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Abstract—In the present scenario there is a huge amount of 

data transfer around us in every field. It is a primary 

requirement that the data that is being transmitted is secure 

and does not land up with unauthorized party. Frequency 

Hopped Spread Spectrum (FHSS) is a reliable communication 

technique by which data security while the data is under 

transmission can be guaranteed. FHSS is a technique in which 

the carrier frequency is hopped or changed continuously. 

Thus it is more immune to external attack and cannot be 

accessed by unauthorized parties. It is also desirable if we can 

minimize the resource needed to sense or intercept the 

transmitted data at the receiver. By traditional methods we 

sense the data as a whole and then sample and discard some 

values that are redundant. This is a waste of valuable sensing 

resource. Instead of sensing the data as a whole, we try to 

sense and capture only those samples which are not 

redundant. This approach is known as Compressive sensing 

or compressive sampling technique. This paper proposes a 

method for interception of the frequency hopped signal using 

latest algorithm in compressive sensing. 
 

Keywords—Compressive sensing, frequency hopped spread 

spectrum sparsity, sensing matrix.  

I.  INTRODUCTION  
 
Frequency hopping spread spectrum is a transmission 

technology used in wireless networks and a technique to 
generate spread spectrum by hopping the carrier frequency. 
In this method data signal is modulated with a narrow-band 
carrier signal that hops in random and hopping happens in 
pseudo-random predictable sequence in a regular time from 
frequency to frequency which is synchronized at both ends. 
In other words Frequency hopping is the periodic change of 
transmission frequency and hopping happens over a 
frequency bandwidth which consists of numbers of 
channels. Channel which is used as a hopped channel is 
instantaneous bandwidth while the hopping spectrum is 
called total hopping bandwidth. The times at which the 
carrier frequency are changed are called hopepochs. The 
interval between any consecutive hop epochs is called a hop 
interval.Data transmission time interval is called dwell 
interval.FHSS can be broadly classified as slow FHSS and 
fast FHSS.When hopping rate isgreater than the data rate 
then we call it as Fast FHSS. Here data symboltransmission 
requires at least two dwell intervals. In other words, 
carrierfrequency changes in middle of bit period.When 
hopping rate is lesser thanor equal to the data rate we have 
Slow FHSS wherein one or more datasymbols are 
transmitted per dwell. The feature of FHSS that is exploited 

by compressive sensing is the sparsity of the FHSS signal in 
the frequency domain. 

II. BASICS OF COMPRESSIVE SENSING 

The traditional approach of reconstructing signals or 

images from measureddata follows the well-known 

Shannon sampling theorem[1], which states thatthe 

sampling rate must be twice the highest frequency. 

Similarly, the fundamental theorem of linear algebra 

suggests that the number of collected 

samples (measurements) of a discrete finite dimensional 

signal should be atleast as large as its length (its dimension) 

in order to ensure reconstruction.This principle underlies 

most devices of current technology, such as analogto 

digital conversion, medical imaging or audio and video 

electronics. Compressive sensing is a new approach of data 

acquisition based on sparse signal representation. 

According to the theory, as long as the signal is sparse or 

compressive in somebasis, much lower sample rate than the 

Nyquist samplingtheorem is required to obtain structure 

information of the signal and exactly reconstruct the signal 

through reconstruction algorithm. 

Suppose that x is a signal of length N. It is said to be a 

K sparse signal if it can be well approximated by K<<N 

coefficients under some linear transformation. 

𝑥 = Ψ𝛼                                  (1) 

Where Ψ is the sparsifying basis and α is the transform 

coefficient vector that has K nonzero entries.  

According to the CS theory, such a signal can be 

acquired through the following random linear projection 

𝑦 = Φ𝑥   (2) 

Where y is the sampled vector with M<<N coefficients 

and Φ represents an M×N random matrix known as the 

measurement matrix or a sensing matrix. The CS 

framework is attractive as it implies that x can be faithfully 

recovered from only𝑀 = 𝒪(𝐾 log 𝑁) measurements, 

suggesting the potential of significant cost reduction in 

digital data acquisition. 

