Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

FTCloud: Fault Tolerant Multiple Cloud Storage
using Proxy based Storage System

Abhishek G, Kavyashree N,
Shreelakshmi D R, Shruthi S
Department of Computer Science and Engineering
T John Institute of Technology
Bangalore, India

Abstract— The recent trend is to stripe data across the multiple
cloud vendors to provide fault tolerance. But when the cloud
fails permanently and lose all its data we recover it with the help
of the other surviving cloud which provides data redundancy.
The solution is to provide a fault-tolerant multiple cloud
storage using a proxy-based storage system called FTCloud, this
achieves a cost effective repair for permanent double-cloud
failure. FTCloud is built using network-coding based storage
scheme called as FMSR(minimum-storage regenerating) codes
technique, it provides more fault tolerance and data redundancy
than the traditional techniques(e.g. like RAID6) and also use
less repair traffic thereby incur less data transfer cost. The key
feature of FMSR is that we provide encoding requirement
relaxation by preserving the network coding benefits in repair.
We implement this concept of FTCloud and deploy it on both
local and commercial clouds. We check and validate that FMSR
technique provides less cost and high performance in cloud
storage operations like upload and download.

Keywords - Regenerating Codes, Network Codes, Fault Tolerance,
Recovery, Implementation, Experimentation.

. INTRODUCTION

Cloud storage always provides the back up for data. But
usage of single cloud storage gives rise to problems such as
single point of failure, vendor lock in etc. The solution for
this is to stripe data across different cloud providers. By
making use of multiple cloud concept we can improve the
fault tolerance of cloud storage.

During striping of data, the existing methods perform well
when some clouds fails for shorter period of time or for
permanent failures there are many real life cases which tells
us the occurrence of permanent failure and are not
anticipated. Here in this view our work focuses on
unexpected permanent cloud failure. When the cloud fails
permanently we need to activate a repair to maintain the data
redundancy and to have a fault tolerance. The repair
operation retrieves the lost data from surviving clouds over
the network and it regenerates(reconstruct) lost data into a
new cloud. In the recent days the cloud storage providers
charge the users enormously for keeping the data backup, so
moving the data across cloud require high monetary costs. It
is very important to reduce repair traffic and also the
monetary cost due to the data migration.

Regenerating codes concept is proposed to repair traffic for
storing the data in a distributed storage system redundantly.

Srinivasa H P
Associate Professor
Department of Computer Science and Engineering
T John Institute of Technology
Bangalore, India

Every node can refer to some simple storage device, a cloud
storage provider or a storage site. The regenerating codes are
formed using the network coding concept, wherein the nodes
themselves perform the encoding operation and send the
encoded data. While repair is taking place, the surviving node
encode the data stored in it and send the encoded data to new
node which regenerates the lost data. The advantage of
regenerating code is that it require less repair traffic than the
existing methods with better fault-tolerance level. The
extensive study on regenerating codes are carried out in
following contexts([14], [16], [29], [34], [41], [50], [51],
[55]-[57]). But regenerating code's practical performance
will always remain uncertain. The main key challenge for the
deployment of regenerating codes in existing system require
that the storage node itself perform encoding operation
during repair. To make the regenerating codes portable to any
cloud storage services, we need to assume only the thin-cloud
interface where the storage node should only support the
standard read/write functionalities. This helps us to know
how practically we can deploy the regenerating codes in
multiple cloud storage.

Here in our work, we present you the design and
implementation of FTCloud, a proxy-based storage system
designed for providing fault-tolerant storage over multiple
cloud storage providers. FTCloud interconnect different
clouds and transparently stripe data across clouds. We also
propose the first implementable FMSR codes. i.e. functional
minimum storage regenerating codes.

The FMSR code implementation provides double fault
tolerance and also has the same cost as that of traditional
RAID based schemes but uses less repair traffic while single
cloud failure. We particularly eliminate the need of encoding
operations within storage nodes during repair, also preserves
benefit of network coding by reducing the repair traffic.
According to the survey made by us, this is the first study that
shows the application of regenerating codes in the storage
system and evaluates it practically.

The main advantage of the FMSR codes is that it is non-
systematic which means that only the encoded data is formed
by the linear combinations of the original data and will not
keep the original data like that of traditional schemes. The
FMSR design is mainly applied in two cases;

(i) Where the data backup is maintained

(ii) Where the whole data in the file should be restored
rather than the lost data.

Volume 3, | ssue 19

Published by, www.ijert.org 1

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

In real-life examples there are many organizations which
store an enormous amount of data like even in petabyte scale
using the cloud storage the case studies is provided in [4], [8],
[43], [59]. In August 2012, Amazon further introduced
Glacier [5], a cloud storage offering optimized data back-up
for low cost with slow and costly data retrieval. We provide a
solution in form of FMSR codes that provide an alternative
option for enterprises and organizations to store their data
with the help of multiple-cloud storage in a fault-tolerant and
cost-effective manner.

Our work is encouraged by the multiple cloud concept and
is developed by keeping multiple cloud storage concept, the
FMSR codes proposed would be applied in the distributed
storage systems that are prone to failures. And it is also
applied where network transmission bandwidth is limited. It
is applicable where minimizing traffic is important which
intern minimizes the overall repair time.

Our projects contribution is as below.

We are presenting a FMSR design by assuming the
occurrence of double fault tolerance. Here we show that the
FMSR can save 25% of repair cost when compared to
RAIDG6, when 4 nodes are used. And it can also save up to
50% when number of storage nodes increases. The FMSR
codes also maintain same amount of storage overhead as that
of RAID6 codes. FMSR can also be implemented in thin
cloud settings as they do not require encoding during repair.
Hence FMSR codes can be deployed in today's cloud
services.

 Here we let you know the implementation details of how
the file objects can be stored through FMSR codes.
Mainly we propose two-phase checking which conforms
the concept of double-fault tolerance. This two phase
checking ensures double fault tolerance through iterative
repair of failure nodes.

« The monetary cost analysis is done to show the
effectiveness of repair cost compared to traditional
approaches.

» Here we conduct experiments on both local and
commercial cloud settings. We ensure that our FMSR
code implementation provides a small amount of
encoding overhead that can be masked during file
transfer over internet. This gives room for further
research on FMSR codes in high-scale deployments.

The content of paper is as follows. Section 2 concentrates
on the importance of multiple cloud storage. Section 3,
concentrates on how FMSR codes reduce repair traffic
through an example. Section 4, concentrates on
implementable design of FMSR codes and analysis of
iterative schemes of FMSR design. Section 5, concentrates on
the deployment of FMSR codes. Section 6, Concentrates on
evaluation of RAID-6 and FMSR codes using both private
and commercial cloud settings. Section 7, Reviews related
work. And Section 8 concludes the paper.

Il. IMPORTANCE OF REPAIR IN MULTIPLE-
CLOUD STORAGE

In this section, the discussion is on the importance of repair
in cloud storage, mainly in the disastrous cloud failures which
make the data to be lost permanently and is unrecoverable.
Two types of failures are: 1) Transient failure 2) Permanent
failure.

Transient failure: Transient failure is nothing but the
cloud returns to normal after some time of failure and none of
the data is lost. The table A shows some of the real time
examples of occurrence of transient failure in today's clouds.
It shows how the failure may occur from several minutes to
even several days. It highlights that even though the cloud
provider like Amazon claims that it provides service with
99.99% of availability[6], there are some raising concerns
about this claim and the reliability of other cloud providers
after Amazon’s outage in April 2011 [12]. The transient
failures are common in the clouds, but they will be eventually
recovered. Thus we need to deploy multiple cloud storage
with more redundancy so that we can retrieve the data from
other surviving clouds during the failure.

Permanent failure: Permanent cloud failure is the one
where if the cloud is failed; the data on the cloud will be lost
permanently. This says that the permanent failure is more
disastrous than transient failure. Though the permanent cloud
failure is rare, there are many cases due to which they are still
possible:

» Data center may fail because of disasters. AFCOM [48]
found that many data centers are not prepared for
disasters. For example, 50% of the cloud services have
no plans regarding the damage repairs after the
happening of damage. It was reported that earthquake
and tsunami in northeastern Japan in March 11, 2011
knocked out several data centers there[48].

» Data loss and data corruption. There are many
examples where a cloud may accidentally lose some
data[12],[40],[58]. Example, In Magnolia [40] half
terabyte of data is lost.

» Malicious attacks. The basic way of providing the
security for data is to encrypt it before outsourced and
put on cloud. If the outsourced data is attacked by virus
or malware data is corrupted, which means though the
data is encrypted confidential outside, the data inside is
not useful. According to the study of AFCOM [48], 65
percent of data centers have no plan or procedure to deal
with cyber-criminals.

