
FPGA Implementation of Single Cycle Signed

Multiplier using Booth Recoding Algorithm

Piyush Pati
Electronics and Instrumentation Engineering

Odisha University of Technