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Abstract— The recent trend is to stripe data across the multiple 

cloud vendors to provide fault tolerance. But when the cloud 

fails permanently and lose all its data we recover it with the help 

of the other surviving cloud which provides data redundancy. 

The solution is to provide  a fault-tolerant multiple cloud 

storage using a proxy-based storage system called FTCloud, this 

achieves a cost effective repair for permanent double-cloud 

failure. FTCloud is built using network-coding based storage 

scheme called as FMSR(minimum-storage regenerating) codes 

technique, it provides more fault tolerance and data redundancy 

than the traditional techniques(e.g. like RAID6) and also use 

less repair traffic thereby incur less data transfer cost. The key 

feature of FMSR is that we provide encoding requirement 

relaxation by preserving the network coding benefits in repair. 

We implement this concept of FTCloud and deploy it on both 

local and commercial clouds. We check and validate that FMSR 

technique provides less cost and high performance in cloud 

storage operations like upload and download. 

 

Keywords - Regenerating Codes, Network Codes, Fault Tolerance, 

Recovery, Implementation, Experimentation. 

I. INTRODUCTION 

Cloud storage always provides the back up for data. But 

usage of single cloud storage gives rise to problems such as 

single point of failure, vendor lock in etc. The solution for 

this is to stripe data across different cloud providers. By 

making use of multiple cloud concept we can improve the 

fault tolerance of cloud storage. 

 

During striping of data, the existing methods perform well 

when some clouds fails for shorter period of time or for 

permanent failures there are many real life cases which tells 

us the occurrence of permanent failure and are not 

anticipated. Here in this view our work focuses on 

unexpected permanent cloud failure. When the cloud fails 

permanently we need to activate a repair to maintain the data 

redundancy and to have a fault tolerance. The repair 

operation retrieves the lost data from surviving clouds over 

the network and it  regenerates(reconstruct)  lost data into a 

new cloud. In the recent days the cloud storage providers 

charge the users enormously for keeping the data backup, so 

moving the data across cloud require high monetary costs. It 

is very important to reduce repair traffic and also the 

monetary cost due to the data migration. 

Regenerating codes concept is proposed to repair traffic for 

storing the data in a distributed storage system redundantly. 

Every node can refer to some simple storage device, a cloud 

storage provider  or a storage site. The regenerating codes are 

formed using the network coding concept, wherein the nodes 

themselves perform the encoding operation and send the 

encoded data. While repair is taking place, the surviving node 

encode the data stored in it and send the encoded data to new 

node which regenerates the lost data. The advantage of 

regenerating code is that it require less repair traffic than the 

existing methods with better fault-tolerance level. The 

extensive study on regenerating codes are carried out in 

following contexts( [14], [16], [29], [34], [41], [50], [51], 

[55]–[57]). But regenerating code's practical performance 

will always remain uncertain. The main key challenge for the 

deployment of regenerating codes in existing system require 

that the storage node itself perform encoding operation 

during repair. To make the regenerating codes portable to any 

cloud storage services, we need to assume only the thin-cloud 

interface where the storage node should only support the 

standard read/write functionalities. This helps us to know 

how practically we can deploy the regenerating codes in 

multiple cloud storage. 

Here in our work, we present  you the design and 

implementation of FTCloud, a proxy-based storage system 

designed for providing fault-tolerant storage over multiple 

cloud storage providers. FTCloud interconnect different 

clouds and transparently stripe data across clouds. We also 

propose the first implementable FMSR codes. i.e. functional 

minimum storage regenerating codes. 

The FMSR code implementation provides double fault 

tolerance  and also has the same cost as that of traditional 

RAID based schemes but uses less repair traffic while single 

cloud failure. We particularly eliminate the need of encoding 

operations within storage nodes during repair, also preserves 

benefit of network coding by reducing the repair traffic. 

According to the survey made by us, this is the first study that 

shows the application of regenerating codes in the storage 

system and evaluates it practically. 

The main advantage of the FMSR codes is that it is non-

systematic which means that only the encoded data is formed 

by the linear combinations of the original data and will not 

keep the original data like that of traditional schemes. The 

FMSR design is mainly applied in two cases; 

(i) Where the data backup is maintained 

(ii) Where the whole data in the file should be restored 

rather than the lost data. 
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In real-life examples there are many organizations which 

store an enormous amount of data like even in petabyte scale 

using the cloud storage the case studies is provided in [4], [8], 

[43], [59]. In August 2012, Amazon further introduced 

Glacier [5], a cloud storage offering optimized data back-up 

for low cost with slow and costly data retrieval. We provide a 

solution in form of FMSR codes that  provide an alternative 

option for enterprises and organizations to store their data 

with the help of  multiple-cloud storage in a fault-tolerant and 

cost-effective manner. 

Our work is encouraged by the multiple cloud concept and 

is developed by keeping multiple cloud storage concept, the 

FMSR codes proposed would be applied in the distributed 

storage systems that are prone to failures. And it is also 

applied where network transmission bandwidth is limited. It 

is applicable where minimizing traffic is important which 

intern minimizes the overall repair time. 

 

Our projects contribution is as below. 

We are presenting a FMSR design by assuming the 

occurrence of double fault tolerance. Here we show that the 

FMSR can save  25% of repair cost when compared to 

RAID6, when 4 nodes are used. And it can also save up to 

50% when number of storage nodes increases. The FMSR 

codes also maintain same amount of storage overhead as that 

of RAID6 codes. FMSR can also be implemented in thin 

cloud settings as they do not require encoding during repair. 

Hence FMSR codes can be deployed in today's cloud 

services. 

• Here we let you know the implementation details of how 

the file objects can be stored through FMSR codes. 

Mainly we propose two-phase checking which conforms 

the concept of double-fault tolerance. This two phase 

checking ensures double fault tolerance through iterative 

repair of failure nodes. 

• The monetary cost analysis is done to show the 

effectiveness of repair cost compared to traditional 

approaches. 

• Here we conduct experiments on both local and 

commercial cloud settings. We ensure that our FMSR 

code implementation provides a small amount of 

encoding overhead that can be masked during file 

transfer over internet. This gives room for further 

research on FMSR codes in high-scale deployments. 

 

The content of paper is as follows. Section 2 concentrates 

on the importance of multiple cloud storage. Section 3, 

concentrates on how FMSR codes reduce repair traffic 

through an example.  Section 4, concentrates on 

implementable design of FMSR codes and analysis  of 

iterative schemes of FMSR design. Section 5, concentrates on 

the deployment of FMSR codes. Section 6, Concentrates on 

evaluation of RAID-6 and FMSR codes using both private 

and commercial cloud settings. Section 7, Reviews related 

work. And Section 8 concludes the paper. 

 

 

 

II. IMPORTANCE OF   REPAIR   IN   MULTIPLE- 

CLOUD STORAGE 

 

In this section, the discussion is on the importance of repair 

in cloud storage, mainly in the disastrous cloud failures which 

make the data to be lost permanently and is unrecoverable. 

Two types of failures are: 1) Transient failure 2) Permanent 

failure. 

 

Transient failure: Transient failure is nothing but the 

cloud returns to normal after some time of failure and none of 

the data is lost. The table A shows some of the real time 

examples of occurrence of transient failure in today's clouds. 

