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Abstract—This paper presents the free vibration analysis 

of composite thick rectangular plates coupled with fluid, The 

governing equations for a thick rectangular plate are 

analytically based on Reddy’s higher order shear deformation 

theory (HSDT). The plate theory ensures a zero shear-stress 

condition at the top and bottom surfaces of the plate and do 

not requires a shear correction factor. Although the plate 

theory is quite attractive but it could not be used in the finite 

element analysis. This is due to the difficulties associated with 

the satisfaction of the C1 continuity requirement. To overcome 

this problem associated with Reddy’s HSDT, a new  C1 HSDT 

p-element with eight degrees of freedom per node is developed 

and used to find natural frequencies of thick composite plates. 

Whereas the velocity potential function and Bernoulli’s 

equation are employed, to obtain the fluid pressure applied on 

the free surface of the plate. The simplifying hypothesis that 

the wet and dry mode shapes are the same, is not assumed in 

this paper. 

 

A comparison is made with the published experimental and 

numerical results in the literature, showing an excellent 

agreement. natural frequencies of the plate are presented in 

graphical forms for different fluid levels, aspect ratios, 

thickness to length ratios and boundary conditions. 

 
Keywords—Free vibration, Thick composites plates, 

Sandwich plate, hierarchical finite element method, C1 HSDT 

Fluid–structure interaction, added mass.   
 

I. INTRODUCTION (Heading 1) 

     Systems of shells and plates subjected to flowing fluid 
are used extensively in modern engineering designs in a 
variety of industries. Some examples are; ship building, 
nuclear, aerospace and aeronautical industries, pipe line 
systems in petroleum and petrochemical industries and car 
manufacturing. 

     The simplifyng assumptions made in CPT and FSDT are 

reflected by the high percentage errors in the results of thick 

plates analysis. For these plates, higher-order shear 

deformation theories (HSDT) are required. The HSDT 

ensure a zero shear-stress condition on the top and bottom 

surfaces of the plate, and do not require a shear correction 

factor, which is a major fearture of these theories. 
Nelson and Lorch [1], Lo et al. [2] presented a HSDT for 
laminated plates however the displacement field does 
satisfy the shear-stress free condition on the topand bottom 
surfaces of the plate. Lewinson [3], Murthy [4], and Reddy 
[5] presented a new higher order shear deformation theories 

considered as an extension of hencky’s theory, which 
include a realistic displacement field satisfying the 
conditions of zero transverse shear-stress and/or strains, 
known as Reddy’s third-order theory. This model requireds 
C1 inter element continuity requirement. Phan and Reddy 
developed an non-conforming rectangular element with 
seven degrees of freedom per node, based on C1 Reddy’s 
third order theory to analyse laminated composites plates. 
Kant et al [6] investigate the free and transient vibration 
analysis of composites and sandwich plates based on a 
refined theory by using the finite element method and 
analytical solution. Nayak et al. [7,8] investigate the free 
vibration and transient response of composite sandwich 
plates by using two C1  assumed strain finite element based 
on Reddy’s third-order theory.  Asadi and Fariborz [9] used 
a HSDT and the generalized differential quadrature method 
to analyse the free vibration of composite plates. Batra et al. 
[10] used a HSDT and the finite element method to analyse 
free vibrations and stress distribution in thick isotropic 
plate. Kulkarni and Kapuria [11] used a discrete Kirchoff 
quadrilateral element based on the third order theory for 
composite plates, Ambartsumian [12] proposed a higher-
order transverse shear stress function to explain plate 
deformation. Soldatos and Timarci [13] suggested a similar 
approach for dynamic analysis of laminated plates. Various 
different functions were proposed by Reddy [14], Touratier 
[15], Karama et al. [16] and Soldatos [17]. The results of 
some of these methods were compared by Aydogdu [18]. 
Swaminathan and Patil [19] used a higher-order method for 
the free vibration analysis of antisymmetric angle-ply plates 
[20]. 

     The litterature review clearly shows that very few 

conforming elements based on  C1 Reddy’s third-order plate 

theory are developped. This is due to the difficulties 

associated with satisfaction of  C1 continuity requirement. 

