Fuel Cell Supplied SVPWM Controlled Inverter Fed PMSM Drive in an Electrical Vehicle

S. R. Chaitanya
PG student, EEE Dept.
GMR institute of technology, Rajam, Andhrapradesh,India

J. S. V. Siva Kumar
Sr. Assistant professor, EEE Dept.
GMR institute of technology, Rajam, Andhrapradesh, India.

M. Rambabu
Sr. Assistant professor, EEE Dept.
GMR institute of technology, Rajam, Andhrapradesh, India.

Abstract: This paper presents fuel cell converter based supply system and SVPWM controlled inverter fed PMSM drive in an Electrical Vehicle. Fuel Cell Electric Vehicles (FCEV) has been typically gaining popularity in electrical vehicle technologies due to their eco friendly nature cleanliness, high efficiency, and high reliability. These FCEV are “rechargeable energy storage system” (RESS) and they provides good acceleration and regenerative braking. While the output voltage of Fuel cell stack is very low so by providing proper closed loop boost converter then the FC converter system can be used as an eco friendly DC source in electrical vehicles and this closed loop control of boost converter is also used to maintain the converter output constant irrespective of the pressure levels in the fuel cell. In this paper PMSM drive is introduced in electrical vehicles to achieve high performance than induction motor like high speed, high torque and high efficiency. Gating signals are generated to the inverter by using SVPWM technique and the output of the inverter is fed to the PMSM drive through LC filter to reduce the ripples in inverter output.

Keywords: Fuel cell system, DC-DC boost converter, Space vector power width modulation, permanent magnet synchronous motor, Speed control, electrical vehicles.

I. INTRODUCTION

Reducing dependency on fossil fuels is a major challenge for most of the automotive industries. Hence the development of eco friendly electrical vehicles has gaining popularity in recent years and fuel cell technologies are expected to become an attractive power source for automotive applications because of their cleanliness, high efficiency, and high reliability. There are various fuel cells available for use in electrical vehicles but for electrical vehicles PEMFC is the primary preference due to their high power density with lower operating temperatures when compared to other types of FC systems [2]. But the problem in PEMFC is output power is in the range from a few watts to several hundred kilowatts and the open circuit voltage of the single cell is in the range of 0.6-1.2V. To get higher operating voltage & power many such cells are stacked and connected in the form of cascaded, series & parallel connection. Even though Output voltage of the fuel cell system is always low when compared with the common DC bus voltage which fed to the inverter. Hence interfacing the Fuel Cell and the DC/DC converter is used to boost the fuel cell voltage and to regulate the DC-link voltage [3].

In EV important requirements for electrical drive are low weight, small volume, high efficiency and low cost. Presently IM is the obvious electrical drive alternative for electrical vehicles. PMSM drive can achieve high performance than induction motor like high speed, high torque and high efficiency. But the main problem in PMSM drive is torque ripples. If such a PMSM drive is used in the EV applications then it does not give satisfactory operation. So minimization of these ripples and wide speed range variation also necessary for PMSM drive. This can be achieved by proper tuning of PI controller [4] and inverter gate switching sequences are controlled by Space Vector Pulse Width Modulation (SVPWM) [5].

II. PROPOSED SYSTEM

Fig1 shows the block diagram of fuel cell converter supplied SVPWM controlled inverter fed PMSM drive in electrical vehicles.
and error signal is generated. This error signal is taken as input to the PI controller and by proper tuning of the PI controller, voltage signals are generated and by proper modulation of voltages these signals are used in SVPWM signal formation.

II. MODELING OF PEM FUEL CELL SYSTEM

A fuel cell is a device that converts the chemical energy of a fuel and an oxidant directly into electricity. There are various fuel cells available for use in electrical vehicles. But for electrical vehicles, PEMFC is the primary preference due to their high power density with lower operating temperatures when compared to other types of fuel cell systems. The basic schematic diagram of PEMFC is shown in fig.2

In PEM fuel cell electrochemical process starts on the anode side. At anode H₂ molecules are comes out from flow plate channels and anode catalyst divides hydrogen into H⁺ and e⁻. Here H⁺ passes through membranes and e⁻ travel to cathode over external electrical circuit. At the cathode hydrogen protons H⁺ and electrons e⁻ combine with oxygen O₂ by use of catalyst, to form water H₂O and heat. Described reactions can be expressed using equations:

Anode side: \[H₂ → 2H^+ + 2e^- \]
Cathode side: \[\frac{1}{2}O₂ + 2H^+ + 2e^- → H₂O \]

Overall reaction:

\[H₂ + \frac{1}{2}O₂ → H₂O \]

To describe the static fuel cell voltage with respect current static model is the preferable. The static model of a fuel cell is modeled on the basis of the following empirical relationship

\[V_{fc} = E - V_{act} - V_{ohmic} - V_{conc} \]

Thermodynamic reversible potential (E):

\[E = E_0 - 0.85 \times 10^{-3}(T - T_0) + \left[\frac{R}{2f} T \log(\text{PH}_2) + \frac{1}{2} \log(\text{PO}_2) \right] \]

Activation over voltage (V_{act}):