It shows how the failure may occur from several minutes to 

even several days. It highlights that even though the cloud 

provider like Amazon claims that it provides service with 

99.99% of availability[6], there are some raising concerns 

about this claim and the reliability of other cloud providers 

after Amazon’s outage in April 2011 [12]. The transient 

failures are common in the clouds, but they will be eventually 

recovered. Thus we need to deploy multiple cloud storage 

with more redundancy so that we can retrieve the data from 

other surviving clouds during the failure. 

 

Permanent failure: Permanent cloud failure is the one 

where if the cloud is failed; the data on the cloud will be lost 

permanently. This says that the permanent failure is more 

disastrous than transient failure. Though the permanent cloud 

failure is rare, there are many cases due to which they are still 

possible: 

 

• Data center may fail because of disasters. AFCOM [48] 

found that many data centers are not prepared for 

disasters. For example, 50% of the cloud services have 

no plans regarding the damage repairs after the 

happening of damage. It was reported that earthquake 

and tsunami in northeastern Japan in March 11, 2011 

knocked out several data centers there[48].  

 

• Data loss and data corruption. There are many 

examples where a cloud may accidentally lose some 

data[12],[40],[58]. Example, In Magnolia [40] half 

terabyte of data is lost. 

 

• Malicious attacks. The basic way of providing the 

security for data is to encrypt it before outsourced and 

put on cloud. If the outsourced data is attacked by virus 

or malware data is corrupted, which means though the 

data is encrypted confidential outside, the data inside is 

not useful. According to the study of AFCOM [48], 65 

percent of data centers have no plan or procedure to deal 

with cyber-criminals.  

 

Since the permanent cloud failure is not like transient 

failure where the cloud never returns back to normal, the data 

will be lost and is unrecoverable. So we need to repair it and 

reconstruct the lost data by making use of data available on 

other clouds to maintain the fault-tolerance. By the word 

repair, we mean to retrieve the lost data only from the 

surviving nodes and reconstruct the data to new cloud. 
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TABLE A 

 

Example for transient failures occurring in different cloud 

services. 

 

Cloud 

service 
Failure reason Duration Date 

Google 

Gmail 
Software bug [24] 4 days Feb 27-Mar 2,2011 

Google 

Search 

Programming error 

[38] 

40 

minutes 
Jan 31,2009 

Amazon S3 
Gossip protocol 

blowup [9] 
6-8 hours July 20,2008 

Microsoft 

Azure 

Malfunction in 

Windows Azure [36] 
22 hours Mar 13-14,2008 

 

 

III. MOTIVATION OF FMSR CODES 

 

Here in our concept, we are considering a distributed, 

multiple cloud storage setting from client's point of view, 

here the data is striped over multiple cloud providers. We are 

proposing a proxy-based design [1], [30] which interconnects 

the multiple cloud providers as shown in figure 1 (a). The 

proxy layer acts as an interface between client application 

and the clouds. If any cloud fails permanently, the proxy 

starts the proxy operation as shown in figure 1 (b). 

 

 
As you can see from the figure, the proxy takes the required 

data pieces from other surviving clouds, reconstructs the lost 

data and write it to new cloud. The repair operation doesn't 

involve any direct interactions between the clouds.  

 

Here we consider fault-tolerance based on the type of 

MDS(Maximum Distance Separable) codes. A given file of 

size M is divided into equal size native data chunks, this is 

later linearly combined to form chunks of code. When an 

MDS codes with (n, k) is used, the code chunks are then 

distributed over n (greater than k) nodes, where every storing 

chunks is of total M/k, such that the original file object may 

be reconstructed from the chunks contained in any k of the n 

nodes. This gives the opportunity to tolerate failures of any   

n-k nodes. This feature is the property of MDS. The main 

feature of FMSR codes is that the lost data chunks are 

reconstructed without downloading or reconstructing the 

whole file which means that we download very less file.  

Our paper considers multiple cloud settings with two levels 

of reliability: 1)Fault-tolerance 2)Recovery. Let us assume 

that multiple cloud storage is double-fault tolerance for 

example., RAID-6 and it provides data availability under 

transient unavailability of maximum two clouds. So we set 

k=n-2. Hence the client can always access the data until two 

clouds fail transiently, or due to any connectivity problem. 

Secondly, we consider single-fault recovery in multiple cloud 

storage, which tell that permanent cloud failure is less 

frequent. The main objective of our project is to minimize the 

repair burden during storage during data migration over cloud 

for permanent single cloud failure. 

 

The amount of outbound data being downloaded from the 

other surviving clouds during the single-cloud failure 

recovery is defined as repair traffic. We try to minimize the 

repair traffic for cost-effective repair .The inbound traffic is 

not considered (i.e., the data that is been written to a cloud), 

as it has no  charge for many cloud providers (see Table 3 in 

Section 6). 

 

Now we study the repair traffic involved in different schemes 

by an example. Suppose a file has to be stored of size M on 

four clouds, each cloud is viewed as a logical storage node. 

Let us now first consider conventional RAID-6 codes, which 

are double-fault tolerant. Based on the Reed-Solomon code 

[52] we consider a RAID-6 code implementation, as shown in 

Figure 2(a). Here, we divide the file of M into two native 

chunks (i.e., A and B) of size M /2 each and add two code 

chunks formed by the linear combinations of the native 

chunks. Suppose the Node 1 is down now, then the proxy 

must download  same number of chunks as in the original 

from other two nodes (e.g., B and A+B from Nodes 2 and 3, 

respectively). Then the surviving nodes, reconstructs and 

stores the lost chunk X on the new node. Hence it can be 

concluded as The total storage size is 2M , while its repair 

traffic is M. 

  

To reduce the repair traffic we Regenerating codes. The exact 

minimum-storage regenerating (EMSR) codes [57] is one 

among class of regenerating codes. EMSR codes maintains 

the  storage similar in size as in RAID-6 codes, so as to 

reduce the repair traffic; the storage nodes send encoded 

chunks to the proxy. Figure 2(b) illustrates the double-fault 

tolerant implementation of EMSR codes. The file to be 

uploaded is divided into four chunks, as shown in the figure 

and accordingly allocation of native and code chunks is done. 

If suppose Node 1 is down then to repair it, each surviving 

node sends the XOR summation of the data chunks to the 

proxy, which then reconstructs the lost chunks. The storage 

size of EMSR codes is 2M (same as RAID-6 codes), while 

the repair traffic is 0.75M which is 25% of saving (compared 

with RAID-6 codes). As the nodes will generate encoded 

chunks during repair, EMSR codes leverage the notion 

network coding [2].   

 

 

We now consider the double-fault tolerant implementation of 

FMSR codes as denoted in Figure 2(c). A file is divided into 
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four native chunks, and then constructs eight distinct code 

chunks P1… P8 obtained by performing different linear 

combinations of the chunks. Each code chunk has the same 

size M /4 . For recovery process  , any of the two nodes can 

be used  the original four native chunks. If Suppose Node 1 

proxy retrieves  one code chunk from each of the surviving 

node, so it   

3. let us  assume that  single-fault tolerance (i.e., k = n − 1) 

and single-fault recovery, according to the theoretical results 

of [16], it is shown that traditional RAID-5 codes [45] have 

the same data redundancy and same repair traffic as FMSR 

codes. 

