
FPGA Realization of RLE Scheme for Highspeed Data Transmission with

Improved Compression Rate

K. Babulu,

Professor of ECE, Department of ECE,

UCEK, JNTUK, Kakinada,

Y. Vijay kumar,

Project Associate, Department of ECE,

UCEK, JNTUK, Kakinada,

 Abstract
This paper describes a modified scheme for

Run Length Encoding with Tolerance factor. The

significant improvement of compression ratio for

almost any kind of data can be achieved by the

proposed scheme. An improved Run Length Encoding

scheme with the introduction of Tolerance factor is

described. The proposed solution has been suggested

and performed for each problem to achieve efficient

coding. Some of major problems are with design of

RLE for very large efficient data compression. This

has been resolved by Introducing Tolerance factor in

RLE. So that larger sequences that affects

compression ratio are broken into small sequences

Using Tolerance factor. By using Tolerance factor

we can consider the any two approximate bit

sequences are as one bit and hence we can save more

memory. Run Length Encoding (RLE) scheme is

described using VHDL language and is simulated on

Xilinx ISE environment. By introducing Tolerance

factor for this Run Length Encoding (RLE) scheme

compressor rate is greatly improved there by storage

space required also reduces greatly.

1. INTRODUCTION

The data compression is a process that reduces

the amount of data in order to reduce the data

transmitted and decreases transfer time because the

size of data is reduced [2]. The data compression is

commonly used in the modern database systems. The

Compression can be utilized in the different reasons

including:

1) Reducing the storage/archival costs, this

is particularly important in large data warehouses.

2) The Improving query of Workload

performance by reducing I/O costs [3].

The data compression involves the

transforming a string of characters in some

representation into a new string which contains same

information but with the smallest possible length.

The data compression very has important application

in the areas of data transmission and the data storage

[6]. The Compressing data reduces storage and the

communication costs. Similarly, the compressing a

file to the half of its original size is equivalent to

doubling the capacity of storage medium. The Data

compression is rapidly becoming a standard

component of the communications hardware and data

storage devices [4].

2. RUN LENGTH ENCODING

The Run Length Encoding (RLE) is a very simple

form of the data compression in which runs of the

data are stored as a single data value and count, rather

than as original run. This is the most useful on data

that contains many such runs: for example, the simple

graphic of the images such as icons, line drawings,

and the animations. This is not useful with files that

do not have many runs as it could greatly increase size

of the file.

Run Length Encoding (RLE) algorithm performs a

lossless compression of the input data based on

sequences of identical values. This is a technique of

the historical, and it is originally exploited by fax

machine and later adopted in the image processing.

This algorithm is quite easy: each run, instead of the

being represented explicitly, is translated by encoding

algorithm in a pair (l, v) where l is the length of run

and v is the value of run elements. The longer the run

in sequence to be compressed better is the

compression ratio [5].

A. Working of Run Length Encoding(RLE)

The n bit of data is compressed by arranging it in

the form of run and count of each run. The count of

each run is then represented by binary for the case of

binary data. The Amount of data compressed is

directly related to the length and the number of longer

runs. Run Length Encoding (RLE) when applied on

the data with information bits

„„111111111111000000000001111” gives us a subset

of the 3 pairs, each pair representing the number of

runs and bit. Hence, the above mentioned bit pattern

3167

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110900

in Run Length Encoding (RLE) scheme is represented

as (12, 1) (11, 0) (4, 1). In binary form the latter pairs

are expressed as follows: 12=01100, 11=01011 and

4=00100. The final output comes out to be

011001010110001001. In this way, the original

pattern of the n bits can be compressed to a great

extent thereby reducing data.

This type of encoding scheme does not always

perform data compression. In some scenarios where

the runs of smaller length are in excess, this scheme

performs poorly and instead of compressing the data,

the resultant output is an expanded form of the input.

Consider a pattern “101010” when applied by Run

Length Encoding, the final output comes out to be an

expanded form of input data. The final output is

(1,1)(1,0)(1,1)(1,0)(1,1)(1,0)or 111011101110 which

is larger in size than the input.

 In this case of large consecutive runs of 1‟s or 0‟s,

RLE performs efficient compression whereas in case

of a data with large number of single 0‟s or 1‟s, the

output is an expanded form of input sometimes the

output is twice the size of input. This expansion of

data instead of compression proves RLE technique

less reliable. That is why run length encoding is a

poor technique and practically not efficient for larger

data. The core objective of this research paper is to

improve this encoding technique.