To overcome this hindrance, the hierarchical finite element 

method can be used. In the hierarchical finite element 

method the mesh keeps unchanged and the polynomial 

degree of the shape functions is increased. See for instance 

Szabo and Sahrmann [21], Szabo and Babuska [22] and 

Hamza-Cherif [23]. In this paper we address these above-

mentioned points. The new approach with hierarchical finite 

element method is formulated for thick plates vibration 

analysis. A new hieararchical p-element with eight degrees 

of freedom per node is developed, based on the C1 higher 

order shear deformation theory. The continuity along the 

inter-element boundary is not required in the model. To 
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demonstrate the convergence and accuracy of the proposed 

method, present results are compared with existing data 

available from other analytical and numerical methods. The 

effects of core to face sheet thickness ratio, Young’s 

modulus ratio, thickness ratio, and boundary conditions on 

the frequencies are presented in tabular form. 

 

     Systems of plates coupled with fluid are used extensively 

in modern engineering designs in a variety of industries. 

Some examples are; ship building, nuclear, aerospace and 

aeronautical industries, pipe line systems in petroleum and 

petrochemical industries and car manufacturing.  

     Many studies on the free and forced vibration analysis of 
plates, partially or totally submerged in the fluid, have been 
carried out. 

     Lamb [23] calculated the first bending mode shape of a 

circular plate fixed at its circumference, in contact with 

water. Fu and Price [24] employed a finite element 

discretization to analyze the dry and wet dynamic 

characteristics of a vertical and horizontal cantilever plate. 

Robinson and Palmer [25] conducted a study on the modal 

analysis of a rectangular plate resting on an incompressible 

fluid. Kwak and Kim [26] studied on axisymmetric 

vibration of circular plates in the presence of fluid on the 

basis of the mixed boundary value problem. Free vibration 

of infinite elastic rectangular plate in contact with water was 

studied by Hagedorn [27]. Kwak [28] utilized a piecewise 

division to investigate the free vibrations of rectangular 

plates in contact with unbounded water on one side, while 

beam functions were used as admissible functions. Haddara 

and Cao [29] investigated dynamic responses of rectangular 

plates immersed in fluid. An approximate expression for the 

evaluation of the modal added mass was derived for 

cantilever and SFSF rectangular plates and the numerical 

results were verified by the experimental ones. The natural 

frequencies of annular plates in contact with a fluid on one 

side were theoretically obtained by Amabili et al. [25] using 

the added mass approach, whereas the coupled fluid–

structure system was solved by adopting the Hankel 

transform. Meylan [26] employed an appropriate Green’s 

function to study the forced vibration of an arbitrary thin 

plate floating on the surface of an infinite liquid. Cheung 

and Zhou [27] also studied the case of a horizontal 

rectangular plate composing the base of a rigid rectangular 

container. The dynamic characteristics of a vertical 

cantilever plate partially in contact with fluid were 

investigated by Ergin and Ugurlu [28]. Liang et al. [29] 

adopted an empirical added-mass formulation to determine 

the frequencies and mode shapes of submerged cantilevered 

plates. Based  on a finite Fourier series expansion, Jeong et 

al. [30] studied the wet resonance frequencies and 

associated mode shapes of two 

identical rectangular plates coupled with a bounded fluid. 

Tayler and Ohkusu [31] suggested expressions for the free–

free rectangular plates in terms of the sinusoidal eigen-

modes of a pinned–pinned beam and rigid body modes. 

Zhou and Cheung [32] employed an analytical-Ritz method 

to investigate a rectangular plate in contact with water on 

one side. 

Ugurlu et al. [33] investigated the effects of elastic 

foundation and fluid on the dynamic response 

characteristics of rectangular Kirchhoff plates using a 

boundary element method. Kerboua et al. [34] developed a 

combination of the finite element method and Sanders’shell 

theory to study the vibration analysis of rectangular plates in 

contact with fluid. Recently, Hosseini Hashemi et al. 

[35,36] presented a comprehensive investigation on 

hydroelastic vibration analysis of horizontal and vertical 

rectangular plates resting on Pasternak foundation for 

different boundary conditions. To analyze the interaction of 

the Mindlin plate with the elastic foundation and fluid 

system, three displacement components of the plate were 

expressed in the Ritz method by adopting a set of static 

Timoshenko beam functions satisfying geometric boundary 

conditions. In Hashemi et al [37] studied the free vibration 

of a horizontal rectangular plate, is immersed in the liquid 

or floating on the free surface. The governing equations for 

moderately thick rectangular plate are analytically based on 

the theory of Mindlin plates. 