 
(c) FMSR codes 

 
Fig. 2. Examples of repair operations in different codes with n = 4 and k = 2. All 

arithmetic operations are performed  over the Galois Field GF(28). 

 

 Three code chunks each of size M/4 is ˈdownloaded.  Then 

the proxy regenerates two code chunks 𝑃1′  and  𝑃2′  by 

performing of three code chunks. Note that  𝑃1′ and  𝑃2′  are 

still linear combinations of the native chunks. The proxy then 

writes 𝑃1′ and 𝑃2′  to the new node. The storage size in 

FMSR codes is 2M (it is as in RAID-6 codes), even though 

the repair traffic is 0.75M , which is similar to that of the  

EMSR codes. A FMSR codes is that encoding is not 

performed during repair of nodes. 

 

 In order to generalize double-fault tolerant we make use of 

FMSR codes for n storage nodes, a file of size M is divided 

into 2(n - 2) native chunks, and it is used to produce 2n code 

chunks. Then two code chunks of size 𝑀/2(𝑛 − 2) will be 

stored in each node. Thus, the total storage size is 𝑀𝑛/(𝑛 − 2). 

In order to repair a failed node, downloading of  one chunk 

from each of the other  n−1 nodes, so the repair traffic is 

𝑀(𝑛 − 1)/2(𝑛 − 2) . In contrast, for 𝑀𝑛/(𝑛 − 2) RAID-6 codes, 

the total storage size is also   , when   the repair traffic is 

having the value as  M . Whenever n is large, the FMSR 

codes can save the repair traffic by close to 50%.   

 

Note To access a single chunk of the file, download and 

decode method is necessary. FMSR codes are non-

systematic, as they keep only code chunks but not native 

chunks. The complete file for that particular chunk. This is 

opposed to systematic codes (as currently existing in the 

traditional RAID storage), where native chunks are placed. 

FMSR codes are acceptable for long-term archival 

applications, the read frequency is typically low and also, to 

restore backups, it is good to retrieve the entire file rather 

than a particular chunk [14]. 

               This paper considers Reed-Solomon codes the 

baseline for RAID-6 implementation .This repair method 

involves reconstruction of complete  file first, and can also be 

applicable for all erasure codes in general. Recent studies 

[35], [62], [63] proves that data reads can be reduced 

specifically for XOR-based erasure codes. Consider  an 

example, reading of the data can be reduced by 25% 

compared to that of reconstructing the whole file [62], [63]. 

Although such approaches can achieve FMSR codes, which 

can save up to 50% of repair traffic, the use of efficient XOR 

operations can also be practical interest.   

 

FMSR CODE IMPLEMENTATION 

 

Let us now present the details for implementing FMSR codes 

in multiple-cloud storage. FMSR codes has three operations  

on a particular file object as follows:- (1) file upload; (2) file 

download; (3) repair. Each cloud repository is viewed as a 

logical storage node. In a thin-cloud interface [60], such that  

the storage nodes (i.e., cloud repositories) requires only  to 

support basic read/write operations. Thus, we expect that our 

FMSR code implementation is compatible with today's cloud 

storage services. 

One of the key property of FMSR codes does not require the 

lost chunks to be exactly reconstructed, but instead, we 

regenerate code chunks that are not necessarily identical to 

those originally stored in the failed node during repair, as 

long as the MDS property holds. A two-phase checking 

scheme is proposed, which ensures that the   on all code 

chunks nodes always satisfy the MDS property, and hence 

data availability, even after iterative repairs. Here in this  

section, the importance of the two-phase checking scheme is 

been analyzed. 

 

 

4.1 Basic operations 

 

4.1.1 File Upload: 

To upload a file F , the first step is to divide the file into k(n - 

k) equal-size chunks, indicated by (Fi)i=1,2,···,k(n−k).  Then 

encode these k(n - k) native chunks into n(n - k)code chunks, 

denoted by (Pi)i=1,2,···,n(n−k).  Each Pi is formed by using a 

linear combination of the k(n − k)   native chunks. we let EM 

=[αi,j ]  be an n(n − k) × k(n−k) encoding matrix for some 

coefficients  αi,j (where i = 1, . . . , n(n − k) and j = 1, . . . , 
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k(n − k)) in the Galois field GF(28). We call a row vector of 

EM an encoding coefficient vector (ECV) , which contains 

n(n − k)   elements. We make use of ECVi  to denote the ith 

row vector of EM. We compute each Pi by the product of 

ECVi and all  the native  k(n−k) αi,j Fj  for 

chunks 𝐹1, 𝐹2 … , 𝐹𝑘(𝑛 − 𝑘), i.e., Pi = ∑ αi, jFj
𝑘(𝑛−𝑘)
𝑗−1  for 

i=1,2,..,n(n-k).where all arithmetic operations are performed 

over GF(28).The code chunks are evenly stored in the n 

storage nodes, each having (n-k) chunks and we store the  

complete  EM in a metadata object that is then replicated to 

all storage nodes (see Section 5). There are many ways of 

constructing EM, as long as it passes two-phase checking (see 

Section 4.1.3).Note that the implementation details of the 

arithmetic operations in Galois Fields have been  extensively 

discussed in [25].where all arithmetic operations are 

performed over GF(28).  

 

4.1.2 File Download: 

  To download a file, first download the corresponding 

metadata object that contains the ECVs. From n storage 

nodes chose any k nodes , and download  the k nodes from 

code chunks. The ECVs of the  k(n − k)  code chunks can 

form a k(n−k)×k(n−k)  square matrix. If the MDS property is 

satisfied, then as the   according to the definition, the inverse 

of the square matrix should exist. Later  the inverse of the 

square matrix along  with the code chunks and obtain the 

original k(n − k) native chunks is multiplied.  The idea 

obtained here is that we treat FMSR codes as standard Reed-

Solomon codes, and we describe the technique of creating an 

inverse matrix to decode the original data ,  in the tutorial 

[46]. 

 

 

4.1.3 Iterative Repairs: 

Let us now take an example of  the repair of FMSR 

codes for a file F for a permanent single-node failure. Given 

that FMSR codes regenerates different chunks in each repair, 

one of the challenge is to ensure that the MDS property is 

achieved even after iterative repairs. In contrast to 

regenerating the exact lost chunks as in RAID-6, which 

guarantees the invariance of the stored chunks. A  two-phase 

checking heuristic is proposed as follows. Suppose that the 
(𝑟 − 1)𝑡ℎ repair is successful.    

and now let us consider how to handle the rth repair for a 

single permanent node failure (where r ≥ 1). We now first 

check if the new set in all storage nodes satisfies the MDS 

property after the rth repair. In addition to that  we also check 

whether any other new set of chunks in all the existing 

storage nodes still achieve  the MDS property after the(r + 

1)th repair, should another single permanent node failure 

occur (we call this the repair 

rMDS) property). Let us now describe the rth  repair as 

follows.  

 

 Step 1: The encoding matrix from a surviving node has to be 

downloaded. The encoding matrix specifies the ECVs for 

constructing all code chunks through linear combinations of 

native chunks. These ECVs are used later for two-phase 

checking. Since EM is embedded in a metadata object that is 

replicated, we can simply download   from one of the 

surviving nodes the metadata object. 

