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Abstract—In the present scenario there is a huge amount of
data transfer around us in every field. It is a primary
requirement that the data that is being transmitted is secure
and does not land up with unauthorized party. Frequency
Hopped Spread Spectrum (FHSS) is a reliable communication
technique by which data security while the data is under
transmission can be guaranteed. FHSS is a technique in which
the carrier frequency is hopped or changed continuously.
Thus it is more immune to external attack and cannot be
accessed by unauthorized parties. It is also desirable if we can
minimize the resource needed to sense or intercept the
transmitted data at the receiver. By traditional methods we
sense the data as a whole and then sample and discard some
values that are redundant. This is a waste of valuable sensing
resource. Instead of sensing the data as a whole, we try to
sense and capture only those samples which are not
redundant. This approach is known as Compressive sensing
or compressive sampling technique. This paper proposes a
method for interception of the frequency hopped signal using
latest algorithm in compressive sensing.

Keywords—Compressive sensing, frequency hopped spread
spectrum sparsity, sensing matrix.

I INTRODUCTION

Frequency hopping spread spectrum is a transmission
technology used in wireless networks and a technique to
generate spread spectrum by hopping the carrier frequency.
In this method data signal is modulated with a narrow-band
carrier signal that hops in random and hopping happens in
pseudo-random predictable sequence in a regular time from
frequency to frequency which is synchronized at both ends.
In other words Frequency hopping is the periodic change of
transmission frequency and hopping happens over a
frequency bandwidth which consists of numbers of
channels. Channel which is used as a hopped channel is
instantaneous bandwidth while the hopping spectrum is
called total hopping bandwidth. The times at which the
carrier frequency are changed are called hopepochs. The
interval between any consecutive hop epochs is called a hop
interval.Data transmission time interval is called dwell
interval.FHSS can be broadly classified as slow FHSS and
fast FHSS.When hopping rate isgreater than the data rate
then we call it as Fast FHSS. Here data symboltransmission
requires at least two dwell intervals. In other words,
carrierfrequency changes in middle of bit period.When
hopping rate is lesser thanor equal to the data rate we have
Slow FHSS wherein one or more datasymbols are
transmitted per dwell. The feature of FHSS that is exploited

by compressive sensing is the sparsity of the FHSS signal in
the frequency domain.

Il.  BASICS OF COMPRESSIVE SENSING

The traditional approach of reconstructing signals or
images from measureddata follows the well-known
Shannon sampling theorem[1], which states thatthe
sampling rate must be twice the highest frequency.
Similarly, the fundamental theorem of linear algebra
suggests that the number of collected
samples (measurements) of a discrete finite dimensional
signal should be atleast as large as its length (its dimension)
in order to ensure reconstruction.This principle underlies
most devices of current technology, such as analogto
digital conversion, medical imaging or audio and video
electronics. Compressive sensing is a new approach of data
acquisition based on sparse signal representation.
According to the theory, as long as the signal is sparse or
compressive in somebasis, much lower sample rate than the
Nyquist samplingtheorem is required to obtain structure
information of the signal and exactly reconstruct the signal
through reconstruction algorithm.

Suppose that x is a signal of length N. It is said to be a
K sparse signal if it can be well approximated by K<<N
coefficients under some linear transformation.

x =%¥a (8]
Where W is the sparsifying basis and a is the transform
coefficient vector that has K nonzero entries.

According to the CS theory, such a signal can be
acquired through the following random linear projection

y=ox )

Where vy is the sampled vector with M<<N coefficients
and @ represents an MxN random matrix known as the
measurement matrix or a sensing matrix. The CS
framework is attractive as it implies that x can be faithfully
recovered from onlyM = O(KlogN) measurements,
suggesting the potential of significant cost reduction in
digital data acquisition.

There is considerable amount of literature about the
reconstruction algorithm wused for reconstructing the
original signal x from the compressed coefficients. The
class of reconstruction algorithm can be broadly classified
into six types, namely convex relaxation, greedy iterative
algorithms, iterative thresholding algorithms, combinatorial
algorithms, nonconvex minimization algorithms and
bregman iterative algorithms.
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I1l.  DESIGN OF MEASUREMENT MATRIX

Choosing or constructing the sensing matrix denoted
by® is a major step in compressive sensing. The matrix
represents a dimensionality reduction. In other words, it
maps RN where N is large to RM. In the standard CS
framework we assume that the measurements are non-
adaptive, meaning that the rows of & are fixed in
advanceand do not depend on the previously acquired
measurements. However in certainsettings adaptive
measurement  schemes can lead to significant
performancegains. The recovery of the original signal is
guaranteed only if the measurement matrix satisfy certain
properties. A property that would guarantee the recovery of
the signal is the incoherence[2] of the measurement matrix
with the sparsifying basis. The coherence of a matrix @,
denoted as p(®) is the largest absolute inner product
between any two columns ¢i ,¢;of .

It is possible to show that the coherence of the matrix is
always in the range:

N-M
M(N-1)

H(@)e [ A @)

Note that when N>> M, the lower bound known as
welsh bound[3] is approximately u((b)z\/iﬁ.

Apart from coherence property it is desirable if the
sensing matrix has additional properties such as universality
and low complexity. By universality we mean that the
sensing performance is equally good with almost all
sparsifying bases. Low complexity and fast computation
properties are desired for large scale real time applications.
It is also desirable that the entries of the sensing matrix be
such that they can be implemented easily in hardware.

Random matrices have the property that they are
incoherent with almost all sparsifying bases with
overwhelming probability and hence is used as
sensingmatrix in compressive sensing. The two main class
of random matrices usedare Gaussian matrices and
Bernoulli matrices[4].