II. PLATE FORMULATION  

A) Energy formulation 

     Consider a laminate composite thick plate of uniform 

thickness h, length a and width b, as shown on Fig. 1. The 

displacement of the plate are decomposed into three 

orthogonal components, u,v and w are the displacement 

components of middle plate in the x, y, and z directions, 

respectively. 

In accordance with the higher-order shear deformable 

theory [9], the displacements can be expressed as 
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Fig.1.Laminate geometry with positive set of laminate reference axes, 

displacements and      fiber orientation. 
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     Where u0,v0, and w0  are the displacements of the 

middle surface of the plate, θx  and θy  are rotations of 

transverse normal about y-axis and x-axis of the plate 

respectively. 

 

The linear strain-displacement relationships is given by 
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     The constitutive equations for a kth layer, in the 

orthotropic local coordinate derived from Hook’s law for 

plane stress is given by 

 

      (4)k k k
C   

      

     In the case of plane stress the stress vector can be 

written as 

 

    (5)
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     The constitutive equations for a kth layer, in the 

orthotropic local coordinate derived from Hook’s law for 

plane stress are given by 
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     Where the well-known engineering constants Cij are 

given by 

 

11 1 1,2 2,1/ (1 )C E   
22 2 1,2 2,1/ (1 )C E   

12 2,1 12 1,2 2,1/ (1 )C E   
 

21 2,1C C 33 1,2C G 44 1,3C G
55 2,3C G  

 

     In which Ei, νij and Gij are the Young’s modulus, 

Poisson’s ratio and shear modulus of the lamina.  

Where, 1 and 2 represent the directions parallel and 

perpendicular to the fibers direction. By performing a 

proper coordinate transformation, the stress-strain 

relationships of a single lamina in the oxyz co-ordinate 

system can be obtained. 

 

     The stress-strain relations in the global (x, y, z) 

coordinate system can be written as 
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     The kinetic energy of a vibrating composite thick plate 

is given by 
1 1
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     Where ρ is the mass density per unit volume. 

 

The strain energy of a thick plate is expressed as 
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B) Hierarchical finite element formulation 

 

     A four node rectangular hierarchical finite element with 

eight degrees of freedom per node (u0,v0, w0, ∂w0/∂x, 

∂w0/∂y, ∂2w0/∂xy, θx, θy) is developed on the basis of a 

third-order plate theory (See Fig. 2).Trigonometric 

hierarchical functions are used as shape functions. The 

model requires C0 continuity for u0, v0, θx  and θy and C1 

continuity for w0. 

The displacements and rotations of the rectangular plate p-

element are expressed as 
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     Where Pu, PW and Pθ are the number of shape functions 

used in the model. 

 

 
    

 

 

 

 

 

 

 
Fig. 2. Plate element coordinates and dimensions 
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     The first shape functions f1, f2 and g1 to g4, are 

commonly used in the finite element method. The functions 

(fn+2 and gn+4) are the trigonometric shape functions and 

lead to zero transverse displacement, and zero slope at each 

node. This feature is highly significant since these 

functions give additional freedom to the edges and the 

interior of the element. 

     The expressions of the trigonometric hierarchical shape 

functions fi(ξ) for C0 continuity and gi(ξ) for C1 are given by 

[41] 
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     The displacements and rotations can be expressed in 

matrix form as 
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     [N] is the matrix of shape functions, given by 
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     In which qu, qv, qw, qθx, and qθy are the generalized 

displacements. 

 

     The matrices of shape functions are given by 
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where 1i ,...,P , 1j ,...,P ,and  1m j i P  
. 

 

     The equations of motion in the case of free vibration of 

composite plates can be expressed as 
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     and [M] is called the mass matrix of the p-element, 

given by the following relation 

                         

 

   

   

     

0 0

0 0

0 0

0 0

(21)

x

y

x y

x x x x

y y y y

uu uw u

vv vw v

T T

uw vw ww w w

T T

u w

T T

v w

M M M

M M M

M M M M MM

M M M

M M M





 

   

   

  
  

  
  

       
 
           
 
      

      

     

 

The sub-matrices of   and   are defined in appendix A. 

 

III. FLUID FORMULATION  

 

     The following assumptions are made to model the 

dynamic fluid: 

 

 The a small fluid motion with low vibration. 