  Step 2: Now select one ECV from each of the  n − 1   

surviving nodes. Each of ECV in EM corresponds to a code 

chunk. We now pick one ECV from each of the  n -1 

We call those selected  ECVs to be ECVi1 , ECVi2 ,.…, 

ECVin−1   

 Step 3: obtain a repair matrix. We construct an (n−k)×(n−1) 

repair matrix RM =  [γi,j ],  where each element γi,j (where i 

= 1, . . . , n − k and j = 1, . . . , n − 1) is randomly selected in 

GF(28). Note that the idea of generating a random matrix for 

reliable storage is consistent with that in [49]. 

  Step 4: Calculate the ECVs for the new code chunks and 

reproduce a new encoding matrix. now multiply RM with the 

ECVs selected in Step 2 to construct (n-k)  new ECVs, 

Denoted by ECVi′ = ∑ γi, jECVi𝑛−1
𝑗−1  for i=1,2,…,(n-k). Then 

reproduce a new encoding matrix, denoted by EMˈ, that is 

formed by substituting the ECVs of EM of the failed node 

with its corresponding new ECVs. 

Step 5: Given EMˈ, check if both the MDS and rMDS 

properties are satisfied.  The MDS property is verified  by 

enumerating all (𝑛𝑘) subsets of k nodes see if each of their 

corresponding encoding matrices forms a full  rank. For the 

rMDS property, we verify for any possible node failure (one 

out of n nodes), we can collect one among of n−k  chunks 

from each of the other n−1  surviving nodes and then 

reconstruction of the  chunks is done on new node, such that 

the MDS property is maintained. The number of checks 

performed for rMDS property is at most n(n - k)n-1( )𝑘
𝑛 . If n is 

small, then enumeration complexities for both MDS and 

rMDS properties are manageable. If either of phases fails, 

then we return to Step 2 and repeat. We emphasize that Steps 

1 to 5 with the ECVs, so that their overhead does not depend 

on size of chunk. 

 Step 6:Here Downloading of the actual chunk data and 

regenerating the new chunk data. If the two-phase checking 

that is shown in the Step 5 succeeds, then we proceed with 

the process to download the n − 1 chunks that will  

correspond to that of the  selected ECVs shown   in the Step 2 

from the n − 1 surviving storage nodes to NCCloud. Also, we 

are  using the new ECVs computed in Step 4, we are also  

regenerating the  new chunks and upload them from 

NCCloud to a  new node. 

 

Remark: we can  simplify  the complexity of the two-

phase checking with that of the  proposed FMSR code 

construction that is being done  in our recent work [28]. And 

also our proposed construction will specify  the ECVs to be 

selected in Step 2 deterministically, and that will tests their 

accurty  (i.e., satisfying both the  MDS and rMDS properties) 

by checking it  against that a set of inequal-ities shown in the  

Step 5. This will also  reduces the complexity present in each 

of the iteration along with the number of iterations (i.e., 

number of times the Steps 2-5 are being  repeated) in process 

of generating a valid EMˈ. According to our present 

implementation of the NCCloud also includes the proposed 

construction. We also refer the readers to [28] for more 

details of the proposed construction. 
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4.2 Analysis 
 

The process of checking the rMDS property in each repair is 

very much necessary for the purpose  of maintaining the 

MDS property after all the iterative repairs done . We now 

show through  a counter-example that if a repair is checking 

only the MDS property but without checking the rMDS 

property, then in such cases the MDS property will be lost in 

the very next repair. We are also showing it through the  

simulations that our two-phase checking can even sustain 

many iterations of repairs in more than the general cases. 

 
Fig. 3. Counter-example: code chunks that satisfy the MDS property but not 

the rMDS property 

 

4.2.1 A Counter-Example 

 Here counter example shown in the figure 3is considered to 

show the importance of the rMDs property=4 and k=2 is 

same as that being the described in the figure2(c) .If suppose 

a linear combination is done for the code chunks P1, . . . , P8  

from the native chunks A,B,C and D as shown in the figure 

3,and these linear combinations are similar to that of te 

shortened even odd code IN[62].Verification of whether the 

code chunks P1, . . . , P8  satisfy the MDS properties easy i.e, 

reconstruction of the native chunks A,B,C and D can be done 

using the four chunks from any two nodes .But,we do not 

check whether it satisfies the RMDS property(as they do not 

satisfy, we shall see it later). 

 Now consider that node FMSR codes,if the basis of the 

FMSR codes fails ,ne chunk from each nodes 1,2,and 3 the 

repair selects(denote the chunks X,Y, and Z)and using them 

regenerate the new code chunks  P7ʹ AND P8ʹ,that will be 

stored in a new node(that will be stored in a new node 

4).Totally there are  2^3 = 8   possible selections of {X,Y,Z}. 

Lets consider one possible selections of{X,Y,Z}.There lets us 

use one possible selection{P1, P3, P5}. Now the new code 

chunks become E 

P7ʹ = γ1,1P1 + γ1,2P3 + γ1,3P5, 

P8ʹ = γ2,2P1 + γ2,2P3 + γ2,3P5, 

where γi,j (i = 1, . . . , n − k and j = 1, . . . , n − 1) are some 

random coefficients used to generate the new code chunks. 

Then we have 

P7ʹ = (γ1,1 + γ1,3)A + (γ1,2 + γ1,3)C, 

P8ʹ = (γ2,1 + γ2,3)A + (γ2,2 + γ2,3)C . 

Since P1 = A and P2 = B, we cannot reconstruct the native 

chunk D from P1, P2, P7ʹ, P8ʹ. The MDS property is lost 

because the chunks of Nodes 1 and 4 cannot be used to 

reconstruct the native chunks. Thus, the repair fails with this 

selection of chunks. 

The chunks of nodes 1 and 4 cannot be sed to reconstruct the 

chunks hence the MDS property is lost.in the selection of the 

chunks the repail fails due to this reason. 

Similar kind of the reasoning can be applied to the other 

possible selections of the chunks .The selection of the  eight  

possible selection of the chunks along with the set chunks 

that cannot be used anymore to rebuild the original file is 

shown in the table 2. 

 

TABLE 2 

 

Eight possible selections of chunks from surviving nodes for 

generating P70 and P80, along with the corresponding set of 

chunks that will fail to reconstruct the file. 

 

X, Y, Z 

Set of chunks that cannot rebuild the 

file 

   

P1, P3, P5 P1, P2, P70, P80 (Nodes 1 and 4) 

P2, P3, P5 P1, P2, P70, P80 (Nodes 1 and 4) 

P1, P4, P5 P3, P4, P70, P80 (Nodes 2 and 4) 

P2, P4, P5 P5, P6, P70, P80 (Nodes 3 and 4) 

P1, P3, P6 P5, P6, P70, P80 (Nodes 3 and 4) 

P2, P3, P6 P3, P4, P70, P80 (Nodes 2 and 4) 

P1, P4, P6 P1, P2, P70, P80 (Nodes 1 and 4) 

P2, P4, P6 P1, P2, P70, P80 (Nodes 1 and 4) 

 

MDS property after the repair. The above counter-example 

shows on  checking the MDS property only but not on how 

the rMDS property can lead to a failed repair. 