The length of largest run decides the number of bits

needed to represent the count or length of each run in

run length encoding technique. Consider a bit pattern

01010011111111111. The largest run in the data is 11

number of 1‟s appearing consecutively. Therefore this

run decides the number of bits needed to represent

length of each run in data. The number of bits needed

to represent the length of run is 4 or the given

scenario. The above sequence is written in run length

encoding as,
Table I. RLE Pairs for the above Data

BIT RUN LENTH ENCODING
0 0001,0

1 0001,1

0 0001,0

1 0001,1

00 0010,0

11111111111 1011,1

B. Problem with Run Length Encoding

 There are two basic problems that degrade the

performance of Run Length encoding schemes. Most

of the Bits in a data are arranged in runs of smaller

lengths that include single zeroes or single ones,

double zeroes or double ones. Such combination

requires more number of bits than their actual size to

represent them in run length encoding technique. A

single 0 may be represented as (000001, 0) which is

seven times larger than the input data. This is one of

the major performances limiting factor and results in

expansion of data instead of compression. Sometimes

a data may contain a very large sequence of

consecutive ones or zeros. Such sequences are

represented in fewer numbers of bits in RLE but they

might affect the overall compression in a negative

way as largest sequence decides the number of bits to

represent the length of a run in each pair. As a result

the length of run in all the other sequences is also

represented by the same number of bits for which the

largest run is represented. For the scenario given

below we need 4 extra bits to represent the length

each single bit 0/1 because the longest sequence is

represented by 4 bits as shown below.
Table II. 4-bit Long Sequence

3. MODIFIED RLE SCHEME

3.1. Proposed Solution

As indicated above, there are two very clear

problems that decrease the performance of run length

encoding scheme. We have proposed some

modifications in run length encoding scheme. These

modifications are specially designed to counter the

above mentioned problems. The modified run length

encoding scheme gives a significant improvement in

compression ratio for almost any kind of data.

The above mentioned problem in Run Length

Encoding Scheme can be overcome by intelligent

compression. Analyzing the input data is the first and

core step. We analyze data to highlight if there are

any largest numbers of sequences that may increase

the number of bits to represent the length of each run.

Secondly we highlight the smaller sequences of

single zeroes/ones double zeroes/ones or triple

zeros/ones that may result in expansion of data

instead of compression.

3.2. Tolerance factor

Tolerance factor is used for various purposes, such

as for bringing bit streams that do not necessarily

have the same or rationally related bit rates up to a

common rate, or to fill buffers or frames. The

location of the tolerance factor bits is communicated

to the receiving end of the data link, where these

0 0001,0

111111111111111 1111,1

3168

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110900

extra bits and approximate bits are removed to return

the bit streams to their original bit rates or form [1].

Compression rate can be improved by combining

two or more adjacent values. While counting for a

run, if the next run to be counted is very small

distance for the current run then the two runs can be

merged. The distance between two runs is called

tolerance factor. Those two runs can be merged only

when the effect of merging is within the considerable

range. When the two runs are merged with a common

run, while decompressing original data retrieved may

not exactly same with the original one. There may be

some deviations. Merging is to be done only when

the effect of merging is within the considerable range

[9].

Let us consider some raw data that was observed

with a temperature sensor which is located in a

furnace. If the sample raw data that was collected in a

furnace is 45, 45, 45, 45, 45, 46, 46, 46, 48, 48 then it

can be compressed by considering a tolerance factor.

If the tolerance factor is one then the compressed data

is observed like (45, 8) (48, 2). Without tolerance

factor the compressed data may appear like (45, 5)

(46, 3) (48, 2). By using the tolerance factor the

compression rate is more. But when in

decompression we may lose some information. The

decompressed information may appear like 45, 45,

45, 45, 45, 45, 45, 45, 48, 48.

Figure.1: Flow Diagram of Modified RLE Scheme

The decompressed information may not match

exactly with the original raw data but this change

may not affect the information to be communicated.

In the tolerance factor repeated bits and approximate

bits are considered as single bit. One example for the

compression process is shown in Table I. By using the

tolerance factor technique memory required to store

information can be reduced, also in communication

systems the data transfer rate is improved. It is

considered that the tolerance factor, X= ±1 so that the

adjacent value of the byte is considered as the same

byte and both they are merged at an initial value.

Figure.1 shows the algorithmic flow how the Run

Length Encoding scheme is implemented and also

how the tolerance factor is included to the Run Length

Encoding technique.

4. HDL IMPLEMENTATION

The proposed technique is developed with VHDL

which contain five modules and those are compressor,

de-compressor, controller, and memory. The block

diagrams of compressor and De-compressor are

shown in Figures 2 and 3 respectively.