 

    The fluid is incompressible, non-viscous and 

irrotational (fluid flow is possible). 
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     The potential function of the speed must satisfy 

Laplace's equation throughout the fluid area. This 

relationship is expressed in the Cartesian coordinate system 

as follows: 

 
2 2 2

2 (22)
2 2 2x y z

  


  
   

     
     By using Bernoulli's equation and ignoring non-linear 

terms, the fluid pressure at the fluid interface plate (top and 

bottom surface of the plate) may be given by:                                

 

/ 2

/ 2

u fz h

z h

P P
t









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                           

(23) 
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z h
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                         

(24) 

 

     Where ρf  is the density of the fluid per unit volume. 
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 
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(26)
z h

w

z t


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

 

 

 

     The condition of the impermeability of the surface of 

the structure requires that the component of the fluid on the 

surface of the plate off the speed-up must correspond to the 

instantaneous rate of change of displacement of the plate in 

the transverse direction, this condition implies continuous 

contact between the surface of the plate and the device 

fluid layer, which is:  

 

   , , , ( ) , , (27)x y z t F z S x y t 
 
 

     Where F (z) and S (x, y, z) are two distinct functions to 

be determined. 

 

     The following expression can be defined by introducing 

the equation (27) in (25, 26) and by replacing S(x, y, z)
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/ 2
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  
     Substituting equation (29 and 28) in equation (22) the 

second order differential equation is obtained: 

 
2

2

2
( ) 0 (30)f

F
F z

z



 

  
 

     Where f is a plane wave number and a real constant 

that must be precise.  

 

 

    The general solution of equation (30) can be written: 

 

1 2( ) (31)f fz z
F z B e B e

 
 

 
 

     B1 and B2 are constants to be specified by introducing 

the equation (31) in (28 and 29), the following expressions 

are obtained for the potential function of speed: 

  1 2

/ 2

, , , (32)
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  1 2
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, , , (33)
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B e B e w
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F t

z

 



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 


 

  

A) Boundary conditions of a plate–fluid 

 

     The boundary conditions at the fluid-structure interface 

to the fluid end must be satisfied by adopting a potential 

function of appropriate speed. Fluid free surface, rigid wall 

and impermeability are generally taken into account. To 

achieve a good understanding of the problem, a flexible 

rectangular plate submerged in the liquid is studied, or the 

following conditions must be considered. 

 

1) Plate–fluid model with free surface   

 

     At the liquid free surface, the following condition may 

be applied to the speed potential (Fig.3), provided that the 

free movement of the liquid surface creates substantial 

disturbances. 

11

2

/ 2/ 2

1
(34)

2

z h hz h h
z g t

 

  

 
 

 

 

 

     Where ‘g’ is acceleration due to gravity. The 

introduction of Eq. (32-33) simultaneously into relation 

(34) and (25-26), results in the following expression for the 

potential function 

 

 
 

Fig.3. plate-fluid model with free surface 
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     where 
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1 2
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(3.7) 
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      The application of a fluid pressure on the upper surface 

of the plate is obtained by introducing the above 

relationship in the Bernoulli equation: 

 
1

1

2 2 2

1
12

1

1

1
(37)
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f

h
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U h 2 2
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    

 
2) Plate-fluid model bounded by a rigid wall 

 

     The boundary condition on the wall, shown in (Fig.4), 

was studied by Lamb [24] and called state of zero 

frequency. This condition limited the wall stiffness is 

expressed by: 

 

2

0 (38)
z h

z


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




 

 
 

Fig.4. plate-fluid model bounded by a rigid wall a floating plate 

 

     By introducing the equation (33) in (37): 
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     If the dynamic pressure (lower surface of the plate) is 

determined by: 
2 2 2 2

22 2
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     In the case where the plate is fully immersed, as shown 

in Figure 5, the total dynamic pressure will be a 

combination of pressure corresponding to the conditions to 

the fluid limits on both upper and lower surfaces of the 

plate: 

 
1 2 2 2
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32 1 2 2

2

1 1

1 1
(41)

f f

f f

h h

f

h h 2 2

f

C e e w w
P Zf

t tC e e

 

 





    
    

   
 

 
 

Fig.5. plate-fluid model bounded by a rigid wall a submerged plate 

 
 

 

 
 

B) Modeling fluid by  p-element  

 

     Using the procedure of the hierarchical finite elements, 

the fluid force vector f can be expressed by a finite element 

using the following relationship: 

 

     Pr (42)
T

wfp N dxdy   
 

     Where [Nw] is the matrix of functions shape, {Pr} is a 

vector expressing the pressure exerted by the fluid on the 

plate (Eq. 38, 40,41). 

