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Abstract

Artificial intelligence systems, particularly large language models (LLMs), in-
creasingly face efficiency and scalability challenges due to stateless inference paradigms.
In current deployments, each user query is processed independently, requiring re-
peated context loading and token-by-token generation on cloud-based accelerators,
leading to redundant computation, increased energy consumption, and higher la-
tency. This paper draws inspiration from the evolution of mobile email systems in
the 1990s, particularly BlackBerry’s push-based architecture, which replaced inef-
ficient polling with persistent connections that delivered updates only when new
information arrived. We propose Sleep–Wake Inference (SWI), a push-style in-
ference framework for LLM-based systems that maintains a lightweight persistent
connection between client and server. Under SWI, the model remains in a low-
activity “sleep” state during repeated or redundant interactions, reusing cached or
lightweight responses, and transitions to a “wake” state only when genuinely novel
input requires full inference. Responses are then pushed back to the client, avoid-
ing unnecessary recomputation. SWI enables reductions in computational cost,
network bandwidth usage, and client-side memory and battery consumption, while
improving real-time responsiveness. Beyond efficiency gains, this architecture sup-
ports proactive, event-driven assistants capable of delivering relevant insights with-
out explicit prompting. By reinterpreting push-based communication paradigms
for modern AI inference, this work highlights a practical path toward more efficient
and personalized LLM systems.

1 Introduction

As I said earlier, history repeats itself, and in the case of technology, I think it will again.
In the 1990s and 2000s, BlackBerry reshaped mobile communication by introducing push
email [19]. Unlike the polling method, where devices repeated the same question again
and again — “Do I have new mail?” — BlackBerry’s innovation relied on a persistent
lightweight connection between device and server. Emails were delivered instantly in real
time, saving bandwidth and battery of the device used by the client [10]. Before the
breakthrough, emails basically worked the same way as in the real world. The POP3
(Post Office Protocol 3) just treated emails like digital letters, and once a message was
downloaded on the desktop, it was deleted from the server [16] . While this was sufficient
for single-device use, it had a huge flaw: syncing between devices was impossible, and
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emails could be lost. POP3 worked on periodic polling, which meant that it checked for
new mail at fixed intervals. That meant real-time mail was not possible [11] .Figure 1
illustrates the evolution of email system architectures from polling-based protocols to
push-based systems [14].

Figure 1: Evolution of email system architectures. Reprinted from The Evolution and
System Design of Email Systems: From Postcards to Push Notifications by Nikhil (2024).

The next improvement came with IMAP IDLE, which introduced a push-like mech-
anism. IMAP IDLE allowed servers to notify clients as soon as a new message arrived,
enabling near real-time email delivery [4]. But it required maintaining an active connec-
tion with the server, draining the device’s battery. For this reason, the model did not
work well for mobile devices [11]. This was the problem that BlackBerry’s push system
solved. Rather than every device using polling, BlackBerry Internet Service handled the
checks [19]. As soon as the server received a new email, it pushed the message instantly
to the user’s device. So, rather than asking the same question, “Did I get an email?”,
they built a main computer to do that for you. The benefits were that the model used
data efficiently and also preserved battery life. This made real-time email practical on
mobile devices. At its core, the push model is still fundamentally unchanged even decades
later [10]. In my eyes, this progression would be similar for AI in the sense that just as
early email protocols wasted resources with redundant checks, today’s AI models waste
resources by recomputing responses for every prompt, even when much of the context
or query is repeated [2, 3, 5]. Recent work in prompt caching and attention reuse has
started to address this inefficiency. Some examples include Prompt Cache [8], which in-
troduced modular attention reuse for repeated prompt segments, while AttentionStore [7]
and EPIC [9] explored context caching across conversations. In parallel, semantic caching
approaches [18,24] use embeddings to detect duplicate or similar prompts, reducing redun-
dant computations. Efforts such as Cached Transformers [23] and Recycled Attention [22]
further improve long-context efficiency by reusing attention states. While these works
are valuable, they remain fundamentally tied to the pull-based model of inference. This
means that the client sends a request, and then the server always evaluates it. On the
contrary, BlackBerry’s push model shows a more efficient way of doing this [19]. This
paper proposes Sleep–Wake Inference (SWI), which is a push-inspired approach to AI.
Rather than recomputing for every prompt, the system maintains a lightweight connec-
tion and only “wakes up” the model for a new input. Redundant or semantically similar
prompts are handled by cached responses [12,21,22]. Due to this small change, SWI has
the potential to reduce compute costs, lower bandwidth usage, and also improve latency.
This will be similar to the leap that BlackBerry made but for AI [10,19].
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2 Current State of AI Inference