 

Simulations  

Simulations  is conducted to justify the rMDS 

property that can make an iterative 

repairs sustainable. Evaluation is done using simulations it is 

the overhead of our two -phase checking(steps from 2 to 5 of 

the repair).Here our  simulation is done on the 2.4GHz CPU 

core.  Firstly ,for different values of new consider the 

multiple rounds of repair and the argue in the addition to 

checking of the MDS property, and the rMDs property 

checking is required for the iterative repairs. Particularly, In 

each round ,we select a node randomly that has to be failed 

and then repairing the failed node . We consider a repair is 

bad if the loop of Steps 2 to 5 in two-phase been repeated 

over a threshold number of times but still no suitable 

encoding matrix is being obtained. In this simulation, we are 

varying the threshold of the number of loops for identifying a 

bad repair. Maximum of 500 rounds of repairs being carried 

out, and stop once bad repair. We are not considering the 

construction of [28] in this part of simulations to study the 

effects of the baseline 

 Figure 4 shows the number of rounds of repair that can be 

sustained when the rMDS property is whether checked or is 

not . It shows checking the or is not . It shows checking the 

rMDS property provides us to sustain more rounds of repair 

before seeing a bad repair. For example,if suppose that we set 

the thresholdas 20 loops. Then repair  can be sustained for 

500 rounds,  for different values of n (number of nodes) by 

checking the rMDS property, but a bad repair quickly (e.g., in 
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3 rounds of repair for n = 10) if we don’t check the rMDS 

property. Next we evaluate through simulations the time   of 

the two-phase checking, with the proposed FMSR code 

construction[28] that reduces the complexity. 

 In each round of repair,  randomly pick a node to be  failed 

and carry out the repair operation. Then  carry out the two-

phase checking (i.e., Steps 2 to 5), and measure the time 

required to generate an encoding matrix that satisfies both the 

MDS and rMDS properties. 

 Figure 5 plots the cumulative time of two-phase checking for 

50 rounds of repaig in log scale) for n =4  

 

 
Fig. 4. Number of rounds of repair sustainable without seeing 

a bad repair. n = 16. The checking process done takes the 

negligible time compared to that of the  actual repairs of even 

a 1MB file (see Section 6.2.2). consider for example, when n 

= 10, it takes only 0.02s to carry out 50 consecutive repairs 

(around 0.0004s per repair); even when the value of the n = 

16, it takes only 0.1s to carry out 50 consecutive repairs 

(around 0.002s per repair). Here observe that the range of n 

we consider following the stripe sizes used in many practical 

storage systems [47]. In order to reduce it further reduce the 

overhead, we can pre-compute the newly encoding 

coefficients for any possible node failure offline when the 

system is running as normal, and keep the obtained results to 

prepare for the next repair. 

 

4.2.3 Reliability Analysis 

Following the studies that is evaluating  the reliability of 

various erasure codes and replication (e.g., [20], [31], 

 
Fig. 5. The cumulative time needed by the checking phase 

(plotted in log scale) in 50 consecutive rounds of repairing  

from n = 4 to n = 16. 

 
Fig. 6.  Markov model for double-fault tolerant codes. 

 

 

we are comparing the reliability of FMSR codes and 

traditional RAID-6 codes with respect to the different failure 

rates with the help of  the mean-time-to-data-loss (MTTDL) 

metric, which is defined as the expecting time which has been 

elapsed till the original data will be unrecoverable. When 

MTTDL is not that effective to identify the qunatity the real 

reliability [26],in such case it remains a more adopted 

reliability metric of the storage community and we 

Make  use of  it only for the comparative study of different 

coding schemes with different repair performance also. 

 

MTTDL is being solved using the Markov model. Figure 6 

it shows the Markov model which is suitable for the double-

fault tolerant codes (i.e., k = n − 2), in which state i (where i 

= 0, 1, 2, 3) is denoting  the number of the failed nodes in a 

storage system. State 3 indicates  that there failed nodes are 

more than two in number and the data which is permanently 

lost. We are computing the  MTTDL which is  the expected 

time to move from state 0 (i.e., all nodes which are normal) to 

state 3. 

 

Here we are making an  assumptions in our analysis. For 

the sake of the simplicity, we are assuming  that node failures 

and repairing the process are indepen-dent events which  

follow an exponential distribution. But this assumption is 

imperfect in general [54], but which makes our analysis 

tractable and which has been used in previous studies [20], 

[31], [53]. Let it λ be the node failure rate (i.e., 1/λ is the 

expected time in which failure of a node occurs). hence, the 

transition rate from the state i to state i +1 is (n − i)λ, where i 

= 0, 1, 2. And also, consider µ1 and µ2 be the repair rates for 

that of the single-node and double-node failures, respectively. 

We are assuming  that the transfer network between the 

surviving nodes and that of the proxy is one of the major 

bottleneck (see the Section 3 for this formulation) and finding 
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the resulting repair rates. Assume S being the size of the data 

stored in each of the node (i.e., the total amount of original 

datathat is being stored is (n − 2)S) and B being  the network 

capacity between the surviving nodes and that of the  proxy. 

Now, considering the repair of a single-node failure. As 

shown in above  Section 3, for FMSR codes, the repair traffic 

is calculated as (𝑛 − 1)𝑆/2 and hence µ1=2𝐵/(𝑛 − 1)𝑆 

RAID-6 codes, the repair traffic is (n − 2)S and hence 

µ1=𝐵/(𝑛 − 1)𝑆, For the repair of a double-node failure, 

both 
  

 
Fig. 7. MTTDLs of FMSR codes and RAID-6 codes are (plotted in log 

scale) when the value of n = 10 and k = 8. 

 

 

Of the FMSR codes and that of the  traditional RAID-6 codes 

will resort to the conventional approach and also the 

reconstruction of  the lost data by downloading of the total 

amount of original data (i.e., (n − 2)S) from that of the 

remaining k = n−2 presting nodes. Both of them have 

µ2 =   𝐵/(𝑛 − 1)𝑆 We must now  evaluate the MTTDLs of 

the  FMSR codes and that of the  traditional RAID-6 codes 

for some of the specific parameters. Suppose that we fix n = 

10, k = 8, and S = 1TB. Figure 7(a) is showing  the MTTDLs 

for different values of λ from 0.1 to that of the 1 (in units per 

year) when the value of the  B = 1Gbps, while Figure 7(b)is  

showing  the MTTDLs for different values of B from 0.1 to 1 

(in units of Gbps) when the value λ = 0.5 is per year. Based 

on the settings that we have done, the MTTDL of FMSR 

codes is upto 50% to 80% lengthier than that of  the  

traditional RAID-6 codes because of their   higher repair rate 

for a single-node failure. Considering the example, with λ = 

0.5 per year and B = 1Gbps, the MTTDL of the FMSR codes 

is 76% longer. 

 

4.3 Discussions 
 

We here consider the  several open issues of the current 

design of FMSR codes, and then we would give  them as 

future work. 

 

Generalization of FMSR codes. Here we presently 

consider only an FMSR code implementation with the 

double-fault tolerance (i.e., k = n − 2). Its accuracy is being  

proven in our recent work [28]. When the value of the  

double-fault tolerance is the that of the default setting of 

current  enterprise storage systems (e.g., 3-way replication in 

the GFS [22]), it is not clear on how to generalize the FMSR 

codes for the different (n, k) values. In ad-dition to this, in 

practical cloud storage systems [31] while single-node 

failures are the most common failure patterns , it is  most 

interesting to study like  how to generalize the  FMSR codes 

to support the most effective repairs of concurrent node 

failures. 