 

      

 

The dynamic pressure is then defined by: 

 

  2

0 (43)f iM fp Zf w d d      
 

     The rectangular plate is modeled by a quadrilateral 

hierarchical finite element (Fig. 2). 

 

IV. EQUATIONS OF MOTION OF FLUID-

STRUCTURE 

 

     The global system of equations of motion of a 

rectangular plate interacting with a fluid can be represented 

as follows: 

 

       0 (44)s f sM M q K q      
 

     Where the subscripts f and s refer to the vacuum plate 

and in fluid respectively. [Ms] and [Ks] is the mass matrix 

and stiffness of the vacuum plate. [Mf] is the fluid inertia; 

{q} is the displacement vector. 

 

V. RESULTS AND DISCUSSIONS  

 

     In this section the results obtained by this method are 

compared with those in the literature, in Table 1 a 

comparison is made with those Kerboua et al [40] who 

used the finite element method and experimental approach 

presented by Haddara and Cao [30], the plate used in this 

example is isotropic totally submerged in the fluid in 

Figure 5 of a length a = 0.20165 m, width b = 0.655 m and 

a thickness h = 9.63 10-3 m, the conditions for the fluid-

structure limits h1 = h2 = 0.4- (h / 2). 

 

Material properties of the steel plate 

E1= 207 Gpa,   ν = 0.3, ρ = 1500 kg/m3 

Fluid Property      ρf = 1000 kg/m3 

     Table 2 compares the results of the present study and 

those of Kerboua et al [40] and Fu and Price [44] that have 

used the finite element method and a study experimental 

presented by Lindholm et al. [45] 
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TABLE 1: Comparison of the first five frequencies (rad/s) a plate ALAL, 

submerged in water, 

Mode Present  Experimental  

 [30] 

KERBOUA et 

al [40] 

1 32.41 28.72 31.28 

2 130.70 117.13 126.40 

3 145.51 154.51 141.78 

4 295.95 281.79 285.98 

5 312.61 335.04 304.57 

     
 

 

 

 

 

 

     

 

 

 

      

 

 

 A very good agreement in the results obtained in this study 

is the references mentioned in Tables 1 and 2. 

 

     Material properties of plate (Graphite-Epoxy) 

     E1= 128 Gpa,  E2 = 11 Gpa, G12 =4.48 Gpa, ν12 = 0.078,  

ρ = 1500 kg/m3 

     Fluid density ρf = 1500 kg/m3 

     In the next example of fluid interaction validation - a 

composite laminated plate structure with eight layers is 

considered, Table 3 represent the first natural frequencies 

for two situations; a cantilevered plate the free surface of 

the fluid and a plate cantilevered totally immersed in the 

liquid. It should be mentioned that the plate is embedded 

on the shorter side. It can be seen that the results of this are 

very close to those of Alizera [47], Pal et al [46], noted that 

in these two references, they used the finite element 

method combined with theories CPT and FSDT 

respectively. 

 
TABLE 3: Comparison frequency (Hz) of a basic rectangular composite 

plate (0.152m 0.076m) and a / h = 0.00104 m, FFFE graphite / [45 / -45 / -

45 / 45] sym 

 

fundamental (Hz) 

Frequency 

Present Pal et al [40] Alireza [39] 

Plate with free 

surface (CL1) 
8.38 8.13 8.35 

Plate totally 

submerged (CL2) 
6.02 5.94 6.01 

 