Since the permanent cloud failure is not like transient
failure where the cloud never returns back to normal, the data
will be lost and is unrecoverable. So we need to repair it and
reconstruct the lost data by making use of data available on
other clouds to maintain the fault-tolerance. By the word
repair, we mean to retrieve the lost data only from the
surviving nodes and reconstruct the data to new cloud.

Volume 3, | ssue 19

Published by, www.ijert.org 2

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

TABLE A

Example for transient failures occurring in different cloud
services.

CIO'?'d Failure reason |Duration Date
service
©009 | Software bug [24] | 4 days |Feb 27-Mar 2,201
Google | Programming error 40
Search [38] minutes Jan 31,2009

Amazon 3| GOSSIPProtocol e ool auly 20,2008

blowup [9]
Microsoft Malfunction in

Azure \Windows Azure [36] 22 hours | - Mar 13-14,2008

I, MOTIVATION OF FMSR CODES

Here in our concept, we are considering a distributed,
multiple cloud storage setting from client's point of view,
here the data is striped over multiple cloud providers. We are
proposing a proxy-based design [1], [30] which interconnects
the multiple cloud providers as shown in figure 1 (a). The
proxy layer acts as an interface between client application
and the clouds. If any cloud fails permanently, the proxy
starts the proxy operation as shown in figure 1 (b).

(b) Repair operation

(a) Normal operation

Fig.l. Proxy-based design for multiple-cloud storage: (a)
normal operation, and (b) repair operation when Cloud node 1
fails. Dunng repair, the proxy regenerates data for the new
cloud.

As you can see from the figure, the proxy takes the required
data pieces from other surviving clouds, reconstructs the lost
data and write it to new cloud. The repair operation doesn't
involve any direct interactions between the clouds.

Here we consider fault-tolerance based on the type of
MDS(Maximum Distance Separable) codes. A given file of
size M is divided into equal size native data chunks, this is
later linearly combined to form chunks of code. When an
MDS codes with (n, k) is used, the code chunks are then
distributed over n (greater than k) nodes, where every storing
chunks is of total M/k, such that the original file object may
be reconstructed from the chunks contained in any k of the n
nodes. This gives the opportunity to tolerate failures of any
n-k nodes. This feature is the property of MDS. The main
feature of FMSR codes is that the lost data chunks are
reconstructed without downloading or reconstructing the

whole file which means that we download very less file.

Our paper considers multiple cloud settings with two levels
of reliability: 1)Fault-tolerance 2)Recovery. Let us assume
that multiple cloud storage is double-fault tolerance for
example., RAID-6 and it provides data availability under
transient unavailability of maximum two clouds. So we set
k=n-2. Hence the client can always access the data until two
clouds fail transiently, or due to any connectivity problem.
Secondly, we consider single-fault recovery in multiple cloud
storage, which tell that permanent cloud failure is less
frequent. The main objective of our project is to minimize the
repair burden during storage during data migration over cloud
for permanent single cloud failure.

The amount of outbound data being downloaded from the
other surviving clouds during the single-cloud failure
recovery is defined as repair traffic. We try to minimize the
repair traffic for cost-effective repair .The inbound traffic is
not considered (i.e., the data that is been written to a cloud),
as it has no charge for many cloud providers (see Table 3 in
Section 6).

Now we study the repair traffic involved in different schemes
by an example. Suppose a file has to be stored of size M on
four clouds, each cloud is viewed as a logical storage node.
Let us now first consider conventional RAID-6 codes, which
are double-fault tolerant. Based on the Reed-Solomon code
[52] we consider a RAID-6 code implementation, as shown in
Figure 2(a). Here, we divide the file of M into two native
chunks (i.e., A and B) of size M /2 each and add two code
chunks formed by the linear combinations of the native
chunks. Suppose the Node 1 is down now, then the proxy
must download same number of chunks as in the original
from other two nodes (e.g., B and A+B from Nodes 2 and 3,
respectively). Then the surviving nodes, reconstructs and
stores the lost chunk X on the new node. Hence it can be
concluded as The total storage size is 2M , while its repair
traffic is M.

To reduce the repair traffic we Regenerating codes. The exact
minimum-storage regenerating (EMSR) codes [57] is one
among class of regenerating codes. EMSR codes maintains
the storage similar in size as in RAID-6 codes, so as to
reduce the repair traffic; the storage nodes send encoded
chunks to the proxy. Figure 2(b) illustrates the double-fault
tolerant implementation of EMSR codes. The file to be
uploaded is divided into four chunks, as shown in the figure
and accordingly allocation of native and code chunks is done.
If suppose Node 1 is down then to repair it, each surviving
node sends the XOR summation of the data chunks to the
proxy, which then reconstructs the lost chunks. The storage
size of EMSR codes is 2M (same as RAID-6 codes), while
the repair traffic is 0.75M which is 25% of saving (compared
with RAID-6 codes). As the nodes will generate encoded
chunks during repair, EMSR codes leverage the notion
network coding [2].

We now consider the double-fault tolerant implementation of
FMSR codes as denoted in Figure 2(c). A file is divided into

Volume 3, | ssue 19

Published by, www.ijert.org 3

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

four native chunks, and then constructs eight distinct code
chunks P1... P8 obtained by performing different linear
combinations of the chunks. Each code chunk has the same
size M /4 . For recovery process , any of the two nodes can
be used the original four native chunks. If Suppose Node 1
proxy retrieves one code chunk from each of the surviving
node, so it

3. let us assume that single-fault tolerance (i.e., k =n — 1)
and single-fault recovery, according to the theoretical results
of [16], it is shown that traditional RAID-5 codes [45] have
the same data redundancy and same repair traffic as FMSR
codes.

File of siee M

——

{a) RAID-6 codes
File ol size M

L] Proxy
Node X S ——
[con]

L.

A X A I‘ rl A IH‘
Node 3 o "jj‘ semeca M l::I\I u ||

.

(o=
L.

by EMSR codes

File ol sive M

Proxy

(c) FMSR codes

Fig. 2. Examples of repair operations in different codes withn =4 and k = 2. All
arithmetic operations are performed over the Galois Field GF(28).

Three code chunks each of size M/4 is 'downloaded. Then
the proxy regenerates two code chunks P1' and P2' by
performing of three code chunks. Note that P1' and P2’ are
still linear combinations of the native chunks. The proxy then
writes P1' and P2’ to the new node. The storage size in
FMSR codes is 2M (it is as in RAID-6 codes), even though
the repair traffic is 0.75M , which is similar to that of the
EMSR codes. A FMSR codes is that encoding is not
performed during repair of nodes.

In order to generalize double-fault tolerant we make use of
FMSR codes for n storage nodes, a file of size M is divided
into 2(n - 2) native chunks, and it is used to produce 2n code
chunks. Then two code chunks of size M/2(n—-2) will be
stored in each node. Thus, the total storage size is Mn/(n — 2).
In order to repair a failed node, downloading of one chunk
from each of the other n—1 nodes, so the repair traffic is

M(n—1)/2(n—2) . In contrast, for Mn/(n —2) RAID-6 codes,
the total storage size is also , when the repair traffic is
having the value as M . Whenever n is large, the FMSR
codes can save the repair traffic by close to 50%.

Note To access a single chunk of the file, download and
decode method is necessary. FMSR codes are non-
systematic, as they keep only code chunks but not native
chunks. The complete file for that particular chunk. This is
opposed to systematic codes (as currently existing in the
traditional RAID storage), where native chunks are placed.
FMSR codes are acceptable for long-term archival
applications, the read frequency is typically low and also, to
restore backups, it is good to retrieve the entire file rather
than a particular chunk [14].

This paper considers Reed-Solomon codes the
baseline for RAID-6 implementation .This repair method
involves reconstruction of complete file first, and can also be
applicable for all erasure codes in general. Recent studies
[35], [62], [63] proves that data reads can be reduced
specifically for XOR-based erasure codes. Consider an
example, reading of the data can be reduced by 25%
compared to that of reconstructing the whole file [62], [63].
Although such approaches can achieve FMSR codes, which
can save up to 50% of repair traffic, the use of efficient XOR
operations can also be practical interest.

FMSR CODE IMPLEMENTATION

Let us now present the details for implementing FMSR codes
in multiple-cloud storage. FMSR codes has three operations
on a particular file object as follows:- (1) file upload; (2) file
download; (3) repair. Each cloud repository is viewed as a
logical storage node. In a thin-cloud interface [60], such that
the storage nodes (i.e., cloud repositories) requires only to
support basic read/write operations. Thus, we expect that our
FMSR code implementation is compatible with today's cloud
storage services.

One of the key property of FMSR codes does not require the
lost chunks to be exactly reconstructed, but instead, we
regenerate code chunks that are not necessarily identical to
those originally stored in the failed node during repair, as
long as the MDS property holds. A two-phase checking
scheme is proposed, which ensures that the on all code
chunks nodes always satisfy the MDS property, and hence
data availability, even after iterative repairs. Here in this
section, the importance of the two-phase checking scheme is
been analyzed.