Gaussian matrix was used for non-uniform sparse
signal recovery. We say that an MxN random matrix @ is
Gaussian if its entries are independentand standard normal
distributed random variables, that is, having mean zero and
variance one. Bernoulli matrices are another class of
random matrices where the elements are Bernoulli random
variables. However, it is quite costly to realize random
matrices in practical sensing applications as they require
very high computational complexity and huge memory
buffering dueto their completely unstructured nature. It is
also possible to deterministically construct sensing matrix
with the required incoherence, but such constructions suffer
from the disadvantage that the required value of M
becomes large.

A special type of matrix called structurally random
matrix can be used which incorporates the advantages of
both the random matrix and deterministic matrix.
Structurally random matrix[5] is defined as a product of

three matrices
— /ﬂ
o= MDFR 4)

The matrix RENXN is either a uniform random
permutation matrix or a diagonal random matrix whose
diagonal entries are Bernoulli random variables with
identical distributions A uniformly random permutation
matrix scrambles signal’s sample locationsglobally while a
diagonal matrix of Bernoulli random variables flips
signal’s sample signs locally. Hence, we often refer the
former as the global randomizerand the latter as the local
randomizer.

The matrix F is an NxN orthonormal matrix that in
practice,is selected to be fast computable such as popular
fast transforms. In the case of frequency hopped signals
FFT or its block transformed version is preferred over other
popular transforms. The purpose of the matrix F is to
spread informationof the signal’s samples over
allmeasurements. The number of rows selected would be M
inaverage. In matrix representation, D is simply a
randomsubset of M rows of the identity matrix of size

NxN. the scale coefficient /N/M is to normalize the
transform so that energy of the measurement vector is
almost similarto that of the input signal vector.

Equivalently, the proposed sensing algorithm SRM
randomize a target signal by either flipping its sample signs
or uniformly permutingits sample locations. This step
corresponds to multiplyingthe signal with the matrix R,
spread the energy of the signal’s samples over all
measurements and finally it picks up M measurements out
of N transform coefficients randomly.

IV. THE RECONSTRUCTION ALGORITHM

Many efficient algorithms exist in literature which

instead of finding the M largest coefficients at the same
time attempt to find these coefficients iteratively. These
algorithms may be divided into six classes.
The convex relaxation algorithm solves a convex
optimization problem through linear programming[6]to
obtain reconstruction. The number of measurements
required for exact reconstruction is small but the methods
are computationallycomplex.

The greedy iterative algorithms[7] solve the

reconstruction problem by to obtain reconstruction by
finding the answer, step by step, in an iterative fashion. The
idea is to select columns of® in a greedy fashion. At each
iteration, the column of® that correlates most with y is
selected. Conversely, least square error is minimized in
everyiteration. That rows contribution is subtracted from y
and iterations aredone on the residual until correct set of
columns is identified. This is usuallyachieved in M
iterations. However, when the signal is not much sparse,
recovery becomes costly.
Iterative thresholding algorithm[8] approaches to CS
recovery problem are faster than the convex optimization
problems. For this «class of algorithms, correct
measurements are recovered by soft or hard thresholding
starting from noisy measurements given the signal is
sparse. The thresholding function depends uponnumber of
iterations and problem setup at hand.

The combinatorial algorithms[9] recovers sparse signal
through group testing. They are extremely fast and
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efficient, as compared to convex relaxation or greedy
algorithms  but require specific pattern in the
measurements; & needs to besparse.

The bregman iterative algorithms[10] provide a simple
and efficient way of solving relaxation problem. It presents
a new idea which gives exact solution of
constrainedproblems by iteratively solving a sequence of
unconstrained  sub-problemsgenerated by a Bregman
iterative regularization scheme. Non-convex
optimization[11] is mostly utilized in medical imaging
tomography, network state inference, streaming data
reduction.

In this paper the frequency hopped signal is recovered.
It is proposed to use a new approach known as multipath
matching pursuit(MMP)[12] to reconstruct the signal. It
grafts the advantages offered by combinatorial approach
and the traditional greedy approach.
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Fig.1. comparison between greedy algorithm and MMP

Since all combinations of K-sparse indices can be
interpreted as candidates in a tree and each layer of the tree
can be sorted by the magnitude ofthe correlation between
the column of sensing matrix and residual, the problem to
find the candidate that minimizes the residual is readily
modelled asa combinatoric tree search problem.MMP,
performs the tree search with thehelp of the greedy
strategy. Although each candidate brings forth
multiplechildren and hence the number of candidates
increases as an iteration goeson, the increase is actually
moderate since many candidates are overlappingin the
middle of search. Therefore, while imposing reasonable
computationaloverhead, the proposed method achieves
considerable performance gain overexisting greedy
algorithms. MMP algorithm searches multiple promising
candidates and then chooses one minimizing the residual in
the final moment. In this sense, one can thinkof MMP as an
approximate algorithm to find the candidate minimizing
thecost function.In contrast to greedy algorithms where
only one candidate path is maintained, in MMP each path
generates L child paths. in the k™ iteration,L indices of
thecolumns that are maximally correlated with residual
become newelements of the child candidates.

V. CONCLUSION

In this paper we propose to employ the theory of
compressive sampling for interception of frequency hopped
signal which is sparse in frequency domain. For the sensing
matrix we have grafted the advantages of both the random
matrices and deterministic matrices and created structurally
random matrix. In the reconstruction part we explore
multiple candidates in the reconstruction of the sparse
signal. The MMP algorithm examines the multiple
promising candidates instead of partial ones. Thus it avoids
the risk of choosing the wrong candidate and providing an
inaccurate signal as the output. In the empirical results we
could observe that MMP more effective than the existing
algorithms both in noisy as well as noiseless situations.
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