     Figures 6-9 showing the variation of frequency as a function of 

the fluid height h1, in this example fixed by the height h2 to actually 

vary the ratio h1 / a (Figure 5), takes as an example of a study 

square sandwich plate has five layer symmetrical 90 / -60 / 30 / core 

/ 90 / -60 / 30 with a thickness h = 0.2 m, the ratio of the thickness 

of the core to that of the skin hc / hf = 16, by notes that the 

frequency decreases according to the report, the frequencies begin 

to stabilized from the ratio h1 / a = 0.8 is that for different cases to 

limit condition of the structure. 
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Fig. 6. variation of the natural frequency (rd / s) depending on the height of fluid in a 

sandwich plate CFFF (h1 variable and h2>>a) with hc / hf = 16 
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Fig. 7. variation of the natural frequency (rd / s) depending on the height of fluid in a 

sandwich plate SSSS (h1 variable and h2>>a) with hc / hf = 16 
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Fig. 8. variation of the natural frequency (rd / s) depending on the height of fluid in a 

sandwich plate CCCC (h1 variable and h2>>a) with hc / hf = 16 

TABLE 2: Comparison of the first three frequencies (rad/s) a cantilever square plate submerged in water as function of fluid level (h1 variable 

and h2 >>a) 

 

Mode In vacuo h1/a=0.05 h1/a=0.5 

 Present KERBOUA 

et al [40] 

Fu et Price 

[44] 

Present KERBOUA 

et al [40] 

Fu et Price 

[44] 

Present KERBOUA 

et al [40] 

Fu et Price 

[44] 

Lindholm et 

al [45] 

1 12.82 12.93 12.94 8.20 8.60 8.95 7.82 7.00 7.35 6.56 

2 31.31 31.69 31.69 20.05 21.09 23.1 19.11 17.16 20.19 19.66 

3 78.39 79.37 79.37 50.20 52.92 55.7 47.86 42.98 50.11 45.32 
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Fig. 9. variation of the natural frequency (rd / s) depending on the height of fluid in a 

sandwich plate SCSC (h1 variable and h2>>a) with hc / hf = 16 

 

     Figures 10-13 showing the variation of frequency as a function 

of the fluid height h2, in this example the height h2 = 0, and indeed 

varying the ratio h1 / a (Figure 3), takes as an example of study 

square sandwich plate has five layers symmetrical 90 / -60 / 30 / 

soul / 90 / -60 / 30 with thickness h = 0.2 m, the ratio of the 

thickness of the core to the skin hc / hf = 16 in remarks that the 

frequency decrease with the report, the frequencies begin to 

stabilized from the ratio h2 / a = 0.8 is that for different cases to limit 

condition of the structure. 

 

     The properties of the materials and the fluid in the two previous 

examples are: 

 

     Properties for face layers: glass polyester resins  

 

E1= 24.51Gpa,  E2 = 7.77Gpa, 

 

G12 =3.34Gpa, G l 3 =3.34GpaG23 =1.34Gpa,  

 

ν12 = 0.078,     ν21 = 0.24 

 

ρ = 1800 kg/m3 

 

     Properties for core layer: HEREX C70.130 

 

Ec= 103.63Mpa, Gc=50Mpa,ν12 =0.32,  ρc = 130 kg/m3 
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Fig. 10. variation of the natural frequency (rd / s) depending on the height of fluid in a 

sandwich plate CFFF (h1 = 0 and h2 variable) with hc / hf = 16 
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Fig. 11. variation of the natural frequency (rd / s) depending on the height of fluid in a 

sandwich plate SSSS (h1 = 0 and h2 variable) with hc / hf = 16 
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Fig. 12. variation of the natural frequency (rd / s) depending on the height of fluid in a 

sandwich plate CCCC (h1 = 0 and h2 variable) with hc / hf = 16 
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Fig. 13.  variation of the natural frequency (rd / s) depending on the height of fluid in a 

sandwich plate SCSC (h1 = 0 and h2 variable) with hc / hf = 16 
 

VII. CONCLUSION 

     A new C1 HSDT p-element with eight degrees of 

freedom per node has been developed and used to find 

natural frequencies of sandwich thick plates totally or 

partially submerged in conjunction with Reddy’s higher-

order shear deformation theory. Potential fluid flow 

induced pressure on the structure. To define this pressure as 

a function of transverse displacement and velocity, 

Bernoulli equations and the impermeability condition were 

used. The mass, stiffness matrices were defined and 

relations for fluid-solid-interactions were developed by 

integration for p-element. Then, a detailed parametric study 

was conducted to show the influence of different fluid 

depths, aspect ratios and thickness to length ratios for four 

combinations of boundary conditions. Based on these 

observations the element can be recommended for free 

vibration analysis of composite plate structures emerged in 

fluid with sufficient accuracy. 
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