Large Language Models (LLMs) such as GPT, LLaMA, and Claude have become the
center of the AI revolution. Despite their impressive capabilities, their method of serving
users remains rooted in a pull-based paradigm [1, 15, 20]. In most of the chatbots each
client query is treated as a stateless request. This means that when a prompt is sent to
the server, the model generates a response token by token from scratch. The system does
not remember prior requests unless the full conversation history is explicitly recent. This
was the main strength of BlackBerry’s persistent push channel for email. Each interaction
began and ended as an independent transaction [19].

The important question to ask is why every prompt is recomputed. The answer to
this is because of the practical reasons. As LLMs are extremely large and have hundreds
of billions of parameters and this must be hosted on clusters of GPUs or TPUs [17]. If
we kept the model “always on” for every user it would be prohibitively expensive. There-
fore, providers adopt a stateless design where resources are only allocated during active
inference. But this causes redundancy. For example if two prompts share overlapping
content the model still recomputes the same transformations every time. Sounds familiar
to something we discussed earlier (polling). This was the same thing we were doing for
early email protocols [10]. In simple terms, a pull-based system means that every time
you ask AI a question, your device has to send the whole request to the server, and
the server has to start from the beginning to generate an answer. Nothing is “saved”
between the prompts unless the user manually resends the entire conversation history as
part of the prompt. To give you a simple example, imagine you ask a chatbot ,“ What
‘s the weather in Santa Barbara today?” and then after that you ask “And what about
tomorrow?”. The system does not automatically know that the second question relates
to the first. Due to this it reprocesses the entire context including the first question to
kind of make sense of the second. By the example above you can see the problem of
the system. The repeated prompts or overlapping context segments are processed from
scratch. This means for each prompt the model uses full computation. The result is
high GPU/TPU acceleration and that is why we say AI consumes so much energy as well
as a lot of cloud cost [6, 17] . Due to this redundant approach or in technical terms a
token by token approach users have to wait seconds before they get the answer.Energy is
expended generating novel answers and for recomputing redundant parts of the context.
In the real world these problems become even larger as cloud providers have to main-
tain massive infrastructure to handle millions of stateless requests daily. Mobile devices
now have way better battery life than the 1990s but still repeated uploads or continuous
polling consumes battery and data bandwidth unnecessarily. Due to the latency or delay
of responses it makes interactions feel less natural just like the early emails.

3 Existing Approaches and Limitations

Before getting to my solution, I would love to shed light on some existing solutions. These
solutions do reduce redundancy and manage long conversation contexts. The only thing
that they lack is that they still treat every prompt as a stateless request. This section will
look at the solutions, examine their limitations, and assess whether my solution could
address these shortcomings. One of the early strategies focused on modular attention
reuse. Prompt Cache [8] introduced a method in which intermediate attention states
for repeated segments of prompts, such as system messages or standard instructions, are
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stored. By reusing these cached computations, the system avoids recalculating identical
portions of input. Similarly, AttentionStore [7] went one step further and extended the
idea to conversations, saving context across multiple turns. EPIC [9] further developed
the idea and allowed cached content to be reused even if its position in the prompt
changes. All of these methods did speed things up but still operated on a pull-based
model, which meant that the client must send a request every time. Other works focus
on detecting when two prompts are similar in meaning. Efficient Prompt Caching via
Embedding Similarity [24] determines if a new prompt is close enough to a stored one
and then reuses the old response. Adaptive Semantic Prompt Caching with VectorQ [18]
improved this method by making the similarity test smarter. These approaches are close
to what our SWI will achieve, but in this method, the server still has to evaluate each
request before deciding whether to reuse an answer. A third group of methods also tries
to handle long conversations. Cached Transformers [23] created memory caches inside
the model, which means it does not need to process the entire history again. Recycled
Attention [22] alternates between full and partial context processing. These methods
saved time on long inputs but still followed the pull-based model. The main drawback
of all these methods is that, since they function on the pull model, every request is
separate, and the server never initiates action on its own. Each prompt triggers some
form of computation. Users may also face issues as they might need to resend histories,
which consumes significant bandwidth and battery.

