
FTCloud: Fault Tolerant Multiple Cloud Storage

using Proxy based Storage System

Abhishek G, Kavyashree N,

Shreelakshmi D R, Shruthi S
Department of Computer Science and Engineering

T John Institute of Technology

Bangalore, India

Srinivasa H P
Associate Professor

Department of Computer Science and Engineering

T John Institute of Technology

Bangalore, India

Abstract— The recent trend is to stripe data across the multiple

cloud vendors to provide fault tolerance. But when the cloud

fails permanently and lose all its data we recover it with the help

of the other surviving cloud which provides data redundancy.

The solution is to provide a fault-tolerant multiple cloud

storage using a proxy-based storage system called FTCloud, this

achieves a cost effective repair for permanent double-cloud

failure. FTCloud is built using network-coding based storage

scheme called as FMSR(minimum-storage regenerating) codes

technique, it provides more fault tolerance and data redundancy

than the traditional techniques(e.g. like RAID6) and also use

less repair traffic thereby incur less data transfer cost. The key

feature of FMSR is that we provide encoding requirement

relaxation by preserving the network coding benefits in repair.

We implement this concept of FTCloud and deploy it on both

local and commercial clouds. We check and validate that FMSR

technique provides less cost and high performance in cloud

storage operations like upload and download.

Keywords - Regenerating Codes, Network Codes, Fault Tolerance,

Recovery, Implementation, Experimentation.

I. INTRODUCTION

Cloud storage always provides the back up for data. But

usage of single cloud storage gives rise to problems such as

single point of failure, vendor lock in etc. The solution for

this is to stripe data across different cloud providers. By

making use of multiple cloud concept we can improve the

fault tolerance of cloud storage.

During striping of data, the existing methods perform well

when some clouds fails for shorter period of time or for

permanent failures there are many real life cases which tells

us the occurrence of permanent failure and are not

anticipated. Here in this view our work focuses on

unexpected permanent cloud failure. When the cloud fails

permanently we need to activate a repair to maintain the data

redundancy and to have a fault tolerance. The repair

operation retrieves the lost data from surviving clouds over

the network and it regenerates(reconstruct) lost data into a

new cloud. In the recent days the cloud storage providers

charge the users enormously for keeping the data backup, so

moving the data across cloud require high monetary costs. It

is very important to reduce repair traffic and also the

monetary cost due to the data migration.

Regenerating codes concept is proposed to repair traffic for

storing the data in a distributed storage system redundantly.

Every node can refer to some simple storage device, a cloud

storage provider or a storage site. The regenerating codes are

formed using the network coding concept, wherein the nodes

themselves perform the encoding operation and send the

encoded data. While repair is taking place, the surviving node

encode the data stored in it and send the encoded data to new

node which regenerates the lost data. The advantage of

regenerating code is that it require less repair traffic than the

existing methods with better fault-tolerance level. The

extensive study on regenerating codes are carried out in

following contexts([14], [16], [29], [34], [41], [50], [51],

[55]–[57]). But regenerating code's practical performance

will always remain uncertain. The main key challenge for the

deployment of regenerating codes in existing system require

that the storage node itself perform encoding operation

during repair. To make the regenerating codes portable to any

cloud storage services, we need to assume only the thin-cloud

interface where the storage node should only support the

standard read/write functionalities. This helps us to know

how practically we can deploy the regenerating codes in

multiple cloud storage.

Here in our work, we present you the design and

implementation of FTCloud, a proxy-based storage system

designed for providing fault-tolerant storage over multiple

cloud storage providers. FTCloud interconnect different

clouds and transparently stripe data across clouds. We also

propose the first implementable FMSR codes. i.e. functional

minimum storage regenerating codes.

The FMSR code implementation provides double fault

tolerance and also has the same cost as that of traditional

RAID based schemes but uses less repair traffic while single

cloud failure. We particularly eliminate the need of encoding

operations within storage nodes during repair, also preserves

benefit of network coding by reducing the repair traffic.

According to the survey made by us, this is the first study that

shows the application of regenerating codes in the storage

system and evaluates it practically.

The main advantage of the FMSR codes is that it is non-

systematic which means that only the encoded data is formed

by the linear combinations of the original data and will not

keep the original data like that of traditional schemes. The

FMSR design is mainly applied in two cases;

(i) Where the data backup is maintained

(ii) Where the whole data in the file should be restored

rather than the lost data.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

1

In real-life examples there are many organizations which

store an enormous amount of data like even in petabyte scale

using the cloud storage the case studies is provided in [4], [8],

[43], [59]. In August 2012, Amazon further introduced

Glacier [5], a cloud storage offering optimized data back-up

for low cost with slow and costly data retrieval. We provide a

solution in form of FMSR codes that provide an alternative

option for enterprises and organizations to store their data

with the help of multiple-cloud storage in a fault-tolerant and

cost-effective manner.

Our work is encouraged by the multiple cloud concept and

is developed by keeping multiple cloud storage concept, the

FMSR codes proposed would be applied in the distributed

storage systems that are prone to failures. And it is also

applied where network transmission bandwidth is limited. It

is applicable where minimizing traffic is important which

intern minimizes the overall repair time.

Our projects contribution is as below.

We are presenting a FMSR design by assuming the

occurrence of double fault tolerance. Here we show that the

FMSR can save 25% of repair cost when compared to

RAID6, when 4 nodes are used. And it can also save up to

50% when number of storage nodes increases. The FMSR

codes also maintain same amount of storage overhead as that

of RAID6 codes. FMSR can also be implemented in thin

cloud settings as they do not require encoding during repair.

Hence FMSR codes can be deployed in today's cloud

services.

• Here we let you know the implementation details of how

the file objects can be stored through FMSR codes.

Mainly we propose two-phase checking which conforms

the concept of double-fault tolerance. This two phase

checking ensures double fault tolerance through iterative

repair of failure nodes.

• The monetary cost analysis is done to show the

effectiveness of repair cost compared to traditional

approaches.

• Here we conduct experiments on both local and

commercial cloud settings. We ensure that our FMSR

code implementation provides a small amount of

encoding overhead that can be masked during file

transfer over internet. This gives room for further

research on FMSR codes in high-scale deployments.

The content of paper is as follows. Section 2 concentrates

on the importance of multiple cloud storage. Section 3,

concentrates on how FMSR codes reduce repair traffic

through an example. Section 4, concentrates on

implementable design of FMSR codes and analysis of

iterative schemes of FMSR design. Section 5, concentrates on

the deployment of FMSR codes. Section 6, Concentrates on

evaluation of RAID-6 and FMSR codes using both private

and commercial cloud settings. Section 7, Reviews related

work. And Section 8 concludes the paper.

II. IMPORTANCE OF REPAIR IN MULTIPLE-

CLOUD STORAGE

In this section, the discussion is on the importance of repair

in cloud storage, mainly in the disastrous cloud failures which

make the data to be lost permanently and is unrecoverable.

Two types of failures are: 1) Transient failure 2) Permanent

failure.

Transient failure: Transient failure is nothing but the

cloud returns to normal after some time of failure and none of

the data is lost. The table A shows some of the real time

examples of occurrence of transient failure in today's clouds.

It shows how the failure may occur from several minutes to

even several days. It highlights that even though the cloud

provider like Amazon claims that it provides service with

99.99% of availability[6], there are some raising concerns

about this claim and the reliability of other cloud providers

after Amazon’s outage in April 2011 [12]. The transient

failures are common in the clouds, but they will be eventually

recovered. Thus we need to deploy multiple cloud storage

with more redundancy so that we can retrieve the data from

other surviving clouds during the failure.

Permanent failure: Permanent cloud failure is the one

where if the cloud is failed; the data on the cloud will be lost

permanently. This says that the permanent failure is more

disastrous than transient failure. Though the permanent cloud

failure is rare, there are many cases due to which they are still

possible:

• Data center may fail because of disasters. AFCOM [48]

found that many data centers are not prepared for

disasters. For example, 50% of the cloud services have

no plans regarding the damage repairs after the

happening of damage. It was reported that earthquake

and tsunami in northeastern Japan in March 11, 2011

knocked out several data centers there[48].