 

Study of different reliability metrics. In this Section 

4.2.3, we are  comparing the reliability of FMSR codes and 

the conven-tional RAID-6 codes for the different failure 

rating  using that of the MTTDL metric. The  open issue for 

the  modeling the failure rate of a cloud repository. In the 

future works, we can  also plan to the conduct further  

analysis regarding the reliabilty using the more effective 

metrics [26]. 

 

Degraded reads. When the process of  reading the original 

data in failure mode is done then, we perform degraded 

reading, in which we are reconstructing the lost data of a 

failed node from the  available data on the other surviving 

nodes. In FMSR codes, we are always downloading  the same 

amount of original data by connecting to of the any k nodes 

(refer Section 4.1.2);  in case of traditional RAID-6 codes, the 

original amount of data is retrieved in order to recover the 

lost data. Thus, traditional RAID-6 and FMSR  codes retrieve 

the equal amount of data in degraded reads, when  FMSR 

codes have higher computational overhead in decoding (refer 

Section 6.2.1). Recent studies [31], [35], [53] improve the 

degraded read performance for erasure-coded data. we do not 

consider degraded reads in this work since FMSR codes are 

designed for long-term archives that are rarely read. 

 

IV. FTCLOUD DESIGN AND IMPLEMENTATION 

 

FTCloud is implemented as a proxy that connects user 

applications and clouds. It is designed on top of three layers. 

Firstly, the File System Layer which makes FTCloud as a 

mounted drive that can be easily interfaced with user 

applications. Secondly, the encoding and decoding functions 

are taken care by Coding Layer. Lastly, the read/write 

requests with clouds are dealt by Storage Layer.  

 

Every file is attached to a metadata object that is replicated 

at each repository. The metadata object includes the details of 

file and the information related to coding. 

 

Java is the key language to FTCloud’s implementation and 

the coding part is implemented through C. The file system 

layer is constructed on FUSE [21]. Both RAID-6 and FMSR 

codes are implemented by coding layer. The RAID-6 code is 

implemented based on the Reed-Solomon code [52] (as 

shown in Figure 2(a)) for baseline evaluation. zfec [65] is 

used to implement the RAID-6 codes. For fair comparison we 

make use of zfec’s optimization for implementation of FMSR 

codes. 

Multiple chunks that are generated by FMSR codes are 

stored on same repository which causes request cost 

overhead. In order to reduce it, aggregation of those chunks is 

performed before upload .Hence FMSR codes keep only the 

aggregated chunks per file object on each cloud like in 

RAID-6 codes. While retrieving a particular chunk, its offset 

within the combined chunk is calculated and a range GET 

request is issued. 
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FTCloud is deployed in one or more machines. Inorder to 

prevent simultaneous updates on same file we use 

ZooKeeper[32] that implements a distributed file-based 

shared lock. Pre-liminary evaluations is conducted in a LAN 

environment andthe overhead that could be caused by 

ZooKeeper is observed to make sure its minimal. Our focusis 

on deploying FTCloud on a single machine, and is mounted 

as a local file system. 

 

V. EVALUATION 

 

FTCloud prototype is used to evaluate RAID-6 codes as well 

as FMSR codes in multiple cloud storage. The data retrieval 

with two cloud failures is allowed by focusing on settingk = n 

− 2 for different values of n. 

 
Our goal is to discover the practical usage of FMSR codes 

in multiple cloud storage. There are two parts in  evaluation. 

Firstly, the comparison of the monetary costs when RAID-6 

and FMSR codes are used is performed. This is based on the 

price plans of today’s cloud providers. Secondly, response 

time performance of FTCloud prototype is evaluated on both 

local and commercial cloud provider. 

 

Summary of evaluation results. 

Our summary goes as below. Main importance is given to 

the monetary cost advantage of using FMSR codes over 

RAID-6 codes, on the other hand maintaining good response 

time performance. In case of monetary costs in normal 

operations, both RAID-6 and FMSR codes costs almost the 

same in operation of storage, and in the operation of repair, 

FMSR codes is ahead of RAID-6 codes because it saves a 

good amount of transfer comparatively.When it comes to 

response time, both FMSR and RAID-6 codes have 

comparable response time performance (within 5%) when it 

is deployed on a commercial cloud (Azure).The transmission 

performance of the Internet determines theresulting response 

time. 

 

6.1 Cost Analysis 
 

6.1.1 Repair Cost Saving 

 

Let us first analyze  saving the costs due to  repair. Table 3 

includes the price plans in each month for three major 

providers as of May 2013.  We analyse the cost based for 

more than 1GB/month data transfer within a limit of 

1TB/month of data usage. 

 

Looking at the analysis in Section 3, we could save 25-

50% of the traffic of download during storage repair. The size 

of the storage and the number of chunks generated per file 

object is same in both RAID-6 and FMSR codes. In the 

analysis, we have neglected two considerations in 

practicality: One, the size of metadata (Section 5). Two, the 

number of requests that are issued while repair. We prove 

that our argument of neglecting these consideration, also 

argue that the optimized calculations based only on file size 

are sufficient for real-time applications. 

 

Metadata size: According to ourimplementation, the size 

metadata for FMSR codes is within 160 bytes when n = 4 and 

k = 2, no matter what the file size is. When n is greater, 

example when n = 12 and k = 10, the  metadata size is  

 

 
still inside the range of  900 bytes. Main aim of FTCloud is to 

provide backups for long time(see Section 3), and to integrate 

with other applications used for backup. In order to save the 

overhead of processing, the backup applications that are 

existing (e.g., [19], [60]) combines small files into a larger 

data chunk.For instance, 4MB is the chunk size that is created 

by the default setting for Cumulus [60]. Hence, the overhead 

of metadata size is made negligible. Since the amount of file 

data stored by both RAID-6 and FMSR codes is same, they 

have much similar costs. 

of storage in normal usage. 

 

Number of requests: Observations of Table 3 says that, it 

is being charged for requests by some cloudproviders. The 

number of requests when retrieving data during repair is 

different for RAID-6 and FMSR codes. Suppose a file object 

of size 4MB is stored with n = 4 and k = 2. While repairing, 

RAID-6 code retrieves two chunks and FMSR code retrieves 

three chunks(see Figure 2). The overhead of cost due to the 

issue of GET requests for RAID-6  is equal to 0.171 percent 

and  for FMSR codes is  0.341%. Hence it is an insignificant 

0.17% increase. 

 

6.1.2 Case Study  

 

We now provide the conclusions for our analysis of cost 

using an enterprise use case. Our analysis is built on the case 

of Backupify, who is a cloud backup solution provider, 

founded in 2008 and used to store backups of amount that is 

in the range of terabytes to petabytes o  S3 and Glacier . To 

make our analysis simple, let’s assume that Backupify stores 

backups of worth 1PB in the cloud. And also the data is 

replicated over 10 clouds, with n = 10 and k = 8, it causes a 
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redundancy overhead of 25%. As we have been arguing 

above, both RAID-6 and FMSR codes causes same storage 

cost and data transfer cost, but FMSR code causes less repair 

cost comparatively to RAID-6 codes. Precisely, FMSR codes 

saves the cost by a percentage of 1–((n-1)/2(n-2))(see Section 

3), equal to 43.75%. In the following, considering two cost 

models. 

