 (20)     

and, for five singleton MFs defined by: 

                 [ 1c    2c    3c    4c    5c ]    

then  out   could be set as follows: 

 out  [ 1c 2c 3c 2c 3c 4c 3c 4c 5c ]
T

 (21) 

for an arbitrary values of the output singleton MF cores, as 

given by    [ 1   7.0    0    7.0    1    ] 

then, the output  RB parameterization vector could be set  by:  

out [ 1  7.0  0  7.0  0  7.0  0  7.0  1]
T

 (22)                                                  

 
F. Parameterization of the FLC Output   

As a final stage for calculating the crisp output out of the 

FLC, a defuzzificztion stage is mandatory for this purpose. 

Many defuzzificztion formulas are developed [11], each is 

suitable for a certain application. For control applications it 

is found that using the center of area (COA), and a well 

known version named the center of gravity (COG) are highly 

recommended [8].    

The output U of the FLC is evaluated by: 

 









Rn

i

i

T

outU

1

)(


              

where    and out  

respectively. 

The generalized form of the defuzzified output can be written 

in the following form: 

 ),( outDU   (24) 

where D  can be any defuzzification formula applied to 

evaluate the crisp output  U .  

 

G. Parameterization of Input and Output Variables   
In closed loop systems as shown in Fig. 4., there are 

several signals which should be taken into consideration 

when the control signal is calculated.  The error signal 

between the set point   
y  and  the  measurement  output  

 
 

Fig. 4.  Typical FLC in a closed loop control system. 

 

 

variable y is observed, and given by: 

 )()()( * kykyke   (25) 

The main control objective is to keep the error signal as 

small as possible. Also, the rate of change in the error signal 

is given by: 

 )1()()(  kekeke  (26) 

with those two inputs { )(),( keke  } the FLC can perform 

the PD or PI type control depending on whether the output is 

taken to be  the pure control signal )(ku or the change in the 

control signal )(ku . Different PID like FLC structures can 

be generated using the above concepts in various forms. 

 
H. Parameterization of the Fuzzy Operators 

     There are multiple choices for representing the premise 

fuzzy conjunction and , and fuzzy disjunction or operators. A 

common choice is the (min-max) composition [13] and the 

(product-sum) composition [14]. It is found that representing 

the T-norm by any operator other than the product operator 

will introduce un-adjustable nonlinearities [11]. In this work 

product operator is used to implement both and conjunction 

and the T-implication.  

 

I. Parameterization of the scaling factors 

Although scaling factors is not part of the parameters for a 

fuzzy system, but practically, is highly acceptable to be part 

of the FLC structure. Those scaling factors related to the 

inputs Xg ( ee gg , ) and the outputs Ug ( uu gg , ) are 

playing an important role in tuning the fuzzy controller and 

for normalization the input and output UODs.  

   /1],[
11
 xx gUOD  

    /1],[
22
 xx gUOD  

                      /1],[
11
 uu gUOD  (27) 

Actually they are part of the pre-processing and post-

processing stages. 

 
III.   FLC COMPUTING ALGORITHM 

 

     Back to Table 1, a complete set of FLC parameters are 

defined and connected by systematic mathematical 

formulation suitable for the computing algorithm, and 

summarized as follows: 

1) The inference mechanism uses the singleton fuzzy system 

as given by the general RB structure: 

 IF   ( rules )  THEN ( out )  (28) 

2) Relevant inputs are { 1e , 1e } and outputs are 

{ 1u , 1u }.  

3) Number of MFs defined for each input and output is given 

by 
ixm and  

jum . 

4) Input MFs characteristics in are defined by (3), and     

output MFs are defined by singletons (19).    

5) The fuzzy operators are defined to use the product            

(23)               

are defined by (13) and (18) 
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      operator for calculating the rule premise certainty as   

      given by (13) and for calculating the implication as given 

by numerator  part of (23). 

6)  Number of rules is calculated by (12). 

7)  Antecedents of the rules are defined by rules (11). 

8)  Consequents of the rules are defined by out   (18). 

9)  Membership values are calculated by (7). 

10) Firing strength of the rule (dof) is defined by (14). 

11) Defuzzifications are performed using (24). 

Based on the parameterization process proposed above for 

a singleton FLC, the output of the FLC is given by: 

 ),,,,,( UXoutrulesin ggXFU   (29) 

 Fig. 5. shows the main components constructing the FLC 

generated according to the presented parameterization 

methodology.   

 

 
 

Fig. 5.  Components of a FLC computing algorithm. 

 

 

 

IV.    ILUSTRATIVE EXAMPLE (INVERTED 

PENDULUM PROBLEM) 

 

Consider the problem of balancing an inverted pendulum 

on a cart [15] as shown in Fig. 6. for which the dynamic 

equation is given by:  

 


















 




)(cos
1.1

1.0

3

4
5.0

1.1

)sin(05.0
)cos()sin(8.9

2

2

y

yyu
yy

y



   (30)  

 

 
where y  is the angle of the pendulum with respect to the 

vertical line and y  is the pendulum angular velocity  and u  

is the applied control  force.  