4.1 Basic operations

411 File Upload:

To upload a file F, the first step is to divide the file into k(n -
k) equal-size chunks, indicated by (Fi)i=1,2, - -,k(n—k). Then
encode these k(n - k) native chunks into n(n - k)code chunks,
denoted by (Pi)i=1,2,---,n(n—k). Each Pi is formed by using a
linear combination of the k(n — k) native chunks. we let EM
=[oi,j] be an n(n — k) X k(n—k) encoding matrix for some
coefficients ai,j (wherei=1,...,n(n—k)andj=1,...,

Volume 3, | ssue 19

Published by, www.ijert.org 4

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

k(n — k)) in the Galois field GF(28). We call a row vector of
EM an encoding coefficient vector (ECV) , which contains
n(n — k) elements. We make use of ECVi to denote the ith
row vector of EM. We compute each Pi by the product of
ECVi and all the native k(n—k) ai,j Fj for

chunks F1,F2 ..., Fk(n — k), i.e., Pi= Zf‘f’i_k) ai,jFj for
i=1,2,..,n(n-k).where all arithmetic operations are performed
over GF(28).The code chunks are evenly stored in the n
storage nodes, each having (n-k) chunks and we store the
complete EM in a metadata object that is then replicated to
all storage nodes (see Section 5). There are many ways of
constructing EM, as long as it passes two-phase checking (see
Section 4.1.3).Note that the implementation details of the
arithmetic operations in Galois Fields have been extensively
discussed in [25].where all arithmetic operations are
performed over GF(28).

4.1.2 File Download:

To download a file, first download the corresponding
metadata object that contains the ECVs. From n storage
nodes chose any k nodes , and download the k nodes from
code chunks. The ECVs of the k(n — k) code chunks can
form a k(n—k)xk(n—k) square matrix. If the MDS property is
satisfied, then as the according to the definition, the inverse
of the square matrix should exist. Later the inverse of the
square matrix along with the code chunks and obtain the
original k(n — k) native chunks is multiplied. The idea
obtained here is that we treat FMSR codes as standard Reed-
Solomon codes, and we describe the technique of creating an
inverse matrix to decode the original data , in the tutorial
[46].

4.1.3 lterative Repairs:

Let us now take an example of the repair of FMSR
codes for a file F for a permanent single-node failure. Given
that FMSR codes regenerates different chunks in each repair,
one of the challenge is to ensure that the MDS property is
achieved even after iterative repairs. In contrast to
regenerating the exact lost chunks as in RAID-6, which
guarantees the invariance of the stored chunks. A two-phase
checking heuristic is proposed as follows. Suppose that the
(r — 1)th repair is successful.
and now let us consider how to handle the rth repair for a
single permanent node failure (where r > 1). We now first
check if the new set in all storage nodes satisfies the MDS
property after the rth repair. In addition to that we also check
whether any other new set of chunks in all the existing
storage nodes still achieve the MDS property after the(r +
L)th repair, should another single permanent node failure
occur (we call this the repair
rMDS) property). Let us now describe the rth repair as
follows.

Step 1: The encoding matrix from a surviving node has to be
downloaded. The encoding matrix specifies the ECVs for
constructing all code chunks through linear combinations of
native chunks. These ECVs are used later for two-phase
checking. Since EM is embedded in a metadata object that is

replicated, we can simply download from one of the
surviving nodes the metadata object.

Step 2: Now select one ECV from each of the n — 1
surviving nodes. Each of ECV in EM corresponds to a code
chunk. We now pick one ECV from each of the n -1
We call those selected ECVs to be ECVil , ECVi2 ,....,
ECVin—1
Step 3: obtain a repair matrix. We construct an (n—k)x(n—1)
repair matrix RM = [yi,j], where each element yi,j (where i
=1,...,n—kandj=1,...,n— 1) is randomly selected in
GF(28). Note that the idea of generating a random matrix for
reliable storage is consistent with that in [49].

Step 4: Calculate the ECVs for the new code chunks and
reproduce a new encoding matrix. now multiply RM with the
ECVs selected in Step 2 to construct (n-k) new ECVs,
Denoted by ECVi' = Y77 vi,jECVi for i=1,2,...,(n-K). Then
reproduce a new encoding matrix, denoted by EM', that is
formed by substituting the ECVs of EM of the failed node
with its corresponding new ECVs.
Step 5: Given EM', check if both the MDS and rMDS
properties are satisfied. The MDS property is verified by
enumerating all (nk) subsets of k nodes see if each of their
corresponding encoding matrices forms a full rank. For the
rMDS property, we verify for any possible node failure (one
out of n nodes), we can collect one among of n—k chunks
from each of the other n—1 surviving nodes and then
reconstruction of the chunks is done on new node, such that
the MDS property is maintained. The number of checks
performed for rMDS property is at most n(n - k)n-1(%). If nis
small, then enumeration complexities for both MDS and
rMDS properties are manageable. If either of phases fails,
then we return to Step 2 and repeat. We emphasize that Steps
1 to 5 with the ECVs, so that their overhead does not depend
on size of chunk.

Step 6:Here Downloading of the actual chunk data and
regenerating the new chunk data. If the two-phase checking
that is shown in the Step 5 succeeds, then we proceed with
the process to download the n — 1 chunks that will
correspond to that of the selected ECVs shown in the Step 2
from the n — 1 surviving storage nodes to NCCloud. Also, we
are using the new ECVs computed in Step 4, we are also
regenerating the new chunks and upload them from
NCCloud to a new node.

Remark: we can simplify the complexity of the two-
phase checking with that of the proposed FMSR code
construction that is being done in our recent work [28]. And
also our proposed construction will specify the ECVs to be
selected in Step 2 deterministically, and that will tests their
accurty (i.e., satisfying both the MDS and rMDS properties)
by checking it against that a set of inequal-ities shown in the
Step 5. This will also reduces the complexity present in each
of the iteration along with the number of iterations (i.e.,
number of times the Steps 2-5 are being repeated) in process
of generating a valid EM'. According to our present
implementation of the NCCloud also includes the proposed
construction. We also refer the readers to [28] for more
details of the proposed construction.

Volume 3, | ssue 19

Published by, www.ijert.org 5

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

4.2 Analysis

The process of checking the rMDS property in each repair is
very much necessary for the purpose of maintaining the
MDS property after all the iterative repairs done . We now
show through a counter-example that if a repair is checking
only the MDS property but without checking the rMDS
property, then in such cases the MDS property will be lost in
the very next repair. We are also showing it through the
simulations that our two-phase checking can even sustain
many iterations of repairs in more than the general cases.

T
o

Fig. 3. Counter-example: code chunks that satisfy the MDS property but not
the rMDS property

4.2.1 A Counter-Example

Here counter example shown in the figure 3is considered to
show the importance of the rMDs property=4 and k=2 is
same as that being the described in the figure2(c) .If suppose
a linear combination is done for the code chunks P1, ..., P8
from the native chunks A,B,C and D as shown in the figure
3,and these linear combinations are similar to that of te
shortened even odd code IN[62].Verification of whether the
code chunks P1, . . ., P8 satisfy the MDS properties easy i.e,
reconstruction of the native chunks A,B,C and D can be done
using the four chunks from any two nodes .But,we do not
check whether it satisfies the RMDS property(as they do not
satisfy, we shall see it later).

Now consider that node FMSR codes,if the basis of the
FMSR codes fails ,ne chunk from each nodes 1,2,and 3 the
repair selects(denote the chunks X,Y, and Z)and using them
regenerate the new code chunks P7'" AND P8'that will be
stored in a new node(that will be stored in a new node
4).Totally there are 23 =8 possible selections of {X,Y,Z}.
Lets consider one possible selections of{X,Y,Z}.There lets us
use one possible selection{P1, P3, P5}. Now the new code
chunks become E

P7'=v1,1P1 +y1,2P3 +y1,3P5,

P8' =v2,2P1 +y2,2P3 +y2,3P5,

where yi,j i=1,...,n—kandj=1,...,n— 1) are some
random coefficients used to generate the new code chunks.
Then we have

P7'=(y1,1 +y1,3)A + (y1,2 +v1,3)C,

P8' = (y2,1 +72,3)A + (y2,2 +y2,3)C .

Since P1 = A and P2 = B, we cannot reconstruct the native
chunk D from P1, P2, P7', P8'. The MDS property is lost
because the chunks of Nodes 1 and 4 cannot be used to
reconstruct the native chunks. Thus, the repair fails with this
selection of chunks.

The chunks of nodes 1 and 4 cannot be sed to reconstruct the
chunks hence the MDS property is lost.in the selection of the
chunks the repail fails due to this reason.

Similar kind of the reasoning can be applied to the other
possible selections of the chunks .The selection of the eight
possible selection of the chunks along with the set chunks
that cannot be used anymore to rebuild the original file is
shown in the table 2.