4 Sleep–Wake Inference (SWI)

To understand how the Sleep–Wake Inference works, we first have to understand how
BlackBerry’s Push model worked. The main reason why this model was revolutionary
was because it did not perform the repeated “checking” that we have mentioned so many
times earlier in this paper. In this section, we are going to see in detail how this model
actually worked. I have provided a diagram below to see this in detail.

Figure 2: Sleep–Wake Inference (SWI) architecture showing the AI Gateway, cache,
novelty check, and inference engine interaction.

4.1 BlackBerry Push Model as a Systems Blueprint

The process starts on the Push Initiator. In the real world, this could be an email
provider (such as Gmail, Yahoo Mail, or a corporate Exchange server) or an enterprise
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system within a company. The work of the Push Initiator is to detect new content,
typically an email, that now needs to be given to the user’s device [10,19].

In traditional POP3/IMAP systems, this role didn’t exist in the same centralized way.
Instead, the client (the user’s device) was responsible for checking directly with the main
server if new messages were available. BlackBerry shifted this work. So rather than the
server being hit with thousands of devices with the same question, “Do I have mail?”
the Push Initiator handled the job once and passed it to the BlackBerry network. This
removed unnecessary duplication [17].

Push Model Operation. The BlackBerry push email system operates through a se-
quence of coordinated steps that ensure reliable and efficient message delivery.

1. Authentication and Message Submission. Before sending this content down-
stream, the Push Initiator establishes a connection with the Main Server. This step
is called authentication, or proving identity. It ensured that only the correct email
sources could deliver content to the user. At this point, the initiator also sent the
new email message upstream to the Main Server.

2. Server Acknowledgment. The Main Server then sent back a confirmation to
the Push Initiator that it had received the message. This was the equivalent of an
HTTPS “OK.”

3. Message Push to Clients. At this step, the Main Server became the central actor.
It monitored incoming streams from Push Initiators and pushed messages directly
to the Mobile Clients (BlackBerry handsets). This was different from POP3/IMAP,
where the server was passive and waited for the client to ask for updates.

4. Client Acknowledgment. The Mobile Client then sent an acknowledgement
back to the Main Server. This ensured reliability. If the acknowledgement failed,
the server attempted retransmission. POP3/IMAP clients assumed the delivery
was complete once the data was downloaded. In situations where the connection
dropped, users might lose messages with no way to undo this. BlackBerry made
acknowledgement a base feature. For this reason, it became the most reliable way
to email. That is what made it the backbone of many government communications
[17].

5. Delivery Result Notification. Once the acknowledgement was received, the
Main Server sent a delivery result back to the Push Initiator. This confirmed
whether or not the push to the device was successful.

6. Loop Completion. In some cases, the Push Initiator also sent a final confirmation
back to the Main Server to complete the loop.

4.2 Why Push Fails in Email but Succeeds in BlackBerry

The model was better as it decreased latency. Users could receive email in real time.
Second, it improved energy efficiency. In an era when battery life was limited, this
change was significant as BlackBerry’s model allowed devices to remain in a low-power
listening state until the server had new content to deliver. Third, it optimized network
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bandwidth. By eliminating constant polling traffic, BlackBerry made it possible to run
multiple phones on the data provider.

All these changes were good, but the main one was reliability. The model made sure
to come out with some kind of an outcome. This confidence is what made BlackBerry the
phone of that time. From a systems design perspective, the push model demonstrated
the value of central orchestration. The Main Server acted as a mediator that coordinated
requests, managed authentication, and handled delivery [10,19].