There is considerable amount of literature about the 

reconstruction algorithm used for reconstructing the 

original signal x from the compressed coefficients. The 

class of reconstruction algorithm can be broadly classified 

into six types, namely convex relaxation, greedy iterative 

algorithms, iterative thresholding algorithms, combinatorial 

algorithms, nonconvex minimization algorithms and 

bregman iterative algorithms. 
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III. DESIGN OF MEASUREMENT MATRIX 

Choosing or constructing the sensing matrix denoted 
byΦ  is a major step in compressive sensing. The matrix 
represents a dimensionality reduction. In other words, it 
maps ℝN where N is large to ℝM.. In the standard CS 
framework we assume that the measurements are non-
adaptive, meaning that the rows of Φ  are fixed in 
advanceand do not depend on the previously acquired 
measurements. However in certainsettings adaptive 
measurement schemes can lead to significant 
performancegains. The recovery of the original signal is 
guaranteed only if the measurement matrix satisfy certain 
properties. A property that would guarantee the recovery of 
the signal is the incoherence[2] of the measurement matrix 
with the sparsifying basis. The coherence of a matrix Φ, 
denoted as µ(Φ) is the largest absolute inner product 
between any two columns ϕi ,ϕj of Φ. 

It is possible to show that the coherence of the matrix is 
always in the range: 

  µ(Φ)∈ [√
𝑁−𝑀

𝑀(𝑁−1)
,1]                              (3) 

Note that when N>> M, the lower bound known as 

welsh bound[3] is approximately µ(Φ)≥
1

√𝑀
. 

Apart from coherence property it is desirable if the 
sensing matrix has additional properties such as universality 
and low complexity. By universality we mean that the 
sensing performance is equally good with almost all 
sparsifying bases. Low complexity and fast computation 
properties are desired for large scale real time applications. 
It is also desirable that the entries of the sensing matrix be 
such that they can be implemented easily in hardware. 

Random matrices have the property that they are 
incoherent with almost all sparsifying bases with 
overwhelming probability and hence is used as 
sensingmatrix in compressive sensing. The two main class 
of random matrices usedare Gaussian matrices and 
Bernoulli matrices[4]. 

Gaussian matrix was used for non-uniform sparse 

signal recovery. We say that an M×N random matrix Φ is 

Gaussian if its entries are independentand standard normal 

distributed random variables, that is, having mean zero and 

variance one. Bernoulli matrices are another class of 

random matrices where the elements are Bernoulli random 

variables. However, it is quite costly to realize random 

matrices in practical sensing applications as they require 

very high computational complexity and huge memory 

buffering dueto their completely unstructured nature. It is 

also possible to deterministically construct sensing matrix 

with the required incoherence, but such constructions suffer 

from the disadvantage that the required value of M 

becomes large. 

A special type of matrix called structurally random 

matrix can be used which incorporates the advantages of 

both the random matrix and deterministic matrix. 

Structurally random matrix[5] is defined as a product of 

three matrices 

Φ = √
𝑁

𝑀
DFR                          (4) 

The matrix R∈N×N is either a uniform random 

permutation matrix or a diagonal random matrix whose 

diagonal entries are Bernoulli random variables with 

identical distributions A uniformly random permutation 

matrix scrambles signal’s sample locationsglobally while a 

diagonal matrix of Bernoulli random variables flips 

signal’s sample signs locally. Hence, we often refer the 

former as the global randomizerand the latter as the local 

randomizer. 

The matrix F is an N×N orthonormal matrix that in 

practice,is selected to be fast computable such as popular 

fast transforms. In the case of frequency hopped signals 

FFT or its block transformed version is preferred over other 

popular transforms. The purpose of the matrix F is to 

spread informationof the signal’s samples over 

allmeasurements. The number of rows selected would be M 

inaverage. In matrix representation, D is simply a 

randomsubset of M rows of the identity matrix of size 

N×N. the scale coefficient √𝑁 𝑀⁄  is to normalize the 

transform so that energy of the measurement vector is 

almost similarto that of the input signal vector. 

Equivalently, the proposed sensing algorithm SRM 

randomize a target signal by either flipping its sample signs 

or uniformly permutingits sample locations. This step 

corresponds to multiplyingthe signal with the matrix R, 

spread the energy of the signal’s samples over all 

measurements and finally it picks up M measurements out 

of N transform coefficients randomly. 