    To evaluate the presented methodology, a PD like fuzzy 

controller is to be constructed for the non-linear control 

system given by (30), using the developed singleton FLC 

computing algorithm. We will discuss the regulator problem, 

i.e. keeping the inverted pendulum balanced in a vertical 

position with reference to different initial positions of )0(y .  

 

A. FLC construction   

We will show in a systematic way how the presented 

parameterization methodology is applied for computing the 

control action u  using (29) as follows:  

1) The FLC relevant inputs are chosen to be yex 1  

and yex  2  with u  as the relevant only output, 

hence ;2xn  and 1un . 

2) The active UODs for e  and e  are chosen to be [
22

,  ] 

and [
44

,  ] respectively, and for the output 1u  is 

chosen to be [ 20,20 ] (i.e. the control signal 

boundaries).   

3) The input variables are to be partitioned into five 

triangular MFs satisfying symmetricity feature with 50% 

overlapping. While the output variable is chosen to have 

nine equidistant singleton MFs.   

 

     Hence:  

    9;5;5
121
 uxx mmm   

     And according to (2) for a triangular MF it gives: 3c  

and 15in . 

 
      

Fig. 6.    Inverted pendulum on a cart. 

 

4) in  is evaluated by (1), and its reduced version (4)  gives:   

                      













15.005.01

15.005.01
in  

    with normalization scaling factors evaluated by (27) as:       

               
     20/1;/4;/2

121
 uxx ggg  

5) rules  reflects the indices of the MFs involved in the  

construction of the rule premise, which is identified by 

the two inputs  1x  and  2x  respectively.   25Rn   is 

calculated by (13), and RB premise is generated by (12) 

as:  

     

T

rules 









5

5

123412345123451234512345

555533333444441111122222
   

6) The consequence out  of the rule base is constructed          

     according to (18), using the summation formula    defined  

by  passino [8],  gives the following: 
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[out 1  .75   .5   .25   0 | .75   .5   .25   0  -.25|  

              .5  .25   0   -.25 -.5| .25   0  -.25  -.5  -.75| 

0 -.25  -.5  -.75  - 1
T]   

1  

where the output  MFs are assumed to have the same 

partitions of the input  MFs, that is identified by:   

  { },,,, 54321 mfmfmfmfmf = {NL, NS, Z, PS, PL} 

If normalization is used, it will be in the form of: 

                                 {-1,-0.5, 0, 0.5, 1} 

     The rule base table generated by rules  and out  could  

be summarized as shown by Table II. 

  

7)  The firing strength 
i  is accomplished using (13), taking 

into consideration the choice of a triangular form MFs, 

hence (10) is used to evaluate the membership value at 

the given measurement points  
 

 

TABLE II. 

 

RULE-BASE TABLE FOR THE INVERTED PUNDULUM PROBLEM 

 
 

1cx  and 2cx  for 1x   and 2x   respectively, for the 

given in . 

 8) After calculating the vectors   and out , the COG 

formula as given by (23) is used for defuzzification, 

which will  calculate the final crisp value for the control 

action 1u   at instants k  based on a the  measurement 

values 1cx   and 2cx  , knowing that )(1 kecx   and 

)(2 kecx  . 

 
B. Simulation and results       

         Complete set of programs are written to simulate the 

presented computing algorithm using MATLAB 7.3. The 

differential equation for the inverted pendulum problem is 

solved by using the fourth order Runge-Kutta algorithm. The 

sampling time is taken to be 0.02 seconds.  

     The closed loop system output which is identified by the 

angular position y  is examined for different initial 

conditions of )0(y . The designed FLC shows a high 

stability regulation for the inverted pendulum system over the 

entire UOD defined for the controller input variables. The 

behavior of the controlled system is summarized by Fig. 7.  It 

is clearly shown that the effective margin of stability for the 

proposed simple FLC controller is capable to control back 

the pendulum to its vertical  position  from different  initial 

conditions bounded by  ]97.42,97.42[)0( y . 

 

VI.     CONCLUSION 

 

     A full parameterization process for a singleton fuzzy 

system is developed. It presents a systematic methodology 

for developing a singleton fuzzy logic controller for control 

applications.  The assumptions made by the parameterization 

process is highly simplified the FLC computing algorithm.  A 

well-known inverted pendulum problem  is  chosen  for  

evaluating  the capability  of  the 

 

 
 

Fig. 7. Inverted pendulum for different initial conditions using the proposed 

singleton FLC. 

 
proposed approach. The obtained result shows the 

effectiveness of the developed approach in terms of 

simplicity and transparency in setting the solution.   

   Although, the proposed methodology is tested for 

constructing the FLC, a current research now is initiated for 

developing a structural design methodology using soft-

computing controller based on the presented 

parameterization process. Both FLC structure and FLC 

parameters are to be designed and tuned in one single phase 

simultaneously.  
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