4.3 Sleep–Wake Inference Architecture

The Sleep–Wake Inference (SWI) model is a proposed paradigm for improving the effi-
ciency of large language model (LLM) inference by shifting from today’s reactive, pull-
based design to an event-driven persistent connection framework. Inspired by the push
method discussed above, SWI has the same goals. It would reduce redundant computa-
tion and lower latency. This would also improve energy efficiency by allowing models to
“sleep” when no novel input is present and “wake” only when meaningful new prompts
arrive. In the context of SWI, the term “sleep” does not imply shutting down the sys-
tem entirely. Instead, “sleep” refers to a low-power mode where the LLM remains in
a low-compute state and does not actively engage in inference. In this state, GPUs or
TPUs are not cycling to recompute tokens, nor are they reprocessing repeated context.
Instead, the responsibility shifts to the Gateway, which quietly monitors input streams,
caches previous results, and determines whether new computation is actually required.
Essentially, the LLM “wakes” only when the Gateway identifies input that is truly novel
or in simple words, new. So the main question is: how does the system know when a
prompt is new? For this, I would be using research that has already been done. Adaptive
Semantic Prompt Caching with VectorQ [18] has demonstrated methods for comparing
incoming prompts to stored embeddings and using learned thresholds to decide whether
two prompts are semantically equivalent. If a new query is within the similarity threshold,
then a cache is requested, and the system can serve the prior response directly, bypassing
the model.

4.4 Sleep–Wake Inference Execution Flow

The diagram below shows an AI Gateway that acts as the mediator between the client and
a large inference cluster. The Gateway maintains a persistent session, runs a lightweight
novelty check against a cache, and only wakes the heavy inference engine when the in-
coming prompt is truly novel. On the diagram, a decision diamond shows the route of
the flow. Cache-hit responses are returned immediately, which means the model stays
asleep. If the cache misses, then only the model is awakened. The model’s normal state
is sleep/idle, and it only becomes active on demand.

I will explain what happens in the same way I described the BlackBerry model.

1. Client Initialization and Authentication. The process starts from the Client
(User App). In the real world, this could be a user-facing app such as a chatbot
interface, a productivity tool embedding an LLM, or even a corporate workflow
system requesting AI responses. The client authenticates with the AI Gateway
Main Server.
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Figure 3: Sleep–Wake Inference (SWI) architecture showing the AI Gateway, cache,
novelty check, and inference engine interaction.

2. Prompt Submission. Once authentication is done, the client sends the user’s
prompt to the AI Gateway. In pull-based systems, the client would have to send
the entire conversation history every time, but here only the new piece of input (a
delta) is transmitted.

3. Context Registration and Session State Update. The AI Gateway then per-
forms Context Registration and Session State Update. It keeps track of the conver-
sation, remembers history, and links new input fragments with cached knowledge.
Unlike traditional LLM APIs where the server is stateless, here the Gateway actively
manages session continuity.

4. Novelty Check. The Gateway then runs a Novelty Check using the Input Com-
parator. This mechanism checks whether the new input is truly novel or just a
repeat (or a close variant) of a request that has already been answered.

5. Decision via Cache Lookup. The Novelty Check leads to the Decision Diamond.
If the input matches something in the cache, the flow goes to the Cache Store.

6. Cache Hit Path. In the case of a Cache Hit (similar or duplicate), the cached
response is returned directly to the client. The inference engine stays asleep, and
the client gets the response in near real time.

7. Cache Miss Path. If the novelty check results in a Cache Miss (novel input), the
Gateway pushes the query to the Inference Engine (Model Cluster). This “wakes
up” the model, runs the necessary computation, and produces a fresh response,
which is then passed back to the client and stored in the cache for future use.

Once the inference engine responds, the Gateway passes the output back to the client.
To complete the cycle, the client sends an Acknowledgment (ACK) confirming receipt.
This ensures reliability, as the Gateway knows the response was successfully delivered.
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To put it all together, the Sleep–Wake Inference (SWI) model represents a shift from
wasteful repetition to intelligent orchestration. In pull-based systems, the client acts as
a historian, resending information and forcing the inference engine to recompute work it
has already done. SWI eliminates this duplication. The AI Gateway acts as a persistent
mediator, maintaining session state and filtering out redundant queries. It only wakes
up the heavy inference engine when it is necessary [18]. The result is a system that is
faster, leaner, and more reliable. Responses arrive in real time for cached inputs. GPUs
and TPUs conserve power because they remain idle until novel work appears. For this
reason, bandwidth use is reduced, as the system only sends incremental updates (deltas)
when new data is seen. By keeping intelligence centralized in the Gateway, the system
improves security and ensures consistency across millions of clients.