 

IV. THE RECONSTRUCTION ALGORITHM 

Many efficient algorithms exist in literature which 

instead of finding the M largest coefficients at the same 

time attempt to find these coefficients iteratively. These 

algorithms may be divided into six classes. 

 The convex relaxation algorithm solves a convex 

optimization problem through linear programming[6]to 

obtain reconstruction. The number of measurements 

required for exact reconstruction is small but the methods 

are computationallycomplex. 

     The greedy iterative algorithms[7] solve the 

reconstruction problem by to obtain reconstruction by 

finding the answer, step by step, in an iterative fashion. The 

idea is to select columns ofΦ in a greedy fashion. At each 

iteration, the column ofΦ that correlates most with y is 

selected. Conversely, least square error is minimized in 

everyiteration. That rows contribution is subtracted from y 

and iterations aredone on the residual until correct set of 

columns is identified. This is usuallyachieved in M 

iterations. However, when the signal is not much sparse, 

recovery becomes costly. 

Iterative thresholding algorithm[8] approaches to CS 

recovery problem are faster than the convex optimization 

problems. For this class of algorithms, correct 

measurements are recovered by soft or hard thresholding 

starting from noisy measurements given the signal is 

sparse. The thresholding function depends uponnumber of 

iterations and problem setup at hand. 

The combinatorial algorithms[9] recovers sparse signal 

through group testing. They are extremely fast and 
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efficient, as compared to convex relaxation or greedy 

algorithms but require specific pattern in the 

measurements; Φ needs to besparse. 

The bregman iterative algorithms[10] provide a simple 

and efficient way of solving relaxation problem. It presents 

a new idea which gives exact solution of 

constrainedproblems by iteratively solving a sequence of 

unconstrained sub-problemsgenerated by a Bregman 

iterative regularization scheme. Non-convex 

optimization[11] is mostly utilized in medical imaging 

tomography, network state inference, streaming data 

reduction. 

In this paper the frequency hopped signal is recovered. 

It is proposed to use a new approach known as multipath 

matching pursuit(MMP)[12] to reconstruct the signal. It 

grafts the advantages offered by combinatorial approach 

and the traditional greedy approach.  

 
Fig.1. comparison between greedy algorithm and MMP 

 

Since all combinations of K-sparse indices can be 

interpreted as candidates in a tree and each layer of the tree 

can be sorted by the magnitude ofthe correlation between 

the column of sensing matrix and residual, the problem to 

find the candidate that minimizes the residual is readily 

modelled asa combinatoric tree search problem.MMP, 

performs the tree search with thehelp of the greedy 

strategy. Although each candidate brings forth 

multiplechildren and hence the number of candidates 

increases as an iteration goeson, the increase is actually 

moderate since many candidates are overlappingin the 

middle of search. Therefore, while imposing reasonable 

computationaloverhead, the proposed method achieves 

considerable performance gain overexisting greedy 

algorithms. MMP algorithm searches multiple promising 

candidates and then chooses one minimizing the residual in 

the final moment. In this sense, one can thinkof MMP as an 

approximate algorithm to find the candidate minimizing 

thecost function.In contrast to greedy algorithms where 

only one candidate path is maintained, in MMP each path 

generates L child paths. in the kth iteration,L indices of 

thecolumns that are maximally correlated with residual 

become newelements of the child candidates. 

 

 

V. CONCLUSION 

In this paper we propose to employ the theory of 

compressive sampling for interception of frequency hopped 

signal which is sparse in frequency domain. For the sensing 

matrix we have grafted the advantages of both the random 

matrices and deterministic matrices and created structurally 

random matrix. In the reconstruction part we explore 

multiple candidates in the reconstruction of the sparse 

signal. The MMP algorithm examines the multiple 

promising candidates instead of partial ones. Thus it avoids 

the risk of choosing the wrong candidate and providing an 

inaccurate signal as the output. In the empirical results we 

could observe that MMP more effective than the existing 

algorithms both in noisy as well as noiseless situations. 
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