 

Regular-cost storage model.  

If terabytes of data needs to be stored, the pricing scheme 

used by cloud storage providers is a tiered scheme, which 

allows higher usage at lower rates. Table 4 poses a simplified 

tiered pricing scheme and used by both Amazon S3 and 

Windows Azure. This tiered scheme is used for most of our 

cost calculation. 

Coming to our case, the amount of data that is stored is 

1.25 petabytes, and $86,851 is the storage cost to be paid 

monthly for both RAID-6 and FMSR codes. Suppose a cloud 

repository fails permanently and then we run the operation of 

repair, then the amount of data downloaded by RAID-6 code 

and FMSR code is 1PB and 0.5625PB respectively. Hence, 

the repair cost for RAID-6 codes is $56,832, and that of 

FMSR codes is $33,894. Showing that FMSR code saves cost 

amount of $22,938. 

 

Low-cost storage model. 

We say that the monthly storage cost can be exceeded by 

the repair cost if a storage model of low cost is used 

alternatively. For example, Amazon Glacier [5] which uses 

the same data price of S3, charges a flat rate of $0.01 per GB 

of stored data, referring to the table 4, this is much cheaper 

than S3. But the drawback of using Amazon instead of S3 is 

that it consumes a longer time for the restore operation and is 

also more expensive. And also, if more than 5% of stored 

data is to be restored, Amazon charges a restore fee of $0.01 

per GB on monthly basis. 

 

According to this cost model, the monthly storage cost is 

reduced to only $13,107 for both RAID-6 and FMSR codes. 

However, the cost of repair for RAID-6 codes is $66,662, and 

that of FMSR codes is $39,137. Hence FMSR codes save cost 

by $27,525. 

 

We cannot say that the annual saving that is brought by the 

reduction in repair cost to be purely measured by the failure 

rate of a cloud storage repository, we note that in the last few 

years ,permanent data loss of varying degrees has occurred 

in cloud storage since its adopted by the masses popularly 

(e.g., [12], [40], [58], [64]). If we calculate that if complete 

repairs have to be made for every two year(average), this 

results over $10,000 of saving annually in our case. 

 

Concluding, we observe that in spite of cloud failures 

being rare, the monetary benefit gained by usage of FMSR 

codes in events of repair that is unexpected is important. We 

haven’t showed another consideration in practicality, which is 

data accumulation. According to our case study we assume 

that the amount of data stored is constant. But during times 

like, when customers are producing new data daily or when 

the number of customers using the storage service is 

increased, the amount of data is no more constant but grows 

along with the time in reality. As time passes, this larger data 

accumulation results in archive of larger size, thus making 

our monetary advantage in repair cost more emphasized. 

 

6.2 Response Time Analysis 
 

Our FTCloud prototype is deployed in real environments.  

The three basic operations that stands as a basis for us to 

evaluate the response time performance are, file upload, file 

download and repair, in two scenarios. In the first part, the 

time taken by the different FTCloud operations is analyzed in 

detail. In order to reduce the effects caused by network 

fluctuations, it is performed on a local cloud storage test bed.  

In the second part, we evaluate how actually FTCloud 

performs when deployed on a commercial cloud. Forty runs 

is the average of all results. Since our assumption, that the 

coefficients for repair are offline generated (see Section 

4.2.2), we do not take the time taken by two-phase checking 

into account for in the repair operation. Since the time 

consumed for checks is less comparatively to the overall 

operation of repair, it has limited impact on our results as 

shown in Section 4.2.2 

 
6.2.1 On a Local Cloud  

 

OpenStackSwift 1.4.2 [42] is the basis for object-based 

storage platform on which the experiments on local cloud are 

carried out. FTCloud is mounted on a machine which consists 

of  Intel Xeon E5620 processor with 2.4GHz speed  and  

RAM of size 16GB. This machine is bridged to an OpenStack 

Swift platform which is attached to a number of storage 

servers, and that each server would have Intel Core i5-2400 

and 8GB RAM. We create virtual cloud repositories by 

creating (n +1) containers on Swift, in which each container 

is equivalent to a cloud repository (out of them  one  is a node 

used as a spare during times of repair). Two experiments are 
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conducted on the local cloud. In the first experiment, we 

compare RAID-6 and FMSR codes when the values of n and 

k are 4and 2 respectively with file size being varied. 

Whereas, in the second experiment we perform the same 

comparisonbetweenRAID-6 and FMSR codes but this time 

with different values for n and k and file size being fixed. 

During the first experiment, the response times is tested 

under the three basic operations, i.e., file upload, file 

download, and repair operations of FTCloud with values as n 

= 4 and k = 2. We make use of eight files from that are 

generated randomly for 1MB to 500MB as the data set. The 

path of a repository that is chosen is set to a non-existent 

location to simulate a node failure in repair. We must notice 

that when it comes to repair, there are two types for RAID-6, 

and the type is selected based on the fact that whether the 

failed node contained a native chunk or a code chunk. Figure 

8 shows the response times of all three operations versus the 

file size. 

 

During the second experiment, the file size is fixed at 

500MB and now the response time is tested under the three 

operations again under four different pair of values for n and 

k as,  n = 4, k = 2 and n = 6, k = 4 and  n = 8, k = 6 and n = 

10, k = 8. Figure 9 poses the results of response time, in 

which each is decomposed into many key parts. 

 

Figures 8 and 9 show that the response time for RAID-6 

codes is comparatively  less than FMSR codes in operations 

of file upload and 

 

 

download, no matter what the values of n and k are. Using 

Figure 9, we show the overhead of FMSR codes over RAID-

6.FMSR codes show similar data transfer time as that of 

RAID-6 while uploading and downloading, this is because of 

having the same MDS property in them. However, there is a 

significant over head of encoding/decoding in FMSR codes 

over RAID-6 codes. For instance, in the case of n = 4 and k = 

2, while uploading a 500MB file,RAID-6 codes consumes 

1.53s to encode, whereas FMSR codes consumes 5.48s; in the 

operation of downloading the 500MB file, there is no 

requirement of decoding in the case of RAID-6 codes as there 

is availability of native, but FMSR codes consumes 2.71s for 

the decoding process. This increase in difference is due to n 

and k 

 

While on the other hand, there is a merit of FMSR codes 

because the response time here is slightly less during the 

operation of repair. We must notice that the amount of data 

that is being downloaded by FMSR codes during repair is 

less. This is the main advantage of having FMSR codes. 

Example, to repair a file of size 500MB with n = 4 and k = 2, 

the time spent by FMSR codes is 4.02s in download and 

5.04s is the time spent byRAID-6 codes.  

RAID-6 codes may have less response time than FMSR 

codes when deployed on a local .But we think that the 

overhead of encoding/decoding in FMSR codes can be easily 

covered by the fluctuations in the network over the Internet, 

as we would discuss next. 