• Data loss and data corruption. There are many

examples where a cloud may accidentally lose some

data[12],[40],[58]. Example, In Magnolia [40] half

terabyte of data is lost.

• Malicious attacks. The basic way of providing the

security for data is to encrypt it before outsourced and

put on cloud. If the outsourced data is attacked by virus

or malware data is corrupted, which means though the

data is encrypted confidential outside, the data inside is

not useful. According to the study of AFCOM [48], 65

percent of data centers have no plan or procedure to deal

with cyber-criminals.

Since the permanent cloud failure is not like transient

failure where the cloud never returns back to normal, the data

will be lost and is unrecoverable. So we need to repair it and

reconstruct the lost data by making use of data available on

other clouds to maintain the fault-tolerance. By the word

repair, we mean to retrieve the lost data only from the

surviving nodes and reconstruct the data to new cloud.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

2

TABLE A

Example for transient failures occurring in different cloud

services.

Cloud

service
Failure reason Duration Date

Google

Gmail
Software bug [24] 4 days Feb 27-Mar 2,2011

Google

Search

Programming error

[38]

40

minutes
Jan 31,2009

Amazon S3
Gossip protocol

blowup [9]
6-8 hours July 20,2008

Microsoft

Azure

Malfunction in

Windows Azure [36]
22 hours Mar 13-14,2008

III. MOTIVATION OF FMSR CODES

Here in our concept, we are considering a distributed,

multiple cloud storage setting from client's point of view,

here the data is striped over multiple cloud providers. We are

proposing a proxy-based design [1], [30] which interconnects

the multiple cloud providers as shown in figure 1 (a). The

proxy layer acts as an interface between client application

and the clouds. If any cloud fails permanently, the proxy

starts the proxy operation as shown in figure 1 (b).

As you can see from the figure, the proxy takes the required

data pieces from other surviving clouds, reconstructs the lost

data and write it to new cloud. The repair operation doesn't

involve any direct interactions between the clouds.

Here we consider fault-tolerance based on the type of

MDS(Maximum Distance Separable) codes. A given file of

size M is divided into equal size native data chunks, this is

later linearly combined to form chunks of code. When an

MDS codes with (n, k) is used, the code chunks are then

distributed over n (greater than k) nodes, where every storing

chunks is of total M/k, such that the original file object may

be reconstructed from the chunks contained in any k of the n

nodes. This gives the opportunity to tolerate failures of any

n-k nodes. This feature is the property of MDS. The main

feature of FMSR codes is that the lost data chunks are

reconstructed without downloading or reconstructing the

whole file which means that we download very less file.

Our paper considers multiple cloud settings with two levels

of reliability: 1)Fault-tolerance 2)Recovery. Let us assume

that multiple cloud storage is double-fault tolerance for

example., RAID-6 and it provides data availability under

transient unavailability of maximum two clouds. So we set

k=n-2. Hence the client can always access the data until two

clouds fail transiently, or due to any connectivity problem.

Secondly, we consider single-fault recovery in multiple cloud

storage, which tell that permanent cloud failure is less

frequent. The main objective of our project is to minimize the

repair burden during storage during data migration over cloud

for permanent single cloud failure.

The amount of outbound data being downloaded from the

other surviving clouds during the single-cloud failure

recovery is defined as repair traffic. We try to minimize the

repair traffic for cost-effective repair .The inbound traffic is

not considered (i.e., the data that is been written to a cloud),

as it has no charge for many cloud providers (see Table 3 in

Section 6).

Now we study the repair traffic involved in different schemes

by an example. Suppose a file has to be stored of size M on

four clouds, each cloud is viewed as a logical storage node.

Let us now first consider conventional RAID-6 codes, which

are double-fault tolerant. Based on the Reed-Solomon code

[52] we consider a RAID-6 code implementation, as shown in

Figure 2(a). Here, we divide the file of M into two native

chunks (i.e., A and B) of size M /2 each and add two code

chunks formed by the linear combinations of the native

chunks. Suppose the Node 1 is down now, then the proxy

must download same number of chunks as in the original

from other two nodes (e.g., B and A+B from Nodes 2 and 3,

respectively). Then the surviving nodes, reconstructs and

stores the lost chunk X on the new node. Hence it can be

concluded as The total storage size is 2M , while its repair

traffic is M.

To reduce the repair traffic we Regenerating codes. The exact

minimum-storage regenerating (EMSR) codes [57] is one

among class of regenerating codes. EMSR codes maintains

the storage similar in size as in RAID-6 codes, so as to

reduce the repair traffic; the storage nodes send encoded

chunks to the proxy. Figure 2(b) illustrates the double-fault

tolerant implementation of EMSR codes. The file to be

uploaded is divided into four chunks, as shown in the figure

and accordingly allocation of native and code chunks is done.

If suppose Node 1 is down then to repair it, each surviving

node sends the XOR summation of the data chunks to the

proxy, which then reconstructs the lost chunks. The storage

size of EMSR codes is 2M (same as RAID-6 codes), while

the repair traffic is 0.75M which is 25% of saving (compared

with RAID-6 codes). As the nodes will generate encoded

chunks during repair, EMSR codes leverage the notion

network coding [2].

We now consider the double-fault tolerant implementation of

FMSR codes as denoted in Figure 2(c). A file is divided into

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

3

four native chunks, and then constructs eight distinct code

chunks P1… P8 obtained by performing different linear

combinations of the chunks. Each code chunk has the same

size M /4 . For recovery process , any of the two nodes can

be used the original four native chunks. If Suppose Node 1

proxy retrieves one code chunk from each of the surviving

node, so it

3. let us assume that single-fault tolerance (i.e., k = n − 1)

and single-fault recovery, according to the theoretical results

of [16], it is shown that traditional RAID-5 codes [45] have

the same data redundancy and same repair traffic as FMSR

codes.

(c) FMSR codes

Fig. 2. Examples of repair operations in different codes with n = 4 and k = 2. All

arithmetic operations are performed over the Galois Field GF(28).

 Three code chunks each of size M/4 is ˈdownloaded. Then

the proxy regenerates two code chunks 𝑃1′ and 𝑃2′ by

performing of three code chunks. Note that 𝑃1′ and 𝑃2′ are

still linear combinations of the native chunks. The proxy then

writes 𝑃1′ and 𝑃2′ to the new node. The storage size in

FMSR codes is 2M (it is as in RAID-6 codes), even though

the repair traffic is 0.75M , which is similar to that of the

EMSR codes. A FMSR codes is that encoding is not

performed during repair of nodes.

 In order to generalize double-fault tolerant we make use of

FMSR codes for n storage nodes, a file of size M is divided

into 2(n - 2) native chunks, and it is used to produce 2n code

chunks. Then two code chunks of size 𝑀/2(𝑛 − 2) will be

stored in each node. Thus, the total storage size is 𝑀𝑛/(𝑛 − 2).

In order to repair a failed node, downloading of one chunk

from each of the other n−1 nodes, so the repair traffic is

𝑀(𝑛 − 1)/2(𝑛 − 2) . In contrast, for 𝑀𝑛/(𝑛 − 2) RAID-6 codes,

the total storage size is also , when the repair traffic is

having the value as M . Whenever n is large, the FMSR

codes can save the repair traffic by close to 50%.

Note To access a single chunk of the file, download and

decode method is necessary. FMSR codes are non-

systematic, as they keep only code chunks but not native

chunks. The complete file for that particular chunk. This is

opposed to systematic codes (as currently existing in the

traditional RAID storage), where native chunks are placed.

FMSR codes are acceptable for long-term archival

applications, the read frequency is typically low and also, to

restore backups, it is good to retrieve the entire file rather

than a particular chunk [14].

 This paper considers Reed-Solomon codes the

baseline for RAID-6 implementation .This repair method

involves reconstruction of complete file first, and can also be

applicable for all erasure codes in general. Recent studies

[35], [62], [63] proves that data reads can be reduced

specifically for XOR-based erasure codes. Consider an

example, reading of the data can be reduced by 25%

compared to that of reconstructing the whole file [62], [63].

Although such approaches can achieve FMSR codes, which

can save up to 50% of repair traffic, the use of efficient XOR

operations can also be practical interest.