TABLE 2
Eight possible selections of chunks from surviving nodes for

generating P70 and P80, along with the corresponding set of
chunks that will fail to reconstruct the file.

Set of chunks that cannot rebuild the

X,Y,Z file

P1, P3, P5 P1, P2, P70, P80 (Nodes 1 and 4)
P2, P3, P5 P1, P2, P70, P80 (Nodes 1 and 4)
P1, P4, P5 P3, P4, P70, P80 (Nodes 2 and 4)
P2, P4, P5 P5, P6, P70, P80 (Nodes 3 and 4)
P1, P3, P6 P5, P6, P70, P80 (Nodes 3 and 4)
P2, P3, P6 P3, P4, P70, P80 (Nodes 2 and 4)
P1, P4, P6 P1, P2, P70, P80 (Nodes 1 and 4)
P2, P4, P6 P1, P2, P70, P80 (Nodes 1 and 4)

MDS property after the repair. The above counter-example
shows on checking the MDS property only but not on how
the rMDS property can lead to a failed repair.

Simulations

Simulations is conducted to justify the rMDS
property that can make an iterative
repairs sustainable. Evaluation is done using simulations it is
the overhead of our two -phase checking(steps from 2 to 5 of
the repair).Here our simulation is done on the 2.4GHz CPU
core. Firstly ,for different values of new consider the
multiple rounds of repair and the argue in the addition to
checking of the MDS property, and the rMDs property
checking is required for the iterative repairs. Particularly, In
each round ,we select a node randomly that has to be failed
and then repairing the failed node . We consider a repair is
bad if the loop of Steps 2 to 5 in two-phase been repeated
over a threshold number of times but still no suitable
encoding matrix is being obtained. In this simulation, we are
varying the threshold of the number of loops for identifying a
bad repair. Maximum of 500 rounds of repairs being carried
out, and stop once bad repair. We are not considering the
construction of [28] in this part of simulations to study the
effects of the baseline
Figure 4 shows the number of rounds of repair that can be
sustained when the rMDS property is whether checked or is
not . It shows checking the or is not . It shows checking the
rMDS property provides us to sustain more rounds of repair
before seeing a bad repair. For example,if suppose that we set
the thresholdas 20 loops. Then repair can be sustained for
500 rounds, for different values of n (number of nodes) by
checking the rMDS property, but a bad repair quickly (e.g., in

Volume 3, | ssue 19

Published by, www.ijert.org 6

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

3 rounds of repair for n = 10) if we don’t check the rMDS
property. Next we evaluate through simulations the time of
the two-phase checking, with the proposed FMSR code
construction[28] that reduces the complexity.
In each round of repair, randomly pick a node to be failed
and carry out the repair operation. Then carry out the two-
phase checking (i.e., Steps 2 to 5), and measure the time
required to generate an encoding matrix that satisfies both the
MDS and rMDS properties.

Figure 5 plots the cumulative time of two-phase checking for
50 rounds of repaig in log scale) for n =4

with iMDS —&— without rMDS 3

S0 Y &

=]
-
E.

Hounds of epair sustained

8] 10

=
o
m

3 =

(a) Threshold for bad repair = 5 loops

E with IMDS —&— without rMDS 36—
m

E 500 " " " &

S 400 | e

2 apof -

[0

= 20 X,

w 100 ",

2 o T -) L)

E 4 5 [7 8 g 10
- n

(b) Threshold for bad repair = 10 loops

with iMDS —&— without tMDS -~

] K ' ' A A

Hounds of repair sugtained

(c) Threshold for bad repair = 15 loops

a0

& with MDS —&— without (MDS 34—
m

E 1) e i i i i

S an0 "_"__

5 M k

w 200 "

a 100

E 0 e

3 4 5 g 7 g] 10

n
{d) Threshold for bad repair = 20 loops
Fig. 4. Number of rounds of repair sustainable without seeing
a bad repair. n = 16. The checking process done takes the
negligible time compared to that of the actual repairs of even
a 1MB file (see Section 6.2.2). consider for example, when n
= 10, it takes only 0.02s to carry out 50 consecutive repairs
(around 0.0004s per repair); even when the value of the n =
16, it takes only 0.1s to carry out 50 consecutive repairs
(around 0.002s per repair). Here observe that the range of n
we consider following the stripe sizes used in many practical
storage systems [47]. In order to reduce it further reduce the
overhead, we can pre-compute the newly encoding
coefficients for any possible node failure offline when the

system is running as normal, and keep the obtained results to
prepare for the next repair.

4.2.3 Reliability Analysis
Following the studies that is evaluating the reliability of
various erasure codes and replication (e.g., [20], [31],

01

E' | =i ——
5 Ne14 ——
i N=12 ——
LT n-lg ——
5 [-
E =6 =
o fed —4—
= 0001

H

E

3 0.000

0 5 10 15 20 25 30 35 40 45 50
Riound
Fig. 5. The cumulative time needed by the checking phase
(plotted in log scale) in 50 consecutive rounds of repairing
fromn=4ton=16.

— Mp

Fig. 6. Markov model for double-fault tolerant codes.

we are comparing the reliability of FMSR codes and
traditional RAID-6 codes with respect to the different failure
rates with the help of the mean-time-to-data-loss (MTTDL)
metric, which is defined as the expecting time which has been
elapsed till the original data will be unrecoverable. When
MTTDL is not that effective to identify the qunatity the real
reliability [26],in such case it remains a more adopted
reliability metric of the storage community and we

Make use of it only for the comparative study of different
coding schemes with different repair performance also.

MTTDL is being solved using the Markov model. Figure 6
it shows the Markov model which is suitable for the double-
fault tolerant codes (i.e., k = n — 2), in which state i (where i
=0, 1, 2, 3) is denoting the number of the failed nodes in a
storage system. State 3 indicates that there failed nodes are
more than two in number and the data which is permanently
lost. We are computing the MTTDL which is the expected
time to move from state O (i.e., all nodes which are normal) to
state 3.

Here we are making an assumptions in our analysis. For
the sake of the simplicity, we are assuming that node failures
and repairing the process are indepen-dent events which
follow an exponential distribution. But this assumption is
imperfect in general [54], but which makes our analysis
tractable and which has been used in previous studies [20],
[31], [53]. Let it A be the node failure rate (i.e., 1/A is the
expected time in which failure of a node occurs). hence, the
transition rate from the state i to state i +1 is (n — i)A, where i
=0, 1, 2. And also, consider p; and U be the repair rates for
that of the single-node and double-node failures, respectively.
We are assuming that the transfer network between the
surviving nodes and that of the proxy is one of the major
bottleneck (see the Section 3 for this formulation) and finding

Volume 3, | ssue 19

Published by, www.ijert.org 7

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

the resulting repair rates. Assume S being the size of the data
stored in each of the node (i.e., the total amount of original
datathat is being stored is (n — 2)S) and B being the network
capacity between the surviving nodes and that of the proxy.
Now, considering the repair of a single-node failure. As
shown in above Section 3, for FMSR codes, the repair traffic
is calculated as (n — 1)S/2 and hence p1=2B/(n — 1)S
RAID-6 codes, the repair traffic is (n — 2)S and hence
Mi1=-B/(n — 1)S, For the repair of a double-node failure,
both

te 406 EyE 10000

- AADE —8— | = —

E 100000 B e

g 3 1000 -]

= 2

o 10000 -

| . | 100 |

= 1000 -l;-ﬁ" = EH —

- T " RAIDE —5—

0 02 04 D8 08 1 0D 02 04 0 02 |

Mz ork Fansier rake (Ghps)
{2) MTTIL vs. node failue rae () MTTIML vs. netwark transfer rate
{reztweork iransfer raie = | Gips) (node failure rate = L5 per year)
Fig. 7. MTTDLs of FMSR codes and RAID-6 codes are (plotted in log
scale) when the value of n =10 and k = 8.

Moda failue rate (per year)

Of the FMSR codes and that of the traditional RAID-6 codes
will resort to the conventional approach and also the
reconstruction of the lost data by downloading of the total
amount of original data (i.e., (n — 2)S) from that of the
remaining k = n—2 presting nodes. Both of them have

M2 = B/(n—1)S We must now evaluate the MTTDLs of
the FMSR codes and that of the traditional RAID-6 codes
for some of the specific parameters. Suppose that we fix n =
10, k=8, and S = 1TB. Figure 7(a) is showing the MTTDLs
for different values of A from 0.1 to that of the 1 (in units per
year) when the value of the B = 1Ghps, while Figure 7(b)is
showing the MTTDLs for different values of B from 0.1 to 1
(in units of Gbps) when the value A = 0.5 is per year. Based
on the settings that we have done, the MTTDL of FMSR
codes is upto 50% to 80% lengthier than that of the
traditional RAID-6 codes because of their higher repair rate
for a single-node failure. Considering the example, with A =
0.5 per year and B = 1Gbps, the MTTDL of the FMSR codes
is 76% longer.

