
From Relational Database to Column-Oriented

NoSQL Database: Migration Process

Steve Ataky Tsham Mpinda, Luís Gustavo Maschietto,
Departamento de Computação

Universidade Federal de São Carlos

São Carlos, Brazil

Patrick Andjasubu Bungama
Departamento de Computação

Universidade Federal do Paraná

Curitiba, Brazil

Abstract—Wherever there is a need for the availability of

services with a high traffic, maintaining at the same time a high

performance, the blocking point often is the database. When one

talks about high traffic systems or services and databases, one

rarely hears of relational databases. Indeed, to ensure data

consistency is expensive in time and is often inconsistent with

performance. Since the relational model does not seem suitable in

environments requiring large architectures and the ACID

properties of bases generally do not allow to scale, a new

movement was born from the initiative of cloud’s architects and

other communities like Amazon and LinkedIn: NoSQL (aka: Not

Only SQL). NoSQL databases are radically changing the

architecture of the database that one used to see and thus allow

to increase the performance and availability of services. Thereby,

it seems useful to put forward a migration approach of

conventional database to a NoSQL database. To do this, some

limitations of relational RDBMS to dealing with large volumes of

data is presented. Then the NoSQL technology and its strengths,

issues and challenges are discussed. Finally, a migration from a

relational database to column oriented NoSQL database was

proposed as the aim of this paper.

Keywords—NoSQL, Migration, column oriented database, data

conversion, schema translation, column family, super column.

I. INTRODUCTION

Since the storage systems and data manipulation used so far
cannot reasonably meet the requirements such as web service
availability and bet and face scalability resulting, the
exponential growth of data, taking into account weakly
structured data and technological advances, companies are
gradually and inevitably, at least for those who wish to remain
competitive, forced to migrate their IT systems to new
architectures. Thereof, the migration of conventional Database
Management Systems to new NoSQL type databases, that is to
say the data engines that do not use the SQL standard. NoSQL,
in turn, offer better data availability, huge storage capacities by
overcoming constraints induced by the ACID properties. They
are widely used and have gotten a place in the IT infrastructure.

Given the maturity and the good reputation conventional
databases enjoy, the concern herein is to find out what the new
databases offer to supporting the migration from relational to
NoSQL. In other words, what are the limits of relational
systems regarding the availability constraints (for scalability)
which are the subject of most services, as well as the increasing
volume of data?

 Taking into account the present situation, as part of this

work will be presented an approach migration of a relational

database to a database which provides a better scalability and

improved flexibility. In other words, it is to propose a

transitional approach of relational databases to columns

oriented databases (NoSQL). To do this, firstly was presented

the reasons for migrate; thereof there is a need for presenting

the limitations of relational databases in a distributed

environment with high traffic and high data volume Context.

The reasons for the choice of NoSQL databases over another

type of databases are also discussed. After all, it will be

presented a case study-based migration.

II. THE LIMITATIONS OF RDBMS

In addition of the relational model, most relational RDBMS
are transactional, which imposes compliance constraints
Atomicity, Consistency, Isolation and Durability, commonly
called ACID properties in short [2]. In a centralized context,
these constraints are rather easy to guarantee. In the case of
distributed systems, it is however necessary to distribute the
processing and data between different servers. At this point, it
then becomes difficult to maintain ACID constraints across the
entire distributed system while maintaining good performance.
Despite this, it is not obvious to overcome the stranglehold of
relational databases on data management matters. Yet it is to
this that works a group of actors recent years highlighting the
limitations of the relational model for some types of distributed
applications with high traffic and dealing with large volumes of
data [3][8].

Notwithstanding, in terms of data management, a new

technical approach just tickles the dominant model every

twenty years or so. At first, in the 70s, the relational was one

of them, replacing the different models in place (hierarchical,

network, etc.) without discussion. It was adapted, extended

and its simple ubiquity has marginalized ambitious despite

their undeniable arguments [3]. In a way, this movement

embodies the return of concepts put under the extinguisher for

many years. This is a strong tendency; applications Business

operate on data volumetric increasingly large. Moreover, a

plethora of users and customers access to such data, either

directly or, more often, indirectly. And this is clearly not the

SOA or management of reference data (master data

management) that will influence these trends! As result, a

pressure of growing exercised over conventional systems data

base management. Faced with this phenomenon, brute force

can it be enough? [4]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050021

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

399

 more Mhz

 more processors,

 more memory ...

 But not always at much reasonable cost!