FMSR CODE IMPLEMENTATION

Let us now present the details for implementing FMSR codes

in multiple-cloud storage. FMSR codes has three operations

on a particular file object as follows:- (1) file upload; (2) file

download; (3) repair. Each cloud repository is viewed as a

logical storage node. In a thin-cloud interface [60], such that

the storage nodes (i.e., cloud repositories) requires only to

support basic read/write operations. Thus, we expect that our

FMSR code implementation is compatible with today's cloud

storage services.

One of the key property of FMSR codes does not require the

lost chunks to be exactly reconstructed, but instead, we

regenerate code chunks that are not necessarily identical to

those originally stored in the failed node during repair, as

long as the MDS property holds. A two-phase checking

scheme is proposed, which ensures that the on all code

chunks nodes always satisfy the MDS property, and hence

data availability, even after iterative repairs. Here in this

section, the importance of the two-phase checking scheme is

been analyzed.

4.1 Basic operations

4.1.1 File Upload:

To upload a file F , the first step is to divide the file into k(n -

k) equal-size chunks, indicated by (Fi)i=1,2,···,k(n−k). Then

encode these k(n - k) native chunks into n(n - k)code chunks,

denoted by (Pi)i=1,2,···,n(n−k). Each Pi is formed by using a

linear combination of the k(n − k) native chunks. we let EM

=[αi,j] be an n(n − k) × k(n−k) encoding matrix for some

coefficients αi,j (where i = 1, . . . , n(n − k) and j = 1, . . . ,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

4

k(n − k)) in the Galois field GF(28). We call a row vector of

EM an encoding coefficient vector (ECV) , which contains

n(n − k) elements. We make use of ECVi to denote the ith

row vector of EM. We compute each Pi by the product of

ECVi and all the native k(n−k) αi,j Fj for

chunks 𝐹1, 𝐹2 … , 𝐹𝑘(𝑛 − 𝑘), i.e., Pi = ∑ αi, jFj
𝑘(𝑛−𝑘)
𝑗−1 for

i=1,2,..,n(n-k).where all arithmetic operations are performed

over GF(28).The code chunks are evenly stored in the n

storage nodes, each having (n-k) chunks and we store the

complete EM in a metadata object that is then replicated to

all storage nodes (see Section 5). There are many ways of

constructing EM, as long as it passes two-phase checking (see

Section 4.1.3).Note that the implementation details of the

arithmetic operations in Galois Fields have been extensively

discussed in [25].where all arithmetic operations are

performed over GF(28).

4.1.2 File Download:

 To download a file, first download the corresponding

metadata object that contains the ECVs. From n storage

nodes chose any k nodes , and download the k nodes from

code chunks. The ECVs of the k(n − k) code chunks can

form a k(n−k)×k(n−k) square matrix. If the MDS property is

satisfied, then as the according to the definition, the inverse

of the square matrix should exist. Later the inverse of the

square matrix along with the code chunks and obtain the

original k(n − k) native chunks is multiplied. The idea

obtained here is that we treat FMSR codes as standard Reed-

Solomon codes, and we describe the technique of creating an

inverse matrix to decode the original data , in the tutorial

[46].

4.1.3 Iterative Repairs:

Let us now take an example of the repair of FMSR

codes for a file F for a permanent single-node failure. Given

that FMSR codes regenerates different chunks in each repair,

one of the challenge is to ensure that the MDS property is

achieved even after iterative repairs. In contrast to

regenerating the exact lost chunks as in RAID-6, which

guarantees the invariance of the stored chunks. A two-phase

checking heuristic is proposed as follows. Suppose that the
(𝑟 − 1)𝑡ℎ repair is successful.

and now let us consider how to handle the rth repair for a

single permanent node failure (where r ≥ 1). We now first

check if the new set in all storage nodes satisfies the MDS

property after the rth repair. In addition to that we also check

whether any other new set of chunks in all the existing

storage nodes still achieve the MDS property after the(r +

1)th repair, should another single permanent node failure

occur (we call this the repair

rMDS) property). Let us now describe the rth repair as

follows.

 Step 1: The encoding matrix from a surviving node has to be

downloaded. The encoding matrix specifies the ECVs for

constructing all code chunks through linear combinations of

native chunks. These ECVs are used later for two-phase

checking. Since EM is embedded in a metadata object that is

replicated, we can simply download from one of the

surviving nodes the metadata object.

 Step 2: Now select one ECV from each of the n − 1

surviving nodes. Each of ECV in EM corresponds to a code

chunk. We now pick one ECV from each of the n -1

We call those selected ECVs to be ECVi1 , ECVi2 ,.…,

ECVin−1

 Step 3: obtain a repair matrix. We construct an (n−k)×(n−1)

repair matrix RM = [γi,j], where each element γi,j (where i

= 1, . . . , n − k and j = 1, . . . , n − 1) is randomly selected in

GF(28). Note that the idea of generating a random matrix for

reliable storage is consistent with that in [49].

 Step 4: Calculate the ECVs for the new code chunks and

reproduce a new encoding matrix. now multiply RM with the

ECVs selected in Step 2 to construct (n-k) new ECVs,

Denoted by ECVi′ = ∑ γi, jECVi𝑛−1
𝑗−1 for i=1,2,…,(n-k). Then

reproduce a new encoding matrix, denoted by EMˈ, that is

formed by substituting the ECVs of EM of the failed node

with its corresponding new ECVs.

Step 5: Given EMˈ, check if both the MDS and rMDS

properties are satisfied. The MDS property is verified by

enumerating all (𝑛𝑘) subsets of k nodes see if each of their

corresponding encoding matrices forms a full rank. For the

rMDS property, we verify for any possible node failure (one

out of n nodes), we can collect one among of n−k chunks

from each of the other n−1 surviving nodes and then

reconstruction of the chunks is done on new node, such that

the MDS property is maintained. The number of checks

performed for rMDS property is at most n(n - k)n-1()𝑘
𝑛 . If n is

small, then enumeration complexities for both MDS and

rMDS properties are manageable. If either of phases fails,

then we return to Step 2 and repeat. We emphasize that Steps

1 to 5 with the ECVs, so that their overhead does not depend

on size of chunk.

 Step 6:Here Downloading of the actual chunk data and

regenerating the new chunk data. If the two-phase checking

that is shown in the Step 5 succeeds, then we proceed with

the process to download the n − 1 chunks that will

correspond to that of the selected ECVs shown in the Step 2

from the n − 1 surviving storage nodes to NCCloud. Also, we

are using the new ECVs computed in Step 4, we are also

regenerating the new chunks and upload them from

NCCloud to a new node.

Remark: we can simplify the complexity of the two-

phase checking with that of the proposed FMSR code

construction that is being done in our recent work [28]. And

also our proposed construction will specify the ECVs to be

selected in Step 2 deterministically, and that will tests their

accurty (i.e., satisfying both the MDS and rMDS properties)

by checking it against that a set of inequal-ities shown in the

Step 5. This will also reduces the complexity present in each

of the iteration along with the number of iterations (i.e.,

number of times the Steps 2-5 are being repeated) in process

of generating a valid EMˈ. According to our present

implementation of the NCCloud also includes the proposed

construction. We also refer the readers to [28] for more

details of the proposed construction.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

5

4.2 Analysis

The process of checking the rMDS property in each repair is

very much necessary for the purpose of maintaining the

MDS property after all the iterative repairs done . We now

show through a counter-example that if a repair is checking

only the MDS property but without checking the rMDS

property, then in such cases the MDS property will be lost in

the very next repair. We are also showing it through the

simulations that our two-phase checking can even sustain

many iterations of repairs in more than the general cases.

Fig. 3. Counter-example: code chunks that satisfy the MDS property but not

the rMDS property

4.2.1 A Counter-Example

 Here counter example shown in the figure 3is considered to

show the importance of the rMDs property=4 and k=2 is

same as that being the described in the figure2(c) .If suppose

a linear combination is done for the code chunks P1, . . . , P8

from the native chunks A,B,C and D as shown in the figure

3,and these linear combinations are similar to that of te

shortened even odd code IN[62].Verification of whether the

code chunks P1, . . . , P8 satisfy the MDS properties easy i.e,

reconstruction of the native chunks A,B,C and D can be done

using the four chunks from any two nodes .But,we do not

check whether it satisfies the RMDS property(as they do not

satisfy, we shall see it later).