4.3 Discussions

We here consider the several open issues of the current
design of FMSR codes, and then we would give them as
future work.

Generalization of FMSR codes. Here we presently
consider only an FMSR code implementation with the
double-fault tolerance (i.e., k = n — 2). Its accuracy is being
proven in our recent work [28]. When the value of the
double-fault tolerance is the that of the default setting of
current enterprise storage systems (e.g., 3-way replication in
the GFS [22]), it is not clear on how to generalize the FMSR
codes for the different (n, k) values. In ad-dition to this, in
practical cloud storage systems [31] while single-node
failures are the most common failure patterns , it is most

interesting to study like how to generalize the FMSR codes
to support the most effective repairs of concurrent node
failures.

Study of different reliability metrics. In this Section
4.2.3, we are comparing the reliability of FMSR codes and
the conven-tional RAID-6 codes for the different failure
rating using that of the MTTDL metric. The open issue for
the modeling the failure rate of a cloud repository. In the
future works, we can also plan to the conduct further
analysis regarding the reliabilty using the more effective
metrics [26].

Degraded reads. When the process of reading the original
data in failure mode is done then, we perform degraded
reading, in which we are reconstructing the lost data of a
failed node from the available data on the other surviving
nodes. In FMSR codes, we are always downloading the same
amount of original data by connecting to of the any k nodes
(refer Section 4.1.2); in case of traditional RAID-6 codes, the
original amount of data is retrieved in order to recover the
lost data. Thus, traditional RAID-6 and FMSR codes retrieve
the equal amount of data in degraded reads, when FMSR
codes have higher computational overhead in decoding (refer
Section 6.2.1). Recent studies [31], [35], [53] improve the
degraded read performance for erasure-coded data. we do not
consider degraded reads in this work since FMSR codes are
designed for long-term archives that are rarely read.

IV. FTCLOUD DESIGN AND IMPLEMENTATION

FTCloud is implemented as a proxy that connects user
applications and clouds. It is designed on top of three layers.
Firstly, the File System Layer which makes FTCloud as a
mounted drive that can be easily interfaced with user
applications. Secondly, the encoding and decoding functions
are taken care by Coding Layer. Lastly, the read/write
requests with clouds are dealt by Storage Layer.

Every file is attached to a metadata object that is replicated
at each repository. The metadata object includes the details of
file and the information related to coding.

Java is the key language to FTCloud’s implementation and
the coding part is implemented through C. The file system
layer is constructed on FUSE [21]. Both RAID-6 and FMSR
codes are implemented by coding layer. The RAID-6 code is
implemented based on the Reed-Solomon code [52] (as
shown in Figure 2(a)) for baseline evaluation. zfec [65] is
used to implement the RAID-6 codes. For fair comparison we
make use of zfec’s optimization for implementation of FMSR
codes.

Multiple chunks that are generated by FMSR codes are
stored on same repository which causes request cost
overhead. In order to reduce it, aggregation of those chunks is
performed before upload .Hence FMSR codes keep only the
aggregated chunks per file object on each cloud like in
RAID-6 codes. While retrieving a particular chunk, its offset
within the combined chunk is calculated and a range GET
request is issued.

Volume 3, | ssue 19

Published by, www.ijert.org 8

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

FTCloud is deployed in one or more machines. Inorder to
prevent simultaneous updates on same file we use
ZooKeeper[32] that implements a distributed file-based
shared lock. Pre-liminary evaluations is conducted in a LAN
environment andthe overhead that could be caused by
ZooKeeper is observed to make sure its minimal. Our focusis
on deploying FTCloud on a single machine, and is mounted
as a local file system.

V. EVALUATION
FTCloud prototype is used to evaluate RAID-6 codes as well
as FMSR codes in multiple cloud storage. The data retrieval

with two cloud failures is allowed by focusing on settingk = n
— 2 for different values of n.

TAEBLE3

Monthly price plans {in US dollars) for Amazon 33 (US
Standard), Faackspace CloudFiles and Windows Azure Storage

(Morth Amenca and Europe), as of May, 2013,

53 E& Arure
Storage (per GE) 500083 [50010 | S0.083
Doatz tranzfer m (per GB) fres Free fres
Data tranzfer out (per GE) 5012 | 5012 | 5012
PUT POST (per 10K requests) 0053 | Fres 50.001
GET (per 10E requests) §0.004 | Free $0.001

Our goal is to discover the practical usage of FMSR codes
in multiple cloud storage. There are two parts in evaluation.
Firstly, the comparison of the monetary costs when RAID-6
and FMSR codes are used is performed. This is based on the
price plans of today’s cloud providers. Secondly, response
time performance of FTCloud prototype is evaluated on both
local and commercial cloud provider.

Summary of evaluation results.

Our summary goes as below. Main importance is given to
the monetary cost advantage of using FMSR codes over
RAID-6 codes, on the other hand maintaining good response
time performance. In case of monetary costs in normal
operations, both RAID-6 and FMSR codes costs almost the
same in operation of storage, and in the operation of repair,
FMSR codes is ahead of RAID-6 codes because it saves a
good amount of transfer comparatively.When it comes to
response time, both FMSR and RAID-6 codes have
comparable response time performance (within 5%) when it
is deployed on a commercial cloud (Azure).The transmission
performance of the Internet determines theresulting response
time.

6.1 Cost Analysis
6.1.1 Repair Cost Saving

Let us first analyze saving the costs due to repair. Table 3
includes the price plans in each month for three major
providers as of May 2013. We analyse the cost based for
more than 1GB/month data transfer within a limit of
1TB/month of data usage.

Looking at the analysis in Section 3, we could save 25-
50% of the traffic of download during storage repair. The size
of the storage and the number of chunks generated per file
object is same in both RAID-6 and FMSR codes. In the
analysis, we have neglected two considerations in
practicality: One, the size of metadata (Section 5). Two, the
number of requests that are issued while repair. We prove
that our argument of neglecting these consideration, also
argue that the optimized calculations based only on file size
are sufficient for real-time applications.

Metadata size: According to ourimplementation, the size
metadata for FMSR codes is within 160 bytes when n = 4 and
k = 2, no matter what the file size is. When n is greater,
example when n =12 and k = 10, the metadata size is

TABLE 4
Tiered monthly price plans (in US dollars) for both Amazon
33 (US Standard) and Windows Azure Storage (MNorth
America and Europe), as of May 2013,

Storage (per GE) Doata transfer out (per GE)
$0.083 (First 1TE/month) 80.12 (First 10TE/month)
8008 (MNext 49TE/month) 809 (MNext 40TE/month)
8007 (WNext 430TE/month) 8007 (WNext 100TE/month)
S0.065 (Next S00TE /month) $0.03 (Ower 150TE/month)
80.06 (MNext 4000TE/month)

still inside the range of 900 bytes. Main aim of FTCloud is to
provide backups for long time(see Section 3), and to integrate
with other applications used for backup. In order to save the
overhead of processing, the backup applications that are
existing (e.g., [19], [60]) combines small files into a larger
data chunk.For instance, 4MB is the chunk size that is created
by the default setting for Cumulus [60]. Hence, the overhead
of metadata size is made negligible. Since the amount of file
data stored by both RAID-6 and FMSR codes is same, they
have much similar costs.

of storage in normal usage.

Number of requests: Observations of Table 3 says that, it
is being charged for requests by some cloudproviders. The
number of requests when retrieving data during repair is
different for RAID-6 and FMSR codes. Suppose a file object
of size 4MB is stored with n = 4 and k = 2. While repairing,
RAID-6 code retrieves two chunks and FMSR code retrieves
three chunks(see Figure 2). The overhead of cost due to the
issue of GET requests for RAID-6 is equal to 0.171 percent
and for FMSR codes is 0.341%. Hence it is an insignificant
0.17% increase.

6.1.2 Case Study

We now provide the conclusions for our analysis of cost
using an enterprise use case. Our analysis is built on the case
of Backupify, who is a cloud backup solution provider,
founded in 2008 and used to store backups of amount that is
in the range of terabytes to petabytes o S3 and Glacier . To
make our analysis simple, let’s assume that Backupify stores
backups of worth 1PB in the cloud. And also the data is
replicated over 10 clouds, with n = 10 and k = 8, it causes a

Volume 3, | ssue 19

Published by, www.ijert.org 9

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

redundancy overhead of 25%. As we have been arguing
above, both RAID-6 and FMSR codes causes same storage
cost and data transfer cost, but FMSR code causes less repair
cost comparatively to RAID-6 codes. Precisely, FMSR codes
saves the cost by a percentage of 1-((n-1)/2(n-2))(see Section
3), equal to 43.75%. In the following, considering two cost
models.

Regular-cost storage model.