But it would not count another consequence of the volume
of data: the administration bases of large data is demanding.
Thus, administering more than one database tens (or even
hundreds) of millions of records such as a few tens of
thousands of records. With such volumes of data, once the brief
operations can take hours as modifying the schema or the
removal of a significant number of records. The emergence of
these new paradigms has led to major changes in the approach
to the application design and their relationship to the database.
When speaking of high traffic sites and databases, one rarely
hears of relational databases. Indeed, ensuring data consistency
is expensive in time and is often incompatible with the
performance. Since the relational model does not seem suitable
in environments requiring large architectures, the ACID
properties of bases generally do not allow to scale, a new
movement was born from the initiative of the architects of
Cloud Computing and community sites like Facebook,
Amazon and LinkedIn: NoSQL. [4]

Moreover, the relational database’s properties even though
are necessary to the logic of relational, however highly harm
the performance, especially the property of consistency.
Indeed, consistency is very difficult to implement in the
context of multiple servers (distributed environment), because
to do so, all servers must be mirrors of each other, thus two
problems arise:

 The storage cost is enormous because each data is
present on each server

 The cost of inserting, altering and deleting is greater,
as one cannot commit a transaction unless to be sure
that it was performed on all servers and the system
makes the user wait during this time [10].

In the Figure 1 below, the performed updates on a server
should be passed on to other servers for the system
remains consistent. All the servers: s1, s2, s3 and s4 have
to have the same copy to the database.

Figure 1: ACID properties problem in a distributed environment.

III. CURRENT POSITION OF NOSQL

The NoSQL movement reached its heyday in recent years,

particularly as it seeks to address several issues that relational

databases do not respond adequately [9]:

 availability to handle very large volumes and

Partitioning;

 flexibility scheme;

 difficulty to represent and process complex structures

such as trees, graphs, or relationships in large

numbers (In the databases ecosystem, graphs bases

are often positioned mainly in the last two points:);

 process highly connected data;

 easily manage a complex and flexible model;

 deliver outstanding performance for local readings,

for graph traversal;

IV. NOSQL, OTHER APPROACH TO STORAGE AND

MANIPULATE DATAS

NoSQL or "Not Only SQL" is a recent movement (2009),

concerning the databases. The idea of movement is simple: to

offer alternatives to relational databases to stick to new trends

and architectures of time, including cloud computing. The

main points of NoSQL are high availability and horizontal

data partitioning, to the detriment of consistency. While

current relational databases are based on the ACID properties

(Atomicity, Consistency, Isolation and Durability). NoSQL

means "Not Only SQL"; this term refers to all the databases

that are opposed to the concept of relational DBMS.

The definition, "not only SQL," provides an initial

response to the question "will the NoSQL kill the relational

databases?". Indeed, NoSQL does not replace relational

database but offers an alternative or supplement of the

functionality of the RDBMS to provide more interesting

solutions in some contexts. NoSQL includes many databases,

mostly recent, differentiated model with SQL by logic of non-

relational data representation. Their main advantages are their

performance and their ability to handle very large volumes of

data. However, in the projects, one should not oppose both

approaches but often makes them coexist! This technology

(NoSQL) ultimately aims not to replace traditional DBMS but

rather to complement them by deporting some of the burden of

processing and data storage to third-servers (web in

conventional architectures)

NoSQL databases have often emerged as internal projects

of large commercial sites or research. Thus, BigTable, whose

development began in 2004, manages most of the data from

Google, almost absolute reference in terms of volume and

performance. Several major sites use these particular tools:

Cassandra Facebook and Dynamo at Amazon, PNUTS at

Yahoo, etc. And the current orientation Cloud Computing only

reinforces the interest for these approaches, as evidenced by

the storage services of the Microsoft Azure platform [3].

In the wake of these proprietary solutions, many open source

projects have emerged. Although a diversity reign, several

common features seem to emerge: lack of scheme, horizontal

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050021

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

400

partitioning on a large number of nodes, de-normalization,

automatic replication, versioning of data, and so on. For sure,

all this comes to demolish a range of principles built in dogma

for over thirty years. As we have seen, most of the movement

NoSQL DBMS has been constructed by ignoring the

constraints ACID, even not to offer functionality transactional.

NoSQL group aims primarily to demonstrate that there are

now alternatives solutions used in demanding systems. The

purpose is obviously to obtain a better data availability,

through extensive partitioning capabilities but at a stress

release of ACID properties.

Types of NoSQL databases

There are four basic categories of NoSQL. [1]

 Oriented columns, such as HBase, Cassandra

Hypertable or they are based on the concept of

Google's BigTable

 Based on graph theory (Euler) implemented by

Neo4j.