 Now consider that node FMSR codes,if the basis of the

FMSR codes fails ,ne chunk from each nodes 1,2,and 3 the

repair selects(denote the chunks X,Y, and Z)and using them

regenerate the new code chunks P7ʹ AND P8ʹ,that will be

stored in a new node(that will be stored in a new node

4).Totally there are 2^3 = 8 possible selections of {X,Y,Z}.

Lets consider one possible selections of{X,Y,Z}.There lets us

use one possible selection{P1, P3, P5}. Now the new code

chunks become E

P7ʹ = γ1,1P1 + γ1,2P3 + γ1,3P5,

P8ʹ = γ2,2P1 + γ2,2P3 + γ2,3P5,

where γi,j (i = 1, . . . , n − k and j = 1, . . . , n − 1) are some

random coefficients used to generate the new code chunks.

Then we have

P7ʹ = (γ1,1 + γ1,3)A + (γ1,2 + γ1,3)C,

P8ʹ = (γ2,1 + γ2,3)A + (γ2,2 + γ2,3)C .

Since P1 = A and P2 = B, we cannot reconstruct the native

chunk D from P1, P2, P7ʹ, P8ʹ. The MDS property is lost

because the chunks of Nodes 1 and 4 cannot be used to

reconstruct the native chunks. Thus, the repair fails with this

selection of chunks.

The chunks of nodes 1 and 4 cannot be sed to reconstruct the

chunks hence the MDS property is lost.in the selection of the

chunks the repail fails due to this reason.

Similar kind of the reasoning can be applied to the other

possible selections of the chunks .The selection of the eight

possible selection of the chunks along with the set chunks

that cannot be used anymore to rebuild the original file is

shown in the table 2.

TABLE 2

Eight possible selections of chunks from surviving nodes for

generating P70 and P80, along with the corresponding set of

chunks that will fail to reconstruct the file.

X, Y, Z

Set of chunks that cannot rebuild the

file

P1, P3, P5 P1, P2, P70, P80 (Nodes 1 and 4)

P2, P3, P5 P1, P2, P70, P80 (Nodes 1 and 4)

P1, P4, P5 P3, P4, P70, P80 (Nodes 2 and 4)

P2, P4, P5 P5, P6, P70, P80 (Nodes 3 and 4)

P1, P3, P6 P5, P6, P70, P80 (Nodes 3 and 4)

P2, P3, P6 P3, P4, P70, P80 (Nodes 2 and 4)

P1, P4, P6 P1, P2, P70, P80 (Nodes 1 and 4)

P2, P4, P6 P1, P2, P70, P80 (Nodes 1 and 4)

MDS property after the repair. The above counter-example

shows on checking the MDS property only but not on how

the rMDS property can lead to a failed repair.

Simulations

Simulations is conducted to justify the rMDS

property that can make an iterative

repairs sustainable. Evaluation is done using simulations it is

the overhead of our two -phase checking(steps from 2 to 5 of

the repair).Here our simulation is done on the 2.4GHz CPU

core. Firstly ,for different values of new consider the

multiple rounds of repair and the argue in the addition to

checking of the MDS property, and the rMDs property

checking is required for the iterative repairs. Particularly, In

each round ,we select a node randomly that has to be failed

and then repairing the failed node . We consider a repair is

bad if the loop of Steps 2 to 5 in two-phase been repeated

over a threshold number of times but still no suitable

encoding matrix is being obtained. In this simulation, we are

varying the threshold of the number of loops for identifying a

bad repair. Maximum of 500 rounds of repairs being carried

out, and stop once bad repair. We are not considering the

construction of [28] in this part of simulations to study the

effects of the baseline

 Figure 4 shows the number of rounds of repair that can be

sustained when the rMDS property is whether checked or is

not . It shows checking the or is not . It shows checking the

rMDS property provides us to sustain more rounds of repair

before seeing a bad repair. For example,if suppose that we set

the thresholdas 20 loops. Then repair can be sustained for

500 rounds, for different values of n (number of nodes) by

checking the rMDS property, but a bad repair quickly (e.g., in

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

6

3 rounds of repair for n = 10) if we don’t check the rMDS

property. Next we evaluate through simulations the time of

the two-phase checking, with the proposed FMSR code

construction[28] that reduces the complexity.

 In each round of repair, randomly pick a node to be failed

and carry out the repair operation. Then carry out the two-

phase checking (i.e., Steps 2 to 5), and measure the time

required to generate an encoding matrix that satisfies both the

MDS and rMDS properties.

 Figure 5 plots the cumulative time of two-phase checking for

50 rounds of repaig in log scale) for n =4

Fig. 4. Number of rounds of repair sustainable without seeing

a bad repair. n = 16. The checking process done takes the

negligible time compared to that of the actual repairs of even

a 1MB file (see Section 6.2.2). consider for example, when n

= 10, it takes only 0.02s to carry out 50 consecutive repairs

(around 0.0004s per repair); even when the value of the n =

16, it takes only 0.1s to carry out 50 consecutive repairs

(around 0.002s per repair). Here observe that the range of n

we consider following the stripe sizes used in many practical

storage systems [47]. In order to reduce it further reduce the

overhead, we can pre-compute the newly encoding

coefficients for any possible node failure offline when the

system is running as normal, and keep the obtained results to

prepare for the next repair.

4.2.3 Reliability Analysis

Following the studies that is evaluating the reliability of

various erasure codes and replication (e.g., [20], [31],

Fig. 5. The cumulative time needed by the checking phase

(plotted in log scale) in 50 consecutive rounds of repairing

from n = 4 to n = 16.

Fig. 6. Markov model for double-fault tolerant codes.

we are comparing the reliability of FMSR codes and

traditional RAID-6 codes with respect to the different failure

rates with the help of the mean-time-to-data-loss (MTTDL)

metric, which is defined as the expecting time which has been

elapsed till the original data will be unrecoverable. When

MTTDL is not that effective to identify the qunatity the real

reliability [26],in such case it remains a more adopted

reliability metric of the storage community and we

Make use of it only for the comparative study of different

coding schemes with different repair performance also.

MTTDL is being solved using the Markov model. Figure 6

it shows the Markov model which is suitable for the double-

fault tolerant codes (i.e., k = n − 2), in which state i (where i

= 0, 1, 2, 3) is denoting the number of the failed nodes in a

storage system. State 3 indicates that there failed nodes are

more than two in number and the data which is permanently

lost. We are computing the MTTDL which is the expected

time to move from state 0 (i.e., all nodes which are normal) to

state 3.

Here we are making an assumptions in our analysis. For

the sake of the simplicity, we are assuming that node failures

and repairing the process are indepen-dent events which

follow an exponential distribution. But this assumption is

imperfect in general [54], but which makes our analysis

tractable and which has been used in previous studies [20],

[31], [53]. Let it λ be the node failure rate (i.e., 1/λ is the

expected time in which failure of a node occurs). hence, the

transition rate from the state i to state i +1 is (n − i)λ, where i

= 0, 1, 2. And also, consider µ1 and µ2 be the repair rates for

that of the single-node and double-node failures, respectively.

We are assuming that the transfer network between the

surviving nodes and that of the proxy is one of the major

bottleneck (see the Section 3 for this formulation) and finding

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

7

the resulting repair rates. Assume S being the size of the data

stored in each of the node (i.e., the total amount of original

datathat is being stored is (n − 2)S) and B being the network

capacity between the surviving nodes and that of the proxy.

Now, considering the repair of a single-node failure. As

shown in above Section 3, for FMSR codes, the repair traffic

is calculated as (𝑛 − 1)𝑆/2 and hence µ1=2𝐵/(𝑛 − 1)𝑆

RAID-6 codes, the repair traffic is (n − 2)S and hence

µ1=𝐵/(𝑛 − 1)𝑆, For the repair of a double-node failure,

both

Fig. 7. MTTDLs of FMSR codes and RAID-6 codes are (plotted in log

scale) when the value of n = 10 and k = 8.