From a design perspective, SWI highlights the same architectural insight that made
BlackBerry’s push model revolutionary. It does not scatter the work across countless
devices; instead, it concentrates it in one place. Similar to how BlackBerry servers checked
once for new mail instead of letting every device check endlessly, the AI Gateway checks
once for novelty and shields the model cluster from a flood of redundant prompts [13].
In short, the Gateway decides when to compute so that the inference engine can focus
purely on what to compute. This division of responsibility is what makes SWI scalable
and sustainable in the era of large AI models

5 Challenges and Barriers to Implementation

Discuss challenges in implementing SWI. Despite the clear potential benefits of a push-
style, there are some reasons why the SWI has not been implemented yet. These chal-
lenges stem from many factors. These factors include practical challenges as well as
technical challenges.

Large Language Models (LLMs) often have hundreds of billions of parameters and are
hosted on GPU or TPU clusters. Maintaining a persistent, always-on connection with
a million users poses challenges in resource allocation. Unlike email servers, inference
engines perform heavy computation for every token generated. Keeping these engines in
a semi-active or low-power state for each user could increase idle overhead and complexity
in resource scheduling.

SWI relies on accurate caching and semantic comparison of prompts to determine
whether the model needs to “wake.” Implementing this requires very sophisticated sim-
ilarity detection mechanisms. We also need robust embedding storage and consistent
state management across sessions. While research on caching does exist, it is difficult to
integrate into the current pull-based systems, let alone into a new push system [18].

Maintaining persistent, low-latency connections across mobile and web clients at
global scale is technically very demanding. Other factors include network interruptions
and firewall restrictions. User mobility can also make it challenging to guarantee reliable
session continuity. Pull-based APIs avoid these complications by treating each request
independently.

All the above problems could be solved if we really had the resources and money.
Current cloud providers are heavily optimized for stateless inference because the model
aligns with billing and scaling practices. The economics make sense, as it is easier to
bill requests. SWI’s persistent connection and caching may complicate cost allocation,
making it harder to predict infrastructure needs and pricing.
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The reason BlackBerry was successful is because the transition they made to the
push system did not require changing the way things were done in the market, as they
integrated the push mechanism into the existing system [13]. The software infrastructure
for AI today that includes frameworks, APIs, and orchestration tools is largely built
around the pull-based request–response system. Shifting to a push-driven system would
require redesigning both client and server components, updating APIs, and retraining
operators to manage a fundamentally different workflow. This is a major factor in why
such a change would take significant time and effort, despite the potential efficiency gains.

Even though the security of the system is good, the core is still from the 1990s. In
today’s day and age, where cyberattacks have become much more common than they
were three decades ago, the model is vulnerable. If session tokens are compromised, then
continuous sessions would be vulnerable to attacks.

It is worth noting that push-based systems are not entirely foreign. Though they
are not yet at the scale of SWI, push-based interactions have already started to emerge.
On-device AI assistants like Siri, Google Assistant, and Alexa implement lightweight
push-like behavior by listening for wake words and only activating heavy inference when
triggered. In large-scale implementations, providers are experimenting with event-driven
inference pipelines (e.g., stock market updates, monitoring dashboards, or IoT feeds),
which automatically trigger model evaluations.

In future work, we plan to build and evaluate a prototype system based on the Sleep–
Wake Inference (SWI) model. The goal is to develop a mini chatbot that demonstrates the
feasibility of this approach. The planned evaluation would involve training the model on
approximately 1,500 prompts, testing it on 300 prompts that are semantically similar to
the training data, and then evaluating performance on an additional 200 completely novel
prompts. Beyond this initial prototype, we aim to scale the system to larger workloads
in order to study its behavior under more realistic usage conditions.

6 Conclusions

Technology is actually moving way faster than we expected. AI is here to stay, and for
that reason, if we really want it to make a difference in our future, we need to make it
better so we have a future. All the energy and resources that AI is using nowadays are
causing a lot of harm to the environment, and something like SWI can reduce that. SWI
addresses inefficiencies in pull-based inference through persistent connection, caching, and
novelty detection, creating a faster and more reliable system. However, our study does
have its limitations. Even though we were able to build a mini chatbot that highlights the
practicality of this approach, the process still has gaps that need to be filled. SWI is not
the whole framework but rather a step toward a more efficient and scalable AI system.
Current cloud systems are optimized for stateless inference, and making the transition
to a push system would require a complete overhaul. Despite all the challenges, I still
feel the concept has potential, and given the right resources and mentorship, the model
would be able to work in the correct direction.
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