 Oriented key-value (Voldemort, Dynomite, Riak).

 Oriented document, such as CouchDB.

Since the work aim the oriented column, one will present

its specificities in more detail at the next point.

V. COLUMN-ORIENTED DATABASES

While columns are static for a relational database, they

are dynamic for a column-oriented database, it is then possible

to add columns dynamically and there is no storage cost for

nulls.

For performance reasons the columns are sorted on the

disk, minimizing random access. In addition to Cassandra, for

instance, sequential writes are to avoid hard disk latencies,

data is first written to memory, and then persisted to disk

during a commit log or when the memory is full.

BDD oriented columns are provided for storing millions of

columns, which makes it suitable bases storing one-to-many.

The disadvantage is the update. While for a relational

database, an update of tuples with a foreign key can be

enough, a column-oriented BDD may require an update of all

values in a column for all records. There are also great

columns which are columns of containers.

The query is quite minimalist, for example:

 All columns which key 256

 The column name is from 'bbb' and 'bbc' and whose

key is 8652

 The column 'abc' for lines ranging from 500 to 1000.

Cassandra (originally used by Facebook for non instant

messages) and HBase are solutions BDD oriented columns.

Cassandra allowed Facebook to access messages exchanged

between users and messages containing certain words. These

bases are for uses where one must store data per user unique

data. Do not look to the relationship with this basis, the

mailing list is full of such questions but it's just not done!
Column-oriented databases are also an evolution of key-

value model[1]. Originally, this model was developed by
Google to BigTable in which data are stored according to a
column-oriented model. Instead of storing data in tables in
rows / columns as in most of the RDBMS, data is distributed

here in dynamic columns can they even contain one or more
values. Each line of data and having a different number of
columns and each column can contain a different number of
values. The column-oriented model has the advantage of
improving storage efficiency and avoids eating space compared
to conventional RDBMS table model. Indeed, because of their
design by allocating blocks in an RDBMS, an empty column
still consume space. Moreover, this model allows at any time
using a new column, and we gain extensibility at the data
schema. The Figure 2 [1] illustrate the records storage example
in a column-oriented database.

Figure 2: Example of the records storage example in a column-

oriented database. Adapted from [1]

VI. MIGRATION APPROACH OF A RELATIONAL DATABASE TO

NOSQL

1. Source data model

In a migration process and more exactly to the schema

translation phase it normally used as the source data

schema the physical data model (PDM) that is to say the

script of the relational database. Nonetheless, it can vary

from RDBMS to another, even if the standard language

remains the SQL. Furthermore, the relational data model,

introduced by Codd [1970] represents a database as a

collection of relations whereof the database name

relational [6].

2. Target data model

A column-oriented database can be seen as a complex

data structure having at least 5 dimensions based on

concepts such as: tables, columns families, key, super

columns and simple columns. RDBMS are oriented lines.

This means that all the columns in a row (entry identified

by a key) are stored one after another, in an aggregated

manner. A column-oriented database, meanwhile, stores

data by focusing on data grouping entire columns.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050021

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

401

3. Translation of the source data model into target model

A data schema S1 of a relational database can be

translated into an equivalent target schema, S2 expressed

as a column-oriented model through a set of translation

rules applications.

The generation of the target schema depends on the

flexibility of the rules. Each rule reflects a specific

construction. The two equivalent diagrams should take the

overall semantics, as well as situational.

The herein approach proposes to receive as input an existing

relational database and generates an equivalent data model

that reflects the essential characteristics for the NoSQL

database. The approach should not only generate the target

schema: the translation patterns. But also to generate the data

instances to the target database from the starting database. The

entry model is the Entity Association model while the

destination is a kind of class diagram. That is to say, generic

statements or definitions objects. This is in fact the way the

objects are stored.

Concerning the data conversion, it comes in three stages:

data extraction, data processing or data enrichment and

injection in the destination database. The data extraction

consists essentially to querying a relational database through

operations and tools that are usual such as SQL commands

and the use of joints. Data processing, in turn, involves the

transformation of data from the target database format so that

future data injection is done without major difficulties. On the

data integration, it is needed to instantiate and initiate the

object classes, that is to say the various data structures of a

column-oriented database. This is done in the right order

columns, super columns, and families of columns. The data

conversion phase introduces the concepts like the definition of

a key management policy and the need for defining a mapping

table keys and the construction of a relational dependency

matrix. All these aspects helped to propose the data

conversion algorithm below {algorithm 1}.