Of the FMSR codes and that of the traditional RAID-6 codes

will resort to the conventional approach and also the

reconstruction of the lost data by downloading of the total

amount of original data (i.e., (n − 2)S) from that of the

remaining k = n−2 presting nodes. Both of them have

µ2 = 𝐵/(𝑛 − 1)𝑆 We must now evaluate the MTTDLs of

the FMSR codes and that of the traditional RAID-6 codes

for some of the specific parameters. Suppose that we fix n =

10, k = 8, and S = 1TB. Figure 7(a) is showing the MTTDLs

for different values of λ from 0.1 to that of the 1 (in units per

year) when the value of the B = 1Gbps, while Figure 7(b)is

showing the MTTDLs for different values of B from 0.1 to 1

(in units of Gbps) when the value λ = 0.5 is per year. Based

on the settings that we have done, the MTTDL of FMSR

codes is upto 50% to 80% lengthier than that of the

traditional RAID-6 codes because of their higher repair rate

for a single-node failure. Considering the example, with λ =

0.5 per year and B = 1Gbps, the MTTDL of the FMSR codes

is 76% longer.

4.3 Discussions

We here consider the several open issues of the current

design of FMSR codes, and then we would give them as

future work.

Generalization of FMSR codes. Here we presently

consider only an FMSR code implementation with the

double-fault tolerance (i.e., k = n − 2). Its accuracy is being

proven in our recent work [28]. When the value of the

double-fault tolerance is the that of the default setting of

current enterprise storage systems (e.g., 3-way replication in

the GFS [22]), it is not clear on how to generalize the FMSR

codes for the different (n, k) values. In ad-dition to this, in

practical cloud storage systems [31] while single-node

failures are the most common failure patterns , it is most

interesting to study like how to generalize the FMSR codes

to support the most effective repairs of concurrent node

failures.

Study of different reliability metrics. In this Section

4.2.3, we are comparing the reliability of FMSR codes and

the conven-tional RAID-6 codes for the different failure

rating using that of the MTTDL metric. The open issue for

the modeling the failure rate of a cloud repository. In the

future works, we can also plan to the conduct further

analysis regarding the reliabilty using the more effective

metrics [26].

Degraded reads. When the process of reading the original

data in failure mode is done then, we perform degraded

reading, in which we are reconstructing the lost data of a

failed node from the available data on the other surviving

nodes. In FMSR codes, we are always downloading the same

amount of original data by connecting to of the any k nodes

(refer Section 4.1.2); in case of traditional RAID-6 codes, the

original amount of data is retrieved in order to recover the

lost data. Thus, traditional RAID-6 and FMSR codes retrieve

the equal amount of data in degraded reads, when FMSR

codes have higher computational overhead in decoding (refer

Section 6.2.1). Recent studies [31], [35], [53] improve the

degraded read performance for erasure-coded data. we do not

consider degraded reads in this work since FMSR codes are

designed for long-term archives that are rarely read.

IV. FTCLOUD DESIGN AND IMPLEMENTATION

FTCloud is implemented as a proxy that connects user

applications and clouds. It is designed on top of three layers.

Firstly, the File System Layer which makes FTCloud as a

mounted drive that can be easily interfaced with user

applications. Secondly, the encoding and decoding functions

are taken care by Coding Layer. Lastly, the read/write

requests with clouds are dealt by Storage Layer.

Every file is attached to a metadata object that is replicated

at each repository. The metadata object includes the details of

file and the information related to coding.

Java is the key language to FTCloud’s implementation and

the coding part is implemented through C. The file system

layer is constructed on FUSE [21]. Both RAID-6 and FMSR

codes are implemented by coding layer. The RAID-6 code is

implemented based on the Reed-Solomon code [52] (as

shown in Figure 2(a)) for baseline evaluation. zfec [65] is

used to implement the RAID-6 codes. For fair comparison we

make use of zfec’s optimization for implementation of FMSR

codes.

Multiple chunks that are generated by FMSR codes are

stored on same repository which causes request cost

overhead. In order to reduce it, aggregation of those chunks is

performed before upload .Hence FMSR codes keep only the

aggregated chunks per file object on each cloud like in

RAID-6 codes. While retrieving a particular chunk, its offset

within the combined chunk is calculated and a range GET

request is issued.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

8

FTCloud is deployed in one or more machines. Inorder to

prevent simultaneous updates on same file we use

ZooKeeper[32] that implements a distributed file-based

shared lock. Pre-liminary evaluations is conducted in a LAN

environment andthe overhead that could be caused by

ZooKeeper is observed to make sure its minimal. Our focusis

on deploying FTCloud on a single machine, and is mounted

as a local file system.

V. EVALUATION

FTCloud prototype is used to evaluate RAID-6 codes as well

as FMSR codes in multiple cloud storage. The data retrieval

with two cloud failures is allowed by focusing on settingk = n

− 2 for different values of n.

Our goal is to discover the practical usage of FMSR codes

in multiple cloud storage. There are two parts in evaluation.

Firstly, the comparison of the monetary costs when RAID-6

and FMSR codes are used is performed. This is based on the

price plans of today’s cloud providers. Secondly, response

time performance of FTCloud prototype is evaluated on both

local and commercial cloud provider.

Summary of evaluation results.

Our summary goes as below. Main importance is given to

the monetary cost advantage of using FMSR codes over

RAID-6 codes, on the other hand maintaining good response

time performance. In case of monetary costs in normal

operations, both RAID-6 and FMSR codes costs almost the

same in operation of storage, and in the operation of repair,

FMSR codes is ahead of RAID-6 codes because it saves a

good amount of transfer comparatively.When it comes to

response time, both FMSR and RAID-6 codes have

comparable response time performance (within 5%) when it

is deployed on a commercial cloud (Azure).The transmission

performance of the Internet determines theresulting response

time.

6.1 Cost Analysis

6.1.1 Repair Cost Saving

Let us first analyze saving the costs due to repair. Table 3

includes the price plans in each month for three major

providers as of May 2013. We analyse the cost based for

more than 1GB/month data transfer within a limit of

1TB/month of data usage.

Looking at the analysis in Section 3, we could save 25-

50% of the traffic of download during storage repair. The size

of the storage and the number of chunks generated per file

object is same in both RAID-6 and FMSR codes. In the

analysis, we have neglected two considerations in

practicality: One, the size of metadata (Section 5). Two, the

number of requests that are issued while repair. We prove

that our argument of neglecting these consideration, also

argue that the optimized calculations based only on file size

are sufficient for real-time applications.

Metadata size: According to ourimplementation, the size

metadata for FMSR codes is within 160 bytes when n = 4 and

k = 2, no matter what the file size is. When n is greater,

example when n = 12 and k = 10, the metadata size is

still inside the range of 900 bytes. Main aim of FTCloud is to

provide backups for long time(see Section 3), and to integrate

with other applications used for backup. In order to save the

overhead of processing, the backup applications that are

existing (e.g., [19], [60]) combines small files into a larger

data chunk.For instance, 4MB is the chunk size that is created

by the default setting for Cumulus [60]. Hence, the overhead

of metadata size is made negligible. Since the amount of file

data stored by both RAID-6 and FMSR codes is same, they

have much similar costs.

of storage in normal usage.

Number of requests: Observations of Table 3 says that, it

is being charged for requests by some cloudproviders. The

number of requests when retrieving data during repair is

different for RAID-6 and FMSR codes. Suppose a file object

of size 4MB is stored with n = 4 and k = 2. While repairing,

RAID-6 code retrieves two chunks and FMSR code retrieves

three chunks(see Figure 2). The overhead of cost due to the

issue of GET requests for RAID-6 is equal to 0.171 percent

and for FMSR codes is 0.341%. Hence it is an insignificant

0.17% increase.

6.1.2 Case Study

We now provide the conclusions for our analysis of cost

using an enterprise use case. Our analysis is built on the case

of Backupify, who is a cloud backup solution provider,

founded in 2008 and used to store backups of amount that is

in the range of terabytes to petabytes o S3 and Glacier . To

make our analysis simple, let’s assume that Backupify stores

backups of worth 1PB in the cloud. And also the data is

replicated over 10 clouds, with n = 10 and k = 8, it causes a

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

9

redundancy overhead of 25%. As we have been arguing

above, both RAID-6 and FMSR codes causes same storage

cost and data transfer cost, but FMSR code causes less repair

cost comparatively to RAID-6 codes. Precisely, FMSR codes

saves the cost by a percentage of 1–((n-1)/2(n-2))(see Section

3), equal to 43.75%. In the following, considering two cost

models.