Figure.2: Block diagram for Compressor

Figure.3: Block diagram for de-compressor

Increment Register C

Start

Initialize Register A, Register B,

Register C

Read data from ROM into

Register A

Read next byte from ROM and store it into

Register B

Compare Register A

= Register B±X

Write Register A into ROM

Write Register C into ROM

Move Register B content to Register A

Initialize Register C=1

Finite state

machine (FSM)

Comparator

Compressor

controller

Input

FIFO

Output

FIFO

Finite state

machine (FSM)

De-Compressor

De-Compressor

controller

Input

FIFO

Output

FIFO

3169

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110900

In compressor section the data is taken from the

ROM/ FIFO and then given to the Compressor, so that

the compressor is used to compress the input data and

it given to the output ROM. In the de-compressor

section the input is compressed data and it is given to

the de-compressor, then the de-compressed data is

send to the output ROM/ FIFO. So that the actual

information is retrieve from the de-compressor

section. The Finite state machine (FSM) is used to

control the compressor and de-compressor‟s position.

The RLE compressor is implemented according to the

state diagram shown in Figure.4.

 E=0 E=1

Figure.4: State Diagram for Compressor.

 In this state machine enable=1 then it will goes to

FIFO read1 state otherwise it will present in same

state. Then after it will goes to Data1 state after that it

will goes to FIFO read2 state. FIFO read2 state will

goes to Data2 state. When Data1≠ Data2, then its

changes to the Forward data state otherwise Data2

state goes to FIFO read2 state. The Forward data

state goes to Forward count. When Finnish=0 this

state changed to FIFO read2 state otherwise Forward

count state goes to ideal state.
TABLE III: Expansion of States

States Expansion

E Enable

F Finish

S0 Idle

S1 FIFO read1

S2 Data1

S30 FIFO read2

S31 Data2

S32 Forward Data

S4 Forward count

 The RLE De-compressor is implemented

according to the Stat diagram shown in Figure.5.

 E=0

 M=0

Figure 5: State Diagram De-Compressor.

In this state machine enable=1 then it will goes to

Data1 state after that it will changed to Data2 state.

After changed to the Forward data state from Data2

state register is compare with counter. If Register is

equal to counter then Match=1 and Finish=0 so that

Forward data state is changed to FIFO read1 state, it

is not equal Match=0. When Finish=1 the loop will

goes to the ideal state.
TABLE IV: Expansion of States

 States Expansion

E Enable

F Finish

M Match

S0 Idle

S11 FIFO read1

S12 Data1

S13 Data2

S14 Forward Data

S0

S1

Read

1

S2

S30

S31

S32

S4

D1≠

D2

F=0

 D1=D2

S0

S11

S12

S13

S14

E=1

F=0,

M=1

3170

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110900

5. SIMULATION RESULTS

5.1. Schematic view

 The schematic view shown in Figure.6 has two

sub modules namely transmitter controller and

compression controller. In transmitter controller

section ComEna signal is used as compression enable

signal. All the other control signals are generated and

are controlled by the transmitter controller. In

compression controller section the 8-bit data is giving

to the compression controller through the channel as

shown in the Figure.6. So that we can collect the

compressed data from the data output signal.

Figure 6: Schematic view for Top order Module

 The simulation results of the top order module are

given below. An Analog to digital converted (ADC)

output is given to the Compressor by the help of FIFO

controlled by the compressor controller so that we can

get compressed output. A compressor output is given

to the de-compressor with the help of FIFO controlled

by the de-compressor controller so that we can get the

de-compressed output.

5.2. Simulation results

 Simulation results for the proposed technique is

shown in Figure.7 Simulation wave forms shows the

raw data that is supplied to the input FIFO and the

compressed data as well as decompressed data in two

different FIFOs. This table contains Input data,

compressed data, Decompressed data and saved bytes

are given below. We have given 15 bytes to the

compressor then it will give 6 bytes of compressed

data. So that we have saved total 9 bytes.

Figure.7: Simulation Results of Modified RLE Scheme

 It is observed from the following Table V that 67

67 67 is input data to the compressor then it will give

3x67. But 89 89 89 89 89 89 88 data contains one 88,

so that 88 also can taken as an approximate value of

the actual data by using Tolerance factor technique.

Hence the obtained compressed output is 7 x 89.