 

6.2.2 On a Commercial Cloud 

 

This experiment is conducted on a machine that includes an 

Intel Xeon E5530 2.4GHz CPU and RAM of 16GB size. This 

machine has the 64-bit Operating system, Ubuntu 9.10. We 

set the same values, n = 4 and k = 2, and repeat performing 

all the three operations as  in Section 6.2.1 on four files that 

are randomly generated from 1MB to 10MB on top of 

Windows Azure Storage [13]. On Azure, we now try to create 

virtual cloud repositories by creating (n+1) = 5 containers. 

The same operations are run for both RAID-6 and FMSR 

codes and provide interval in order to reduce the effects of 

fluctuations in the network. We must notice that, Azure is the 

only provider which is being used here. But in actual usage, 

FTCloud is supposed to stripe data over different providers 

and locations. This is to provide better availability 

guarantees. 

 

Figure 10 poses the results for different file sizes plotted with 

95% confidence intervals. From the figure, we can see no 

same differences in response time between RAID-6 codes 

and FMSR codes under all the three operations. Also, FMSR 

codes consume 0.150s for encoding purpose and 0.064s for 

decoding a file of size 10MB (not reflected in the figures). 

This contributes roughly 3% to the total time of uploading 

and downloading which is 4.962s and 2.240s respectively. 

The 95% confidence intervals for the operation of upload and 

download are 0.550s and 0.438s respectively. Fluctuation in 

network plays a very vital role in calculating the response 

time. Finally to brief, we show that the performance overhead 

by FMSR codes is not significant over the implementation of 

RAID-6 code. 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

11



 
7 RELATED WORK 

 

Let us now look at the work that is related in multiple-cloud 

storage and recovery during failure. 

 

Multiple-cloud storage. We can find many systems that 

are proposed for multiple-cloud storage. Such as, HAIL [11], 

this system provides integrity and assures availability for 

stored data. Another such system is RACS [1],this system 

makes use of erasure coding in order to solve the vendor 

lock-in problem while switching from one cloud vendor to 

another. Here, the data from the cloud that is probably to fail 

is moved from it into a new cloud. But FTCloud does not 

include the failed cloud which is in repair. Vukolic´ [61] 

works using multiple clouds which are independent in order 

to provide Byzantine fault tolerance. DEPSKY [10] provides 

Byzantine fault tolerance, it does it by performing the 

combination of encryption and erasure coding for stored data. 

WE must notice that all the systems that are discussed above 

are built using erasure codes in order to provide fault 

tolerance. But our FTCloud is one step ahead because it 

includes regenerating codes with giving importance both fault 

tolerance as well as storage repair. 

 

Minimizing I/Os. There are several studies that provide 

efficient failure recovery schemes for single node that 

reduces the amount of data that is read (or I/Os) for erasure 

codes based on XOR. For example, authors of work [62], 

[63] provide optimal recovery for specific RAID-6 codes and 

drops down the amount of data  that is read by a percentage 

of around 25 for nodes of any number. OurFMSR codes can 

succeed in saving of 25% when there are four nodes, and 

when the number of nodes increases the savings is raised to 

50%. According to work [35],in order to search for an 

optimal solution for recovery for arbitrary erasure codes 

based on XOR, it proposes an enumeration-based approach. 

In recent days, commercial cloud storage systems are having 

recovery efficiently. For example, Azure [31] and Facebook 

[53] are getting efficient recovery in them through the new 

builds of erasure codes which are designed with non-MDS. 

The overhead of storage is shifted for the purpose of 

performance using of[31], [53], and their emphasis of design 

is  for computing of intensive data. Our main focus is the 

applications that are available for cloud backup. 

 

Minimizing repair traffic.  

Network coding is the basis for Regenerating codes 

[16]and they tend to provide reduction in the repair traffic 

among storage nodes. They also achieve the optimal 

movement between cost due to storage and repair traffic, and 

consists of two optimal points. One optimal point reduces the 

repair bandwidth with the condition that minimum amount of 

data is being stored by every node. This optimal point is 

referred to as the minimum storage regenerating (MSR) 

codes. The other optimal point allows every node to store 

more amounts of data to still reduce the repair bandwidth. 

This optimal point is referred to as minimum bandwidth 

regenerating (MBR) codes. We can see the building  of MBR 

codes in [51] and interference alignment that can be found in 

[50], [57] is the basis of MSR codes. In this work, our 

emphasis is on the MSR codes. 

 

Many studies (e.g., [29], [34], [55], [56]) provide recovery 

for multiple failures cooperatively. The idea behind them is 

that new nodes have to exchange the constructed data among 

themselves in order to reduce the overall re-pair traffic. Our 

work emphasizes on single-failure recovery, which is the 

cause for the majority of failures in cloud storage systems 

[31]. Also the aspect of security issues for regenerating-coded 

data is solved by studies (e.g., [14], [41, while the concept of 

security in case of FMSR codes is solved in our before work 

[15]. We suggest readers to refer the survey paper [17]  in 

order to study regarding the “state of the art” research in 

regenerating codes. 

 

The main advantage of our FMSR code implementation is 

that it removes the requirement of encoding during the 

operation of repair, while still maintaining the recovery 

performance of MSR codes. But the existing MSR codes 

(e.g., [50], [57]) require nodes to perform encoding 

operations. 

Empirical studies on regenerating codes.  It is only the 

theoretical analysis that is being provided by the existing 

studies on regenerating codes. Based on observation, many 

studies (e.g., [18], [23], [37]) find random linear codes for 

storage in peer-to-peer. In order to reduce the number of 

surviving nodes to contact during recovery which causes a 

higher storage cost and to evaluate the codes on a cloud 

storage simulator, authors of [44] propose simple 

regenerating codes. Authors of [33] calculate the performance 

of the operations of encoding/decoding of regenerating codes. 

In our work, we perform the implementation of a storage 

system and calculate the actual performance of read/write 

with regenerating codes, but the existing studies do not do so. 

Regenerating codes are implemented by NCFS [30], but does 

not consider MSR codes which are based on linear 

combinations. But here, we consider the FMSR code 
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implementation and perform experiments in cloud storage. 

 

Follow-up studies on FMSR codes. We have some studies 

that follow after the conference version [27. Integrity 

checking of FMSR-coded data is supported by our FTCloud 

against Byzantine attacks [15].  The aspect of two-phase 

checking which can preserve the MDS property of the stored 

data after iterative repairs [28] is also theoretically proved by 

us. Our focus is on the deployment of regenerating codes 

practically. We propose a design of regenerating codes that is 

implementable and we also perform a knowledgeable 

observation in cloud storage environment practically. 

 

CONCLUSIONS 

 

To uphold the key concept of today’s practical cloud backup 

storage, the reliability, we extend our FTCloud, a proxy-

based  multiple cloud storage system. 

The main advantage of our FTCloud is that it provides fault 

tolerance in storage, on the other hand, it also allows in a 

cost-effective manner when there is permanent cloud storage. 

A practical version of the functional minimum storage 

regenerating (FMSR) codes is implemented. This regenerates 

new parity chunks while repairing according to the 

requirement of data redundancy. The encoding requirement 

of storage nodes or cloud while repairing is eliminated 

through the help of our FMSR code implementation. It 

ensures that the required fault tolerance is preserved by the 

new set of stored chunks after each round of repair. The 

effective capability of FMSR codes in the cloud backup 

usage is shown in our FTCloud prototype. Hence there is 

advantage from our FTCloud in terms of both monetary costs 

and response times. 
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