Regular-cost storage model.

If terabytes of data needs to be stored, the pricing scheme

used by cloud storage providers is a tiered scheme, which

allows higher usage at lower rates. Table 4 poses a simplified

tiered pricing scheme and used by both Amazon S3 and

Windows Azure. This tiered scheme is used for most of our

cost calculation.

Coming to our case, the amount of data that is stored is

1.25 petabytes, and $86,851 is the storage cost to be paid

monthly for both RAID-6 and FMSR codes. Suppose a cloud

repository fails permanently and then we run the operation of

repair, then the amount of data downloaded by RAID-6 code

and FMSR code is 1PB and 0.5625PB respectively. Hence,

the repair cost for RAID-6 codes is $56,832, and that of

FMSR codes is $33,894. Showing that FMSR code saves cost

amount of $22,938.

Low-cost storage model.

We say that the monthly storage cost can be exceeded by

the repair cost if a storage model of low cost is used

alternatively. For example, Amazon Glacier [5] which uses

the same data price of S3, charges a flat rate of $0.01 per GB

of stored data, referring to the table 4, this is much cheaper

than S3. But the drawback of using Amazon instead of S3 is

that it consumes a longer time for the restore operation and is

also more expensive. And also, if more than 5% of stored

data is to be restored, Amazon charges a restore fee of $0.01

per GB on monthly basis.

According to this cost model, the monthly storage cost is

reduced to only $13,107 for both RAID-6 and FMSR codes.

However, the cost of repair for RAID-6 codes is $66,662, and

that of FMSR codes is $39,137. Hence FMSR codes save cost

by $27,525.

We cannot say that the annual saving that is brought by the

reduction in repair cost to be purely measured by the failure

rate of a cloud storage repository, we note that in the last few

years ,permanent data loss of varying degrees has occurred

in cloud storage since its adopted by the masses popularly

(e.g., [12], [40], [58], [64]). If we calculate that if complete

repairs have to be made for every two year(average), this

results over $10,000 of saving annually in our case.

Concluding, we observe that in spite of cloud failures

being rare, the monetary benefit gained by usage of FMSR

codes in events of repair that is unexpected is important. We

haven’t showed another consideration in practicality, which is

data accumulation. According to our case study we assume

that the amount of data stored is constant. But during times

like, when customers are producing new data daily or when

the number of customers using the storage service is

increased, the amount of data is no more constant but grows

along with the time in reality. As time passes, this larger data

accumulation results in archive of larger size, thus making

our monetary advantage in repair cost more emphasized.

6.2 Response Time Analysis

Our FTCloud prototype is deployed in real environments.

The three basic operations that stands as a basis for us to

evaluate the response time performance are, file upload, file

download and repair, in two scenarios. In the first part, the

time taken by the different FTCloud operations is analyzed in

detail. In order to reduce the effects caused by network

fluctuations, it is performed on a local cloud storage test bed.

In the second part, we evaluate how actually FTCloud

performs when deployed on a commercial cloud. Forty runs

is the average of all results. Since our assumption, that the

coefficients for repair are offline generated (see Section

4.2.2), we do not take the time taken by two-phase checking

into account for in the repair operation. Since the time

consumed for checks is less comparatively to the overall

operation of repair, it has limited impact on our results as

shown in Section 4.2.2

6.2.1 On a Local Cloud

OpenStackSwift 1.4.2 [42] is the basis for object-based

storage platform on which the experiments on local cloud are

carried out. FTCloud is mounted on a machine which consists

of Intel Xeon E5620 processor with 2.4GHz speed and

RAM of size 16GB. This machine is bridged to an OpenStack

Swift platform which is attached to a number of storage

servers, and that each server would have Intel Core i5-2400

and 8GB RAM. We create virtual cloud repositories by

creating (n +1) containers on Swift, in which each container

is equivalent to a cloud repository (out of them one is a node

used as a spare during times of repair). Two experiments are

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

10

conducted on the local cloud. In the first experiment, we

compare RAID-6 and FMSR codes when the values of n and

k are 4and 2 respectively with file size being varied.

Whereas, in the second experiment we perform the same

comparisonbetweenRAID-6 and FMSR codes but this time

with different values for n and k and file size being fixed.

During the first experiment, the response times is tested

under the three basic operations, i.e., file upload, file

download, and repair operations of FTCloud with values as n

= 4 and k = 2. We make use of eight files from that are

generated randomly for 1MB to 500MB as the data set. The

path of a repository that is chosen is set to a non-existent

location to simulate a node failure in repair. We must notice

that when it comes to repair, there are two types for RAID-6,

and the type is selected based on the fact that whether the

failed node contained a native chunk or a code chunk. Figure

8 shows the response times of all three operations versus the

file size.

During the second experiment, the file size is fixed at

500MB and now the response time is tested under the three

operations again under four different pair of values for n and

k as, n = 4, k = 2 and n = 6, k = 4 and n = 8, k = 6 and n =

10, k = 8. Figure 9 poses the results of response time, in

which each is decomposed into many key parts.

Figures 8 and 9 show that the response time for RAID-6

codes is comparatively less than FMSR codes in operations

of file upload and

download, no matter what the values of n and k are. Using

Figure 9, we show the overhead of FMSR codes over RAID-

6.FMSR codes show similar data transfer time as that of

RAID-6 while uploading and downloading, this is because of

having the same MDS property in them. However, there is a

significant over head of encoding/decoding in FMSR codes

over RAID-6 codes. For instance, in the case of n = 4 and k =

2, while uploading a 500MB file,RAID-6 codes consumes

1.53s to encode, whereas FMSR codes consumes 5.48s; in the

operation of downloading the 500MB file, there is no

requirement of decoding in the case of RAID-6 codes as there

is availability of native, but FMSR codes consumes 2.71s for

the decoding process. This increase in difference is due to n

and k

While on the other hand, there is a merit of FMSR codes

because the response time here is slightly less during the

operation of repair. We must notice that the amount of data

that is being downloaded by FMSR codes during repair is

less. This is the main advantage of having FMSR codes.

Example, to repair a file of size 500MB with n = 4 and k = 2,

the time spent by FMSR codes is 4.02s in download and

5.04s is the time spent byRAID-6 codes.

RAID-6 codes may have less response time than FMSR

codes when deployed on a local .But we think that the

overhead of encoding/decoding in FMSR codes can be easily

covered by the fluctuations in the network over the Internet,

as we would discuss next.

6.2.2 On a Commercial Cloud

This experiment is conducted on a machine that includes an

Intel Xeon E5530 2.4GHz CPU and RAM of 16GB size. This

machine has the 64-bit Operating system, Ubuntu 9.10. We

set the same values, n = 4 and k = 2, and repeat performing

all the three operations as in Section 6.2.1 on four files that

are randomly generated from 1MB to 10MB on top of

Windows Azure Storage [13]. On Azure, we now try to create

virtual cloud repositories by creating (n+1) = 5 containers.

The same operations are run for both RAID-6 and FMSR

codes and provide interval in order to reduce the effects of

fluctuations in the network. We must notice that, Azure is the

only provider which is being used here. But in actual usage,

FTCloud is supposed to stripe data over different providers

and locations. This is to provide better availability

guarantees.

Figure 10 poses the results for different file sizes plotted with

95% confidence intervals. From the figure, we can see no

same differences in response time between RAID-6 codes

and FMSR codes under all the three operations. Also, FMSR

codes consume 0.150s for encoding purpose and 0.064s for

decoding a file of size 10MB (not reflected in the figures).

This contributes roughly 3% to the total time of uploading

and downloading which is 4.962s and 2.240s respectively.