If terabytes of data needs to be stored, the pricing scheme
used by cloud storage providers is a tiered scheme, which
allows higher usage at lower rates. Table 4 poses a simplified
tiered pricing scheme and used by both Amazon S3 and
Windows Azure. This tiered scheme is used for most of our
cost calculation.

Coming to our case, the amount of data that is stored is
1.25 petabytes, and $86,851 is the storage cost to be paid
monthly for both RAID-6 and FMSR codes. Suppose a cloud
repository fails permanently and then we run the operation of
repair, then the amount of data downloaded by RAID-6 code
and FMSR code is 1PB and 0.5625PB respectively. Hence,
the repair cost for RAID-6 codes is $56,832, and that of
FMSR codes is $33,894. Showing that FMSR code saves cost
amount of $22,938.

Low-cost storage model.

We say that the monthly storage cost can be exceeded by
the repair cost if a storage model of low cost is used
alternatively. For example, Amazon Glacier [5] which uses
the same data price of S3, charges a flat rate of $0.01 per GB
of stored data, referring to the table 4, this is much cheaper
than S3. But the drawback of using Amazon instead of S3 is
that it consumes a longer time for the restore operation and is
also more expensive. And also, if more than 5% of stored
data is to be restored, Amazon charges a restore fee of $0.01
per GB on monthly basis.

According to this cost model, the monthly storage cost is
reduced to only $13,107 for both RAID-6 and FMSR codes.
However, the cost of repair for RAID-6 codes is $66,662, and
that of FMSR codes is $39,137. Hence FMSR codes save cost
by $27,525.

We cannot say that the annual saving that is brought by the
reduction in repair cost to be purely measured by the failure
rate of a cloud storage repository, we note that in the last few

years ,permanent data loss of varying degrees has occurred
in cloud storage since its adopted by the masses popularly
(e.g., [12], [40], [58], [64]). If we calculate that if complete
repairs have to be made for every two year(average), this
results over $10,000 of saving annually in our case.

Concluding, we observe that in spite of cloud failures
being rare, the monetary benefit gained by usage of FMSR
codes in events of repair that is unexpected is important. We
haven’t showed another consideration in practicality, which is
data accumulation. According to our case study we assume
that the amount of data stored is constant. But during times
like, when customers are producing new data daily or when
the number of customers using the storage service is

increased, the amount of data is no more constant but grows
along with the time in reality. As time passes, this larger data
accumulation results in archive of larger size, thus making
our monetary advantage in repair cost more emphasized.

6.2 Response Time Analysis

Our FTCloud prototype is deployed in real environments.
The three basic operations that stands as a basis for us to
evaluate the response time performance are, file upload, file
download and repair, in two scenarios. In the first part, the
time taken by the different FTCloud operations is analyzed in
detail. In order to reduce the effects caused by network
fluctuations, it is performed on a local cloud storage test bed.
In the second part, we evaluate how actually FTCloud
performs when deployed on a commercial cloud. Forty runs
is the average of all results. Since our assumption, that the
coefficients for repair are offline generated (see Section
4.2.2), we do not take the time taken by two-phase checking
into account for in the repair operation. Since the time
consumed for checks is less comparatively to the overall
operation of repair, it has limited impact on our results as
shown in Section 4.2.2

a ;-;] RATD-§ ¢ 3
= FMSER o
ERCEL -
2 E A
B gl B OH rm
gE; : = E =
500 400 300 200 100 50 10 1
File size (ME)
(2) File upload
= 12
a 10 M RAID-5
: 58 i . FMER e
=4 i k3 g
g B] 1 T
ess [0 (H [H 1 = -
- 23 o = 1 B3 _—
500 200 300 200 100 50 10 1
File size (ME)
(b) File download
s B RATD-6 (oods chunk sspair) oo

FAl-b {nativechunk repadr) [
. FRLSH

S

] s
.
EH EH mm

HAEPOIEE TILE
[secomds)

300 200 100 50 10 1_-”
Filz iiz_a (B
(c) Repair
Fig. &. Fesponse tumes of FTCloud operations when n=4 and
k=12.

[ET=Tr
(=]
f=1
.
=)
b=

6.2.1 Ona Local Cloud

OpenStackSwift 1.4.2 [42] is the basis for object-based
storage platform on which the experiments on local cloud are
carried out. FTCloud is mounted on a machine which consists
of Intel Xeon E5620 processor with 2.4GHz speed and
RAM of size 16GB. This machine is bridged to an OpenStack
Swift platform which is attached to a number of storage
servers, and that each server would have Intel Core i5-2400
and 8GB RAM. We create virtual cloud repositories by
creating (n +1) containers on Swift, in which each container
is equivalent to a cloud repository (out of them one is a node
used as a spare during times of repair). Two experiments are

Volume 3, | ssue 19

Published by, www.ijert.org 10

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

conducted on the local cloud. In the first experiment, we
compare RAID-6 and FMSR codes when the values of n and
k are 4and 2 respectively with file size being varied.
Whereas, in the second experiment we perform the same
comparisonbetweenRAID-6 and FMSR codes but this time
with different values for n and k and file size being fixed.

During the first experiment, the response times is tested
under the three basic operations, i.e., file upload, file
download, and repair operations of FTCloud with values as n
= 4 and k = 2. We make use of eight files from that are
generated randomly for IMB to 500MB as the data set. The
path of a repository that is chosen is set to a non-existent
location to simulate a node failure in repair. We must notice
that when it comes to repair, there are two types for RAID-6,
and the type is selected based on the fact that whether the
failed node contained a native chunk or a code chunk. Figure
8 shows the response times of all three operations versus the
file size.

During the second experiment, the file size is fixed at
500MB and now the response time is tested under the three
operations again under four different pair of values for n and
kas, n=4,k=2andn=6,k=4and n=8, k=6andn=
10, k = 8. Figure 9 poses the results of response time, in
which each is decomposed into many key parts.

Figures 8 and 9 show that the response time for RAID-6
codes is comparatively less than FMSR codes in operations
of file upload and

download, no matter what the values of n and k are. Using
Figure 9, we show the overhead of FMSR codes over RAID-
6.FMSR codes show similar data transfer time as that of
RAID-6 while uploading and downloading, this is because of
having the same MDS property in them. However, there is a
significant over head of encoding/decoding in FMSR codes
over RAID-6 codes. For instance, in the case of n =4 and k =
2, while uploading a 500MB file,RAID-6 codes consumes
1.53s to encode, whereas FMSR codes consumes 5.48s; in the
operation of downloading the 500MB file, there is no
requirement of decoding in the case of RAID-6 codes as there
is availability of native, but FMSR codes consumes 2.71s for
the decoding process. This increase in difference is due to n
and k

While on the other hand, there is a merit of FMSR codes
because the response time here is slightly less during the
operation of repair. We must notice that the amount of data
that is being downloaded by FMSR codes during repair is
less. This is the main advantage of having FMSR codes.
Example, to repair a file of size 500MB with n =4 and k = 2,
the time spent by FMSR codes is 4.02s in download and
5.04s is the time spent byRAID-6 codes.

RAID-6 codes may have less response time than FMSR
codes when deployed on a local .But we think that the
overhead of encoding/decoding in FMSR codes can be easily
covered by the fluctuations in the network over the Internet,
as we would discuss next.

6.2.2 On a Commercial Cloud

This experiment is conducted on a machine that includes an
Intel Xeon E5530 2.4GHz CPU and RAM of 16GB size. This
machine has the 64-bit Operating system, Ubuntu 9.10. We
set the same values, n = 4 and k = 2, and repeat performing
all the three operations as in Section 6.2.1 on four files that
are randomly generated from 1MB to 10MB on top of
Windows Azure Storage [13]. On Azure, we now try to create
virtual cloud repositories by creating (n+1) = 5 containers.
The same operations are run for both RAID-6 and FMSR
codes and provide interval in order to reduce the effects of
fluctuations in the network. We must notice that, Azure is the
only provider which is being used here. But in actual usage,
FTCloud is supposed to stripe data over different providers
and locations. This is to provide better availability
guarantees.

Figure 10 poses the results for different file sizes plotted with
95% confidence intervals. From the figure, we can see no
same differences in response time between RAID-6 codes
and FMSR codes under all the three operations. Also, FMSR
codes consume 0.150s for encoding purpose and 0.064s for
decoding a file of size 10MB (not reflected in the figures).
This contributes roughly 3% to the total time of uploading
and downloading which is 4.962s and 2.240s respectively.
The 95% confidence intervals for the operation of upload and
download are 0.550s and 0.438s respectively. Fluctuation in
network plays a very vital role in calculating the response
time. Finally to brief, we show that the performance overhead
by FMSR codes is not significant over the implementation of
RAID-6 code.