With regard to the statement 10, it concerns only the

tables with at least one foreign key. Super columns, in turn,

will be fulfilled by the son objects during processing. Any

object with a parent will update its parent corresponding

attribute and then add the reference or the object (depending

on desired management) in the super column (list of son

objects). The instruction 8 applies only to tables in the source

database that have an equivalent in the column family. That is

to say, if a table does not appear in the key mapping table, the

statement will be applied to it when migrating data from this

table. The statement 7, 8 and 9 refer to the processing and to

the insertion of data in the target database. The statement 9

requires for its execution that the key mapping table is

provided earlier. The statements 8 and 9 can be swapped

without having any impact on the algorithm.

To convert data or instances of data from a relational

database, it is required to extracted and injected into the new

non-relational database. To carry out this task, it is necessary

to ensure that all of the data has been transferred and the filled

database is consistent. To do so, we will rely on the developed

data mapping algorithm above.

VII. CONCLUSION

Taking into account faults or problems with relational

Databases, it has been established that despite their maturity,

their overwhelming use, and their ubiquitous presence,

relational databases meet some limits based on immersive

environments. In a centralized environment, it is reproached

their low level of flexibility facing the management of

heterogeneous objects. Indeed, all the attributes of an object

must be declared and known in advance in the relational

world, what, in turn, does not offer these great scalability

factor. The other major limitation of relational databases in

centralized environment is the use of joins, which is not

always evident in great or big volume. In other words,

requests using the joins are not always optimal and cause

increasingly long latency time in case of exponential increase

in data.

Regarding the limitations of relational databases in a

distributed environment, one can mention the difficult

applicability of ACID properties, including consistency which

requires the use of equipment increasingly specialized and

therefore expensive (over MHZ, more memory, etc.).

Moreover, the CAP theorem shows sufficiently the existence

of a different approach of storage and data manipulation which

includes the AP and PC systems in the NoSQL movement,

which coexists with the AC system, that is, relational and

transactional.

In terms of the NoSQL technology, it is a new approach

of storage and data manipulation which advocates abandoning

ACID principles in favor of concepts such as horizontal data

partitioning that enables data sharing and processing across

multiple servers and flexibility of data schema to effectively

manage weakly structured data. For now, NoSQL is a growing

movement, although it is used by major accounts that are at

the origin of the movement. There are no solutions that really

stand out of the lot, there are only solutions adapted to the

needs. NoSQL databases are used to make the system much

more efficient and resistant to failure, however as these do not

always provide data consistency, they are rarely used alone: a

relational database will contain information where consistency

is vital and a NoSQL database will contain all the rest.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050021

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

402

Since the aim of this paper is the proposal of a migration

approach from a relational database to a column-oriented

database (NoSQL), it was determined the causes, the

shortcomings of relational database, which would justify such

an operation as well as the strengths of NoSQL databases that

motivate migration of the first to the last. Then a migration

approach was discussed and a migration algorithm.

REFERENCES

(1) http://davidmasclet.gisgraphy.com/post/2010/06/09/10-minutes-pour-

comprendre...NoSQL

(2) Avinash Lakshman, Prashant Malik, Structured Storage System over a
P2P Network

(3) http://www.zdnet.fr/blogs/codes-et-modeles/nosql-une-reponse-aux-

limites-du-relationnel-39711127.htm,Mars 2012
(4) Nicolas Dasriaux, Bases de données à haute volumétrie : comment faire.

(5) Michaël Figuière, Bases de données orientées colonnes et Cassandra, Mai

2010.
(6) Abdelsalam Amraga Maatuk, migrating relational databases into object-

based and xml databases.

(7) Shalini Batra, Charu Tyagi ,“Comparative Analysis of Relational And
Graph Databases” International Journal of Soft Computing and

Engineering (IJSCE) Volume-2, Issue-2, May 2012 ,pp-509-512.

(8) J. Fong, H.K. Wong, Z. Cheng ,”Converting relational database into
XML documents with DOM” Information and Software Technology

45(2003)335 –355.

(9) Mpinda, Steve Ataky T.; Maschietto, Gustavo L.; Bungama, Andjasubu
P., “Graph DataBase Application Using Neo4j (railtoad simulation)”,

International Journal of Engeneering Research and Technology, vol.4-

Issue 04,April-2015.
(10) Mathieu Roger, synthèse d’étude et projets d’intergiciels:

bases NoSQL, 2010

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050021

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

403