The 95% confidence intervals for the operation of upload and

download are 0.550s and 0.438s respectively. Fluctuation in

network plays a very vital role in calculating the response

time. Finally to brief, we show that the performance overhead

by FMSR codes is not significant over the implementation of

RAID-6 code.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

11

7 RELATED WORK

Let us now look at the work that is related in multiple-cloud

storage and recovery during failure.

Multiple-cloud storage. We can find many systems that

are proposed for multiple-cloud storage. Such as, HAIL [11],

this system provides integrity and assures availability for

stored data. Another such system is RACS [1],this system

makes use of erasure coding in order to solve the vendor

lock-in problem while switching from one cloud vendor to

another. Here, the data from the cloud that is probably to fail

is moved from it into a new cloud. But FTCloud does not

include the failed cloud which is in repair. Vukolic´ [61]

works using multiple clouds which are independent in order

to provide Byzantine fault tolerance. DEPSKY [10] provides

Byzantine fault tolerance, it does it by performing the

combination of encryption and erasure coding for stored data.

WE must notice that all the systems that are discussed above

are built using erasure codes in order to provide fault

tolerance. But our FTCloud is one step ahead because it

includes regenerating codes with giving importance both fault

tolerance as well as storage repair.

Minimizing I/Os. There are several studies that provide

efficient failure recovery schemes for single node that

reduces the amount of data that is read (or I/Os) for erasure

codes based on XOR. For example, authors of work [62],

[63] provide optimal recovery for specific RAID-6 codes and

drops down the amount of data that is read by a percentage

of around 25 for nodes of any number. OurFMSR codes can

succeed in saving of 25% when there are four nodes, and

when the number of nodes increases the savings is raised to

50%. According to work [35],in order to search for an

optimal solution for recovery for arbitrary erasure codes

based on XOR, it proposes an enumeration-based approach.

In recent days, commercial cloud storage systems are having

recovery efficiently. For example, Azure [31] and Facebook

[53] are getting efficient recovery in them through the new

builds of erasure codes which are designed with non-MDS.

The overhead of storage is shifted for the purpose of

performance using of[31], [53], and their emphasis of design

is for computing of intensive data. Our main focus is the

applications that are available for cloud backup.

Minimizing repair traffic.

Network coding is the basis for Regenerating codes

[16]and they tend to provide reduction in the repair traffic

among storage nodes. They also achieve the optimal

movement between cost due to storage and repair traffic, and

consists of two optimal points. One optimal point reduces the

repair bandwidth with the condition that minimum amount of

data is being stored by every node. This optimal point is

referred to as the minimum storage regenerating (MSR)

codes. The other optimal point allows every node to store

more amounts of data to still reduce the repair bandwidth.

This optimal point is referred to as minimum bandwidth

regenerating (MBR) codes. We can see the building of MBR

codes in [51] and interference alignment that can be found in

[50], [57] is the basis of MSR codes. In this work, our

emphasis is on the MSR codes.

Many studies (e.g., [29], [34], [55], [56]) provide recovery

for multiple failures cooperatively. The idea behind them is

that new nodes have to exchange the constructed data among

themselves in order to reduce the overall re-pair traffic. Our

work emphasizes on single-failure recovery, which is the

cause for the majority of failures in cloud storage systems

[31]. Also the aspect of security issues for regenerating-coded

data is solved by studies (e.g., [14], [41, while the concept of

security in case of FMSR codes is solved in our before work

[15]. We suggest readers to refer the survey paper [17] in

order to study regarding the “state of the art” research in

regenerating codes.

The main advantage of our FMSR code implementation is

that it removes the requirement of encoding during the

operation of repair, while still maintaining the recovery

performance of MSR codes. But the existing MSR codes

(e.g., [50], [57]) require nodes to perform encoding

operations.

Empirical studies on regenerating codes. It is only the

theoretical analysis that is being provided by the existing

studies on regenerating codes. Based on observation, many

studies (e.g., [18], [23], [37]) find random linear codes for

storage in peer-to-peer. In order to reduce the number of

surviving nodes to contact during recovery which causes a

higher storage cost and to evaluate the codes on a cloud

storage simulator, authors of [44] propose simple

regenerating codes. Authors of [33] calculate the performance

of the operations of encoding/decoding of regenerating codes.

In our work, we perform the implementation of a storage

system and calculate the actual performance of read/write

with regenerating codes, but the existing studies do not do so.

Regenerating codes are implemented by NCFS [30], but does

not consider MSR codes which are based on linear

combinations. But here, we consider the FMSR code

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

12

implementation and perform experiments in cloud storage.

Follow-up studies on FMSR codes. We have some studies

that follow after the conference version [27. Integrity

checking of FMSR-coded data is supported by our FTCloud

against Byzantine attacks [15]. The aspect of two-phase

checking which can preserve the MDS property of the stored

data after iterative repairs [28] is also theoretically proved by

us. Our focus is on the deployment of regenerating codes

practically. We propose a design of regenerating codes that is

implementable and we also perform a knowledgeable

observation in cloud storage environment practically.

CONCLUSIONS

To uphold the key concept of today’s practical cloud backup

storage, the reliability, we extend our FTCloud, a proxy-

based multiple cloud storage system.

The main advantage of our FTCloud is that it provides fault

tolerance in storage, on the other hand, it also allows in a

cost-effective manner when there is permanent cloud storage.

A practical version of the functional minimum storage

regenerating (FMSR) codes is implemented. This regenerates

new parity chunks while repairing according to the

requirement of data redundancy. The encoding requirement

of storage nodes or cloud while repairing is eliminated

through the help of our FMSR code implementation. It

ensures that the required fault tolerance is preserved by the

new set of stored chunks after each round of repair. The

effective capability of FMSR codes in the cloud backup

usage is shown in our FTCloud prototype. Hence there is

advantage from our FTCloud in terms of both monetary costs

and response times.

REFERENCES

[1] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. RACS: A Case

for Cloud Storage Diversity. In Proc. of ACM SoCC, 2010.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network

Information Flow. IEEE Trans. on Information Theory, 46(4):1204–
1216, Jul 2000.

[3] Amazon. AWS Case Study: Backupify.

http://aws.amazon.com/solutions/case-studies/backupify/.

[4] Amazon. Case Studies.

https://aws.amazon.com/solutions/casestudies/#backup.

[5] Amazon Glacier. http://aws.amazon.com/glacier/.
[6] Amazon S3. http://aws.amazon.com/s3.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A View of
Cloud Computing. Communications of the ACM, 53(4):50–58, 2010.

[8] Asigra. Case Studies. http://www.asigra.com/product/casestudies/.

[9] AWS Service Health Dashboard. Amazon s3 availability event: July 20,
2008. http://status.aws.amazon.com/s3-20080720.html.

[10] A. Bessani, M. Correia, B. Quaresma, F. Andr´e, and P. Sousa.

DEPSKY: Dependable and Secure Storage in a Cloud-of-Clouds. In
Proc. of ACM EuroSys, 2011.

[11] K. D. Bowers, A. Juels, and A. Oprea. HAIL: A High-Availability and

Integrity Layer for Cloud Storage. In Proc. of ACM CCS, 2009.
[12] Business Insider. Amazon’s Cloud Crash Disaster Permanently

Destroyed Many Customers’ Data.

http://www.businessinsider.com/amazon-lost-data-2011-4/, Apr 2011.
[13] B. Calder et al. Windows Azure Storage: A Highly Available Cloud

Storage Service with Strong Consistency. In Proc. of ACM SOSP,

2011.

[14] B. Chen, R. Curtmola, G. Ateniese, and R. Burns. Remote Data

Checking for Network Coding-Based Distributed Storage Systems. In
Proc. of ACM CCSW, 2010.

[15] H. C. H. Chen and P. P. C. Lee. Enabling Data Integrity Protection in

Regenerating-Coding-Based Cloud Storage. In Proc. of IEEE SRDS,
2012.

[16] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K.

Ramchandran. Network Coding for Distributed Storage Systems.
IEEE Trans. on Information Theory, 56(9):4539–4551, Sep 2010.

[17] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A Survey on

Network Codes for Distributed Storage. Proc. of the IEEE,
99(3):476–489, Mar 2011.