Encoding i Deonding — Uplead 7 Dowtled E553
- Ol 2
Y 1k L
R | ‘ o L = | =
0 1 i { T 1A NN 3 N
i v 1 i R/ i 1 {4
0 'T:f":! ol i 0 M e) o | b fid ledpded
;o i TR
] - H '
= E H g b
. 4 3 . z . H
RN R B A
Utled Dowlod Repsr (bl Doowlod R el Dowload Rsr (d Dowled Repalr
Y o 1= 1}, I)=

Fig, 9. Breakdown of the resonse e,

Volume 3, | ssue 19

Published by, www.ijert.org 11

Special Issue- 2015 International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181

ICESMART-2015 Conference Proceedings

§
g 3 ola RAID-6
E . e FMSE REEET
kE] 52 .
E‘gi = R] ek
2E; o B e e

10 3 2

Filz size (ME)
(2) File upload

= 3. RAID-5
E 3 FMER P
B 13
E El : - L
E =i e B i
22, | | e

10 3 2

File size (MB)
(b) File download
z . BAID-S {code chunk repaiy) ¢
E —3 o e . BATD-f {native chunk rapair) |
m 53 I ri i i e e 3
T+ il
Eh i i
= i
14 5 2 1
Filz size (ME)
(c) Repair

Fig. 10. Fesponse times of FTCloud on Azure.
7 RELATED WORK

Let us now look at the work that is related in multiple-cloud
storage and recovery during failure.

Multiple-cloud storage. We can find many systems that
are proposed for multiple-cloud storage. Such as, HAIL [11],
this system provides integrity and assures availability for
stored data. Another such system is RACS [1],this system
makes use of erasure coding in order to solve the vendor
lock-in problem while switching from one cloud vendor to
another. Here, the data from the cloud that is probably to fail
is moved from it into a new cloud. But FTCloud does not
include the failed cloud which is in repair. Vukolic” [61]
works using multiple clouds which are independent in order
to provide Byzantine fault tolerance. DEPSKY [10] provides
Byzantine fault tolerance, it does it by performing the
combination of encryption and erasure coding for stored data.
WE must notice that all the systems that are discussed above
are built using erasure codes in order to provide fault
tolerance. But our FTCloud is one step ahead because it
includes regenerating codes with giving importance both fault
tolerance as well as storage repair.

Minimizing 1/0s. There are several studies that provide
efficient failure recovery schemes for single node that
reduces the amount of data that is read (or 1/Os) for erasure
codes based on XOR. For example, authors of work [62],
[63] provide optimal recovery for specific RAID-6 codes and
drops down the amount of data that is read by a percentage
of around 25 for nodes of any number. OurFMSR codes can
succeed in saving of 25% when there are four nodes, and
when the number of nodes increases the savings is raised to
50%. According to work [35],in order to search for an
optimal solution for recovery for arbitrary erasure codes
based on XOR, it proposes an enumeration-based approach.
In recent days, commercial cloud storage systems are having

recovery efficiently. For example, Azure [31] and Facebook
[53] are getting efficient recovery in them through the new
builds of erasure codes which are designed with non-MDS.
The overhead of storage is shifted for the purpose of
performance using of[31], [53], and their emphasis of design
is for computing of intensive data. Our main focus is the
applications that are available for cloud backup.

Minimizing repair traffic.

Network coding is the basis for Regenerating codes
[16]and they tend to provide reduction in the repair traffic
among storage nodes. They also achieve the optimal
movement between cost due to storage and repair traffic, and
consists of two optimal points. One optimal point reduces the
repair bandwidth with the condition that minimum amount of
data is being stored by every node. This optimal point is
referred to as the minimum storage regenerating (MSR)
codes. The other optimal point allows every node to store
more amounts of data to still reduce the repair bandwidth.
This optimal point is referred to as minimum bandwidth
regenerating (MBR) codes. We can see the building of MBR
codes in [51] and interference alignment that can be found in
[50], [57] is the basis of MSR codes. In this work, our
emphasis is on the MSR codes.

Many studies (e.g., [29], [34], [55], [56]) provide recovery
for multiple failures cooperatively. The idea behind them is
that new nodes have to exchange the constructed data among
themselves in order to reduce the overall re-pair traffic. Our
work emphasizes on single-failure recovery, which is the
cause for the majority of failures in cloud storage systems
[31]. Also the aspect of security issues for regenerating-coded
data is solved by studies (e.g., [14], [41, while the concept of
security in case of FMSR codes is solved in our before work
[15]. We suggest readers to refer the survey paper [17] in
order to study regarding the “state of the art” research in
regenerating codes.

The main advantage of our FMSR code implementation is
that it removes the requirement of encoding during the
operation of repair, while still maintaining the recovery
performance of MSR codes. But the existing MSR codes
(e.g., [50], [57]) require nodes to perform encoding
operations.

Empirical studies on regenerating codes. It is only the
theoretical analysis that is being provided by the existing
studies on regenerating codes. Based on observation, many
studies (e.g., [18], [23], [37]) find random linear codes for
storage in peer-to-peer. In order to reduce the number of
surviving nodes to contact during recovery which causes a
higher storage cost and to evaluate the codes on a cloud
storage simulator, authors of [44] propose simple
regenerating codes. Authors of [33] calculate the performance
of the operations of encoding/decoding of regenerating codes.
In our work, we perform the implementation of a storage
system and calculate the actual performance of read/write
with regenerating codes, but the existing studies do not do so.
Regenerating codes are implemented by NCFS [30], but does
not consider MSR codes which are based on linear
combinations. But here, we consider the FMSR code

Volume 3, | ssue 19

Published by, www.ijert.org 12

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

implementation and perform experiments in cloud storage.

Follow-up studies on FMSR codes. We have some studies
that follow after the conference version [27. Integrity
checking of FMSR-coded data is supported by our FTCloud
against Byzantine attacks [15]. The aspect of two-phase
checking which can preserve the MDS property of the stored
data after iterative repairs [28] is also theoretically proved by
us. Our focus is on the deployment of regenerating codes
practically. We propose a design of regenerating codes that is
implementable and we also perform a knowledgeable
observation in cloud storage environment practically.

CONCLUSIONS

To uphold the key concept of today’s practical cloud backup
storage, the reliability, we extend our FTCloud, a proxy-
based multiple cloud storage system.

The main advantage of our FTCloud is that it provides fault
tolerance in storage, on the other hand, it also allows in a
cost-effective manner when there is permanent cloud storage.
A practical version of the functional minimum storage
regenerating (FMSR) codes is implemented. This regenerates
new parity chunks while repairing according to the
requirement of data redundancy. The encoding requirement
of storage nodes or cloud while repairing is eliminated
through the help of our FMSR code implementation. It
ensures that the required fault tolerance is preserved by the
new set of stored chunks after each round of repair. The
effective capability of FMSR codes in the cloud backup
usage is shown in our FTCloud prototype. Hence there is
advantage from our FTCloud in terms of both monetary costs
and response times.

REFERENCES

[1] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. RACS: A Case
for Cloud Storage Diversity. In Proc. of ACM SoCC, 2010.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network
Information Flow. IEEE Trans. on Information Theory, 46(4):1204—
1216, Jul 2000.

[3] Amazon. AWS Case Study: Backupify.
http://aws.amazon.com/solutions/case-studies/backupify/.
[4] Amazon. Case Studies.

https://aws.amazon.com/solutions/casestudies/#backup.

[5] Amazon Glacier. http://aws.amazon.com/glacier/.

[6] Amazon S3. http://aws.amazon.com/s3.

[7]1 M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A View of
Cloud Computing. Communications of the ACM, 53(4):50-58, 2010.

[8] Asigra. Case Studies. http://www.asigra.com/product/casestudies/.

[9] AWS Service Health Dashboard. Amazon s3 availability event: July 20,
2008. http://status.aws.amazon.com/s3-20080720.html.

[10] A. Bessani, M. Correia, B. Quaresma, F. Andr'e, and P. Sousa.
DEPSKY: Dependable and Secure Storage in a Cloud-of-Clouds. In
Proc. of ACM EuroSys, 2011.

[11] K. D. Bowers, A. Juels, and A. Oprea. HAIL: A High-Availability and
Integrity Layer for Cloud Storage. In Proc. of ACM CCS, 2009.

[12] Business Insider. Amazon’s Cloud Crash Disaster Permanently
Destroyed Many Customers’ Data.
http://www.businessinsider.com/amazon-lost-data-2011-4/, Apr 2011.

[13] B. Calder et al. Windows Azure Storage: A Highly Available Cloud
Storage Service with Strong Consistency. In Proc. of ACM SOSP,
2011.

[14] B. Chen, R. Curtmola, G. Ateniese, and R. Burns. Remote Data
Checking for Network Coding-Based Distributed Storage Systems. In
Proc. of ACM CCSW, 2010.

[15] H. C. H. Chen and P. P. C. Lee. Enabling Data Integrity Protection in
Regenerating-Coding-Based Cloud Storage. In Proc. of IEEE SRDS,
2012.