To start the chemical reaction a certain proportion of energy is needed. This phenomenon produces a non-linear voltage drop called activation polarization. These losses occur on both anode and cathode. These losses are described by the tafel equation

\[V_{act} = \frac{RT}{\alpha f} \log \frac{I}{I_0} \]

Ohmic voltages (V_{ohmic}):

To flow electrons through the electrically conductive fuel cell components and to the flow of ions through the membrane causes a voltage drop, which can be expressed by Ohm’s law:

\[V_{ohmic} = I(R_{m} + R_c) \]

Concentration over voltages (V_{conc}):

At the catalyst layers the consumption of reactant gases leads to concentration gradients and thus changes the partial pressure of the reactants, which affects the fuel cell voltage. It is described by the following equation

\[V_{conc} = -\frac{RT}{Z_F} \log \left(1 - \frac{I}{I_{lim}} \right) \]

IV. FUEL CELL SUPPLIED BOOST CONVERTER

Converter which converts low level DC voltage to high level DC voltage called DC-DC Boost converter. DC/DC boost converters are best options for high step up and high switching frequency conditions. The switches are stressed on half of the total dc bus voltage. So low voltage rated switches are sufficient to obtain better switching and conduction performance. So efficiency and cost are better compared to conventional converters. It normally operates either in continuous conduction mode or in discontinuous conduction mode. In this paper, boost converter operates in Continuous Conduction Mode (CCM) is shown in fig.3

\[E \]
In this converter, the switching frequency is above 20 kHz so metal-oxide semiconductor field-effect transistors (MOSFET) is used as a switch. Switch is triggered by the pulse which is generated by PWM technique. Switch remains on during T_{on} cycle and off during T_{off} cycle so triggering is depends on the duty cycle. R is the resistor which is considering as a load. The selection of components like boost inductor value and capacitor value is very important to reduce the ripple generation for a given switching frequency.

CCM involves 2 step processes to get power transferred from source to load. Inductor stores the energy when the switch ‘S’ is turned ON, and its equivalent circuit is shown in figure 4. Stored energy gets transferred to load through diode when the switch ‘S’ is turned OFF and its equivalent circuit is shown in figure 5.

When boost converter is employed in open loop mode, it exhibits poor voltage regulation and unsatisfactory dynamic response. Hence, for output voltage regulation converter is generally provided with closed loop control. The block diagram of closed loop feedback dc-dc boost converter is shown in figure 7.

The main advantages of the closed loop boost converter are, it converts the unregulated voltage into desired regulated voltage by varying the duty cycle at high switching frequency lowering the size and cost of energy storage components and higher efficiency & reduced component count.

V. SVPWM CONTROLLED VSI

Schematic drawing of a two level inverter is shown in Fig 8. There are six switches in inverter. Where S1, S3 and S5 switches stand for upper switches while S2, S4 and S6 switches are down switches. Gating signals are provided by SVPWM technique. Three-phase output voltage waveforms are generated by various switching combination of the switches.

There is various pulse width modulation techniques have been developed to generate gating signals for inverter. These PWM techniques control the total harmonic distortion of output voltage and also control the load currents. The most popular PWM technique for inverter is Sinusoidal PWM (SPWM) technique. But in SPWM it is difficult to change the sampling of sinusoidal waveform for digital application. For this reason, space vector PWM (SVPWM) technique is recently showing popularity for inverter applications.
SPACE VECTOR PWM (SVPWM):

Two level inverter Switching states are shown in fig9. In two level inverter there are $8(2^3)$ possible states. (000) and (111) are zero state vectors and remaining all are active state vectors. Hence in two level inverter space vector diagram is divided into six sectors.(sector-A,B,C,D,E,F) and space vector diagram of two level inverter is shown in fig10.

![Image 9](image9.png)

Fig9. Two level inverter Switching states

While implementing the SVPWM for two-level inverters can following steps are considered:

- Sector identification,
- Calculate the switching times, T_1, T_2, T_0
- Find the switching states

![Image 10](image10.png)

Fig10. Space vector diagram of two-level inverter

A three-phase-voltage vector and angle can be expressed as;

$$V_{\text{ref}} = V_d + V_q = \frac{2}{3}(V_{an} + V_{bn}e^{\frac{2\pi}{3}} + V_{cn}e^{\frac{2\pi x}{3}})$$

$$\theta = \tan^{-1}\left(\frac{V_q}{V_d}\right)$$ (10&11)

Where, V_{an}, V_{bn} and V_{cn} are three phase voltages and V_{ref} rotates at angular speed of $w = 2\pi f$.