[18] A. Duminuco and E. Biersack. A Practical Study of Regenerating Codes

for Peer-to-Peer Backup Systems. In Proc. of IEEE ICDCS, 2009.
[19] B. Escoto and K. Loafman. Duplicity. http://duplicity.nongnu.org/.

[20] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L.

Barroso, C. Grimes, and S. Quinlan. Availability in Globally
Distributed Storage Systems. In Proc. of USENIX OSDI, 2010.

[21] FUSE. http://fuse.sourceforge.net/.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In
Proc. of ACM SOSP, 2003.

[23] C. Gkantsidis and P. Rodriguez. Network coding for large scale content

distribution. In Proc. of INFOCOM, 2005.
[24] GmailBlog. Gmail back soon for everyone.

http://gmailblog.blogspot.com/2011/02/gmail-back-soon-for-

everyone.html.
[25] K. M. Greenan, E. L. Miller, and T. J. E. Schwarz. Optimizing Galois

Field Arithmetic for Diverse Processor Architectures and
Applications. In Proc. of IEEE MASCOTS, 2008.

[26] K. M. Greenan, J. S. Plank, and J. J. Wylie. Mean time to meaningless:

MTTDL, Markov models, and storage system reliability. In Proc. of
USENIX HotStorage, 2010.

[27] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang. NCCloud: Applying

Network Coding for the Storage Repair in a Cloudof-Clouds. In Proc.
of FAST, 2012.

[28] Y. Hu, P. P. C. Lee, and K. W. Shum. Analysis and Construction of

Functional Regenerating Codes with Uncoded Repair for Distributed
Storage Systems. In Proc. of IEEE INFOCOM, Apr 2013.

[29] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li. Cooperative recovery of

distributed storage systems from multiple losses with network coding.
IEEE JSAC, 28(2):268–276, Feb 2010.

[30] Y. Hu, C.-M. Yu, Y.-K. Li, P. P. C. Lee, and J. C. S. Lui. NCFS: On the

Practicality and Extensibility of a Network-Co
[31] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and

S. Yekhanin. Erasure Coding in Windows Azure Storage. In Proc. of

USENIX ATC, 2012.
[32] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-Free

Coordination for Internet-Scale Systems. In Proc. of USENIX ATC,

2010.
[33] S. Jiekak, A.-M. Kermarrec, N. L. Scouarnec, G. Straub, and A. Van

Kempen. Regenerating Codes: A System Perspective. CoRR,

abs/1204.5028, 2012.

[34] A. Kermarrec, N. Le Scouarnec, and G. Straub. Repairing Multiple

Failures with Coordinated and Adaptive Regenerating Codes. In Proc.

of NetCod, Jun 2011.
[35] O. Khan, R. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethinking

Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery

and Degraded Reads. In Proc. of USENIX FAST, 2012.
[36] N. Kolakowski. Microsoft’s cloud azure service suffers outage.

http://www.eweekeurope.co.uk/news/news-

solutionsapplications/microsofts-cloud-azure-service-suffers-outage-
395.

[37] M. Martal ´o, M. Picone, M. Amoretti, G. Ferrari, and R. Raheli.

Randomized Network Coding in Distributed Storage Systems with
Layered Overlay. In Information Theory and ApplicationWorkshop,

2011.

[38] M. Mayer. This site may harm yoyur computer on every search results.
http://googleblog.blogspot.com/2009/01/this-site-mayharm-your-

computer-on.html.

[39] MSPmentor. CloudBerry Labs Unveils Support for Low- Cost Amazon
Glacier. http://mspmentor.net/managed-services/cloudberry-labs-

unveils-support-low-cost-amazon-glacier/, Jan 2013.

[40] E. Naone. Are We Safeguarding Social Data?
http://www.technologyreview.com/blog/editors/22924/, Feb 2009.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

13

[41] F. Oggier and A. Datta. Byzantine Fault Tolerance of Regenerating

Codes. In Proc. of P2P, 2011.
[42] OpenStack Object Storage. http://www.openstack.org/projects/storage/.

[43] Panzura. US Department of Justice Case Study. http://panzura.com/us-

department-of-justice-case-study/.
[44] D. Papailiopoulos, J. Luo, A. Dimakis, C. Huang, and J. Li. Simple

Regenerating Codes: Network Coding for Cloud Storage. In Proc.of

IEEE INFOCOM, Mar 2012.
[45] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays

of inexpensive disks (raid). In Proc. of ACM SIGMOD, 1988.

[46] J. S. Plank. A Tutorial on Reed-Solomon Coding for Fault-Tolerance in
RAID-like Systems. Software - Practice & Experience, 27(9):995–

1012, Sep 1997.

[47] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn. A
Performance Evaluation and Examination of Open-Source Erasure

Coding Libraries For Storage. In Proc. of USENIX FAST, 2009.

[48] C. Preimesberger. Many data centers unprepared for
disasters:Industrygroup.

http://www.eweek.com/c/a/ITManagement/Many-Data-Centers-

Unprepared-for-Disasters-Industry-Group-772367/, Mar 2011.
[49] M. O. Rabin. Efficient Dispersal of Information for Security, Load

Balancing, and Fault Tolerance. Journal of the ACM, 36(2):335–348,

Apr 1989.
[50] K. Rashmi, N. Shah, and P. Kumar. Optimal Exact-Regenerating Codes

for Distributed Storage at the MSR and MBR Points via a Product-

Matrix Construction. IEEE Trans. on Information Theory,
57(8):5227–5239, Aug 2011.

[51] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran. Explicit
Construction of Optimal Exact Regenerating Codes for Distributed

Storage. In Proc. of Allerton Conference, 2009.

[52] I. Reed and G. Solomon. Polynomial Codes over Certain Finite Fields.
Journal of the Society for Industrial and Applied Mathematics,

8(2):300–304, 1960.

[53] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R.
Vadali, S. Chen, and D. Borthakur. XORing Elephants: Novel Erasure

Codes for Big Data. Proc. of VLDB Endowment, 2013.

[54] B. Schroeder and G. A. Gibson. Disk Failures in the Real World: What
Does an MTTF of 1,000,000 Hours Mean to You? In Proc. Of

USENIX FAST, Feb 2007.

[55] K. Shum. Cooperative Regenerating Codes for Distributed Storage
Systems. In Proc. of IEEE Int. Conf. on Communications (ICC), Jun

2011.

[56] K. Shum and Y. Hu. Exact Minimum-Repair-Bandwidth Cooperative
Regenerating Codes for Distributed Storage Systems. In Proc. of

IEEE Int. Symp. on Information Theory (ISIT), Jul 2011.

[57] C. Suh and K. Ramchandran. Exact-Repair MDS Code Construction
using Interference Alignment. IEEE Trans. on InformationTheory,

57(3):1425–1442, Mar 2011.

[58] TechCrunch. Online Backup Company Carbonite Loses Customers’
Data, Blames And Sues Suppliers.

http://techcrunch.com/2009/03/23/online-backup-companycarbonite-

loses-customers-data-blames-and-sues-suppliers/, Mar 2009.

[59] TechTarget. Cloud case studies: Data storage pros offer

firsthandexperiences.Http://searchcloudstorage.techtarget.com/feature

/Cloud-case-studies-Data-storage-pros-offer-first-handexperiences/.
[60] M. Vrable, S. Savage, and G. Voelker. Cumulus: Filesystem backup to

the cloud. In Proc. of USENIX FAST, 2009.

[61] M. Vukoli´c. The Byzantine Empire in the Intercloud. ACM SIGACT
News, 41:105–111, Sep 2010.

[62] Z. Wang, A. Dimakis, and J. Bruck. Rebuilding for Array Codes in

Distributed Storage Systems. In IEEE GLOBECOM Workshops,
2010.

[63] L. Xiang, Y. Xu, J. Lui, Q. Chang, Y. Pan, and R. Li. A Hybrid

Approach to Failed Disk Recovery Using RAID-6 Codes: Algorithms
and Performance Evaluation. ACM Trans. on Storage, 7(3):11, 2011.

[64] ZDNet. AWS cloud accidentally deletes customer data.

http://www.zdnet.com/aws-cloud-accidentally-eletescustomer- data-
3040093665/, Aug 2011.

[65] zfec. http://pypi.python.org/pypi/zfec.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

14