[16] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K.
Ramchandran. Network Coding for Distributed Storage Systems.
IEEE Trans. on Information Theory, 56(9):4539-4551, Sep 2010.

[17] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A Survey on
Network Codes for Distributed Storage. Proc. of the IEEE,
99(3):476-489, Mar 2011.

[18] A. Duminuco and E. Biersack. A Practical Study of Regenerating Codes
for Peer-to-Peer Backup Systems. In Proc. of IEEE ICDCS, 2009.

[19] B. Escoto and K. Loafman. Duplicity. http://duplicity.nongnu.org/.

[20] D. Ford, F. Labelle, F. 1. Popovici, M. Stokely, V.-A. Truong, L.
Barroso, C. Grimes, and S. Quinlan. Availability in Globally
Distributed Storage Systems. In Proc. of USENIX OSDI, 2010.

[21] FUSE. http://fuse.sourceforge.net/.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In
Proc. of ACM SOSP, 2003.

[23] C. Gkantsidis and P. Rodriguez. Network coding for large scale content
distribution. In Proc. of INFOCOM, 2005.

[24] GmailBlog. Gmail back soon for everyone.
http://gmailblog.blogspot.com/2011/02/gmail-back-soon-for-
everyone.html.

[25] K. M. Greenan, E. L. Miller, and T. J. E. Schwarz. Optimizing Galois
Field Arithmetic for Diverse Processor Architectures and
Applications. In Proc. of IEEE MASCOTS, 2008.

[26] K. M. Greenan, J. S. Plank, and J. J. Wylie. Mean time to meaningless:
MTTDL, Markov models, and storage system reliability. In Proc. of
USENIX HotStorage, 2010.

[27] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang. NCCloud: Applying
Network Coding for the Storage Repair in a Cloudof-Clouds. In Proc.
of FAST, 2012.

[28] Y. Hu, P. P. C. Lee, and K. W. Shum. Analysis and Construction of
Functional Regenerating Codes with Uncoded Repair for Distributed
Storage Systems. In Proc. of IEEE INFOCOM, Apr 2013.

[29] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li. Cooperative recovery of
distributed storage systems from multiple losses with network coding.
IEEE JSAC, 28(2):268-276, Feb 2010.

[30] Y. Hu, C.-M. Yu, Y.-K. Li, P. P. C. Lee, and J. C. S. Lui. NCFS: On the
Practicality and Extensibility of a Network-Co

[31] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin. Erasure Coding in Windows Azure Storage. In Proc. of
USENIX ATC, 2012.

[32] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-Free
Coordination for Internet-Scale Systems. In Proc. of USENIX ATC,
2010.

[33] S. Jiekak, A.-M. Kermarrec, N. L. Scouarnec, G. Straub, and A. Van
Kempen. Regenerating Codes: A System Perspective. CoRR,
abs/1204.5028, 2012.

[34] A. Kermarrec, N. Le Scouarnec, and G. Straub. Repairing Multiple
Failures with Coordinated and Adaptive Regenerating Codes. In Proc.
of NetCod, Jun 2011.

[35] O. Khan, R. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery
and Degraded Reads. In Proc. of USENIX FAST, 2012.

[36] N. Kolakowski. Microsoft’s cloud azure service suffers outage.
http://www.eweekeurope.co.uk/news/news-
solutionsapplications/microsofts-cloud-azure-service-suffers-outage-
395.

[37] M. Martal ‘o, M. Picone, M. Amoretti, G. Ferrari, and R. Raheli.
Randomized Network Coding in Distributed Storage Systems with
Layered Overlay. In Information Theory and ApplicationWorkshop,
2011.

[38] M. Mayer. This site may harm yoyur computer on every search results.
http://googleblog.blogspot.com/2009/01/this-site-mayharm-your-
computer-on.html.

[39] MSPmentor. CloudBerry Labs Unveils Support for Low- Cost Amazon
Glacier. http://mspmentor.net/managed-services/cloudberry-labs-
unveils-support-low-cost-amazon-glacier/, Jan 2013.

[40] E. Naone. Are We Safeguarding Social Data?
http://www.technologyreview.com/blog/editors/22924/, Feb 2009.

Volume 3, | ssue 19

Published by, www.ijert.org 13

Special Issue- 2015 International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

[41] F. Oggier and A. Datta. Byzantine Fault Tolerance of Regenerating
Codes. In Proc. of P2P, 2011.

[42] OpenStack Object Storage. http://www.openstack.org/projects/storage/.

[43] Panzura. US Department of Justice Case Study. http://panzura.com/us-
department-of-justice-case-study/.

[44] D. Papailiopoulos, J. Luo, A. Dimakis, C. Huang, and J. Li. Simple
Regenerating Codes: Network Coding for Cloud Storage. In Proc.of
IEEE INFOCOM, Mar 2012.

[45] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays
of inexpensive disks (raid). In Proc. of ACM SIGMOD, 1988.

[46] J. S. Plank. A Tutorial on Reed-Solomon Coding for Fault-Tolerance in
RAID-like Systems. Software - Practice & Experience, 27(9):995—
1012, Sep 1997.

[47] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn. A
Performance Evaluation and Examination of Open-Source Erasure
Coding Libraries For Storage. In Proc. of USENIX FAST, 2009.

[48] C. Preimesberger. Many data centers unprepared for
disasters: Industrygroup.
http://www.eweek.com/c/a/ITManagement/Many-Data-Centers-
Unprepared-for-Disasters-Industry-Group-772367/, Mar 2011.

[49] M. O. Rabin. Efficient Dispersal of Information for Security, Load
Balancing, and Fault Tolerance. Journal of the ACM, 36(2):335-348,
Apr 1989.

[50] K. Rashmi, N. Shah, and P. Kumar. Optimal Exact-Regenerating Codes
for Distributed Storage at the MSR and MBR Points via a Product-
Matrix Construction. |EEE Trans. on Information Theory,
57(8):5227-5239, Aug 2011.

[51] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran. Explicit
Construction of Optimal Exact Regenerating Codes for Distributed
Storage. In Proc. of Allerton Conference, 2009.

[52] I. Reed and G. Solomon. Polynomial Codes over Certain Finite Fields.
Journal of the Society for Industrial and Applied Mathematics,
8(2):300-304, 1960.

[53] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R.
Vadali, S. Chen, and D. Borthakur. XORing Elephants: Novel Erasure
Codes for Big Data. Proc. of VLDB Endowment, 2013.

[54] B. Schroeder and G. A. Gibson. Disk Failures in the Real World: What
Does an MTTF of 1,000,000 Hours Mean to You? In Proc. Of
USENIX FAST, Feb 2007.

[55] K. Shum. Cooperative Regenerating Codes for Distributed Storage
Systems. In Proc. of IEEE Int. Conf. on Communications (ICC), Jun
2011.

[56] K. Shum and Y. Hu. Exact Minimum-Repair-Bandwidth Cooperative
Regenerating Codes for Distributed Storage Systems. In Proc. of
IEEE Int. Symp. on Information Theory (ISIT), Jul 2011.

[57] C. Suh and K. Ramchandran. Exact-Repair MDS Code Construction
using Interference Alignment. IEEE Trans. on InformationTheory,
57(3):1425-1442, Mar 2011.

[58] TechCrunch. Online Backup Company Carbonite Loses Customers’
Data, Blames And Sues Suppliers.
http://techcrunch.com/2009/03/23/online-backup-companycarbonite-
loses-customers-data-blames-and-sues-suppliers/, Mar 2009.

[59] TechTarget. Cloud case studies: Data storage pros offer
firsthandexperiences.Http://searchcloudstorage.techtarget.com/feature
/Cloud-case-studies-Data-storage-pros-offer-first-handexperiences/.

[60] M. Vrable, S. Savage, and G. Voelker. Cumulus: Filesystem backup to
the cloud. In Proc. of USENIX FAST, 2009.

[61] M. Vukoli'c. The Byzantine Empire in the Intercloud. ACM SIGACT
News, 41:105-111, Sep 2010.

[62] Z. Wang, A. Dimakis, and J. Bruck. Rebuilding for Array Codes in
Distributed Storage Systems. In IEEE GLOBECOM Workshops,
2010.

[63] L. Xiang, Y. Xu, J. Lui, Q. Chang, Y. Pan, and R. Li. A Hybrid
Approach to Failed Disk Recovery Using RAID-6 Codes: Algorithms
and Performance Evaluation. ACM Trans. on Storage, 7(3):11, 2011.

[64] ZDNet. AWS cloud accidentally deletes customer data.
http://www.zdnet.com/aws-cloud-accidentally-eletescustomer- data-
3040093665/, Aug 2011.

[65] zfec. http://pypi.python.org/pypi/zfec.

Volume 3, I'ssue 19 Published by, www.ijert.org

14