TABLE V: Modified RLE Algorithm showing Data

Compression

Input Data Compre

ssed

data

Bytes

saved

Decompress

ed data

67 67 67 3 x 67 1 67 67 67

89 89 89 89

89 89 88

7 x 89 5 89 89 89 89

89 89 89

45 45 45 45

44

5 x 45 3 45 45 45 45

45

Total

bytes=15

Total

bytes=6

Total

Bytes

saved=9

Total

bytes=15

3171

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110900

5.3. Synthesis report

 Modified RLE scheme is described using VHDL

language and is simulated using Xilinx ISE. Synthesis

has been carried out by Xilinx synthesizer. This

design is targeted on Xilinx Spartan3E FPGA. PACE

is the application where the pin assignment is done for

Spartan 3E. Pin locations for the ports of the design

are specified so that they are connected correctly on

the Spartan-3E. After pin assignment, re-implemented

the design and verified that the ports of the counter

design are routed to the package pins specified.

Impact is an application used to download.

The Synthesis Report is shown in the above Table VI

which gives the Device Utilization Summary.

6. CONCLUSION

 In this paper a new and more reliable technique for

data compression is proposed and is realized on

Spartan 3E FPGA. It solves the limitations present in

run length encoding scheme. Problems in run length

encoding are highlighted and discussed in detail. A

solution to each problem is then proposed in modified

run length encoding scheme. The sequence is taken

and analyzed. To make run length encoding more

functional Tolerance factor is included. Here in this

project tolerance factor is considered as 1. It can be

extended such that the decompressed data should not

affect the information to be transmitted. When

tolerance factor is more compression also more but

the decompressed data may not exactly match with

the original raw data. There should be a compromise

between tolerance factor input data compression ratio.

In this paper tolerance factor is selected as one. If the

tolerance factor increased further compression ratio

also increases.

REFERENCES

 [1] Asjad Amin, Haseeb Ahmad Qureshi, Muhammad

Junaid, Muhammad Yasir Habib, WaqasAnjum,

“Modified Run Length Encoding Scheme with

Introduction of Bit Stuffing for efficientData

Compression” in 6th International conference on

internet Technology and secured IEEE Transactions,

11-14 December 2011, 978-1-908320-00-1/11.

 [2] Eug`enePamba Capo-Chichi, Herv´eGuyennet, Jean-

Michel Friedt,“A new Data Compression Algorithm

for Wireless Sensor Network,”in Proc Third

International Conference on Sensor Technologies and

Applications,2009, pp.1-6 DOI

10.1109/SENSORCOMM.2009.84.

[3] StratosIdreos, RaghavKaushik, VivekNarasayya,

Ravishankar Ramamurthy, “Estimating the

Compression Fraction of an Index using

Sampling,”inProc. International Conference on Data

Engineering (ICDE), 2010, doi.

10.110/ICDE.2010.5447694.

[4] James A. Storer, “Data Compression Methods and

Theory,”Computer Science Press, 1988, 413 pp,

ISBN-10: 0716781565.

 [5] Stefano Ferilli, “Automatic Digital Document

Processing and Management: Problems, Algorithms

and techniques,”ISBN: 0857291971.

[6] Viswabharathi, D., K. Raghuram, and G. Rajesh

Kumar. "High Speed Test Architecture for SRAM

using Modified March Algorithm." International

Journal of Engineering Research and Applications

(IJERA) Vol. 2, Issue 6, November- December 2012,

pp.1654-1659.

 [7] Y. Wang and K. Roy, Maximum power estimation for

CMOS circuits using deterministic and statistical

approaches, in Proc. VLSI Conf., pp. 364–369,

January 1995.Applications,2009, pp.1-6 DOI

10.1109/SENSORCOMM.2009.84

[8] Ghosh, S. Devadas, K. Kuetzer, J. White, “Estimation

of average switching activity in combinational and

sequential circuits”, Proc. of IEEE/ACM DAC, 1992,

pp. 253-259

[9] SIA, The International Technology Roadmap for

Semiconductors: 2005 Edition, Semiconductor

Industry Association, San Jose, CA, 2005

[10] Pujar, J.H.; Kadlaskar, L.M. (May 2010). "A New

Lossless Method of Image Compression and

Decompression Using Huffman Coding Techniques".

Journal of Theoretical and Applied Information

Technology 15 (1): 18–23

TABLE: VI SYNTHESIS REPORT

Device utilization summary:

Selected Device : 3s400tq144-5

 Number of Slices: 94 out of 3584

2%

 Number of Slice Flip

Flops:

88 out of 7168

1%

 Number of 4 input LUTs: 189 out of 7168

2%

 Number used as logic: 141

 Number used as RAMs: 48

 Number of IOs: 24

 Number of bonded IOBs: 24 out of 97

24%

 Number of GCLKs: 2 out of 8 25%

3172

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110900