According to θ sector can be determined

<table>
<thead>
<tr>
<th>Angle (θ)</th>
<th>Sector where V_{ref} placed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^\circ \leq \theta < 60^\circ$</td>
<td>Sector A</td>
</tr>
<tr>
<td>$60^\circ \leq \theta < 120^\circ$</td>
<td>Sector B</td>
</tr>
<tr>
<td>$120^\circ \leq \theta < 180^\circ$</td>
<td>Sector C</td>
</tr>
<tr>
<td>$180^\circ \leq \theta < 240^\circ$</td>
<td>Sector D</td>
</tr>
<tr>
<td>$240^\circ \leq \theta < 300^\circ$</td>
<td>Sector E</td>
</tr>
<tr>
<td>$300^\circ \leq \theta < 360^\circ$</td>
<td>Sector F</td>
</tr>
</tbody>
</table>

b) Calculate the switching times:

V_{ref} is calculated by using two active voltage vectors and one zero voltage vector. If V_{ref} is located in Sector A, V_{ref} is synthesized by V_1, V_2 and V_0. According to this approach T_1, T_2 and T_0 can be calculated as;

$$T_1 = \frac{\sqrt{3}}{V_{\text{dc}}} V_{\text{ref}} T_s \sin\left(\frac{\pi}{3} - \theta\right)$$ (12)

$$T_2 = \frac{\sqrt{3}}{V_{\text{dc}}} V_{\text{ref}} T_s \sin\left(\frac{\pi}{3}\right)$$ (13)

$$T_0 = T_s - T_1 - T_2$$ (14)

If T_1, T_2 and T_0 switching times for all sectors can be generalized, they can be calculated by;

$$T_k = \frac{\sqrt{3}}{V_{\text{dc}}} V_{\text{ref}} T_s \sin\left(\frac{\pi}{3} - \theta + \frac{k-1}{3}\pi\right)$$ (15)

$$T_{k+1} = \frac{\sqrt{3}}{V_{\text{dc}}} V_{\text{ref}} T_s \sin\left(\theta - \frac{k-1}{3}\pi\right)$$ (16)

c) Finding Switching States:

Switching states for Sector A has been shown in Figure 11.

![Image 11](image11.png)

Fig11. Switching states for Sector A

<table>
<thead>
<tr>
<th>Switching state</th>
<th>Table2: switching states for two level inverter</th>
</tr>
</thead>
</table>

(This work is licensed under a Creative Commons Attribution 4.0 International License.)
Switching control signals produced by the SVPWM technique has applied to the inverter. Compare to the conventional SPWM inverter, SVPWM inverter is used to offer 15% increase in DC link utilization and low output harmonic distortions.

VI. CONTROL STRATEGY OF PMSM DRIVE

The control system of Permanent magnet synchronous motor mainly consists of two parts, the main drive circuit and the control circuit. The main drive circuit topology remains basically unchanged, while the study of the control system focuses on the control circuit and control strategies. The v/f control strategy of PMSM drive is shown in fig12.

Fig12. V/F control strategy of PMSM drive

The speed of PMSM drive has taken as feedback and by comparing this speed with reference speed error signal is generated. This error signal is taken as input to the PI controller and by proper tuning of PI controller voltage signals are generated and by proper modulation of voltages these signals are used in SVPWM signal formation. The main advantage of this method is angular speed can be estimated indirectly from the frequency of the supply voltage i.e. no sensors are needed. So cost is optimal one. The angular speed calculated from the supply voltage frequency according to can be considered as the value of the rotor angular speed if the external load torque is not higher than the breakdown torque.

VII. SIMULATION MODELS OF PROPOSED SYSTEM

Fig.13 (a) Static model of PEMFC

Fig.13 (b) Fuel cell supplied boost converter

Fig.13(c) FC converter supplied SVPWM controlled inverter fed PMSM drive

VIII. SIMULATION RESULTS

Fig.14 (a). Output voltage of fuel cell stack
By providing proper closed loop boost converter then the FC converter system can be used as an eco friendly DC source in different DC source applications. During transient and instantaneous peak power demands of electric vehicle (EV) FC are recover energy through regenerative braking because of converter system so it can be used as rechargeable energy storage system. After minimization of Torque ripples PMSM drive can be used in wide speed
range application so it is the one of the best alternative for IM drive. An auxiliary energy storage device such as a battery or super capacitor are installing in supporting with the FC then Same proposed system can be used in Hybrid electrical vehicles and power trains also.

APPENDIX

\[\alpha = \text{Charge transfer coefficient} \]
\[R = \text{universal gas constant,} \]
\[F = \text{faraday constant} \]
\[I = \text{fuel cell current density (A/cm}^2) \]
\[I_e = \text{exchange current density (A/cm}^2) \]
\[R_m = \text{membranes resistance (ohms)} \]
\[R_c = \text{conductive resistance (ohms)} \]
\[n = \text{number of electrons transferred per mole} \]

REFERENCES:

[5]. Dynamic Simulation of Electrical Machines using Matlab/Simulink by Chee- Mun ong.

About Authors:

S.R.chaitanya, presently pursuing M.Tech in Power and industrial drives in Department of Electrical and Electronical engineering, GMR Institute of Technology, Rajam, AP, India.

Mr.J.S.V. Sivakumar is currently associated as senior Assistant professor in Department of Electrical and Electronical Engineering at GMR Institute of Technology, Rajam, AP, INDIA. He has a total 9 years experience in industrial projects and academics.

Mr.M.Rambabu is currently associated as senior Assistant professor in Department of Electrical and Electronical Engineering at GMR Institute of Technology, Rajam, AP, INDIA. He has a total 10 years experience in industrial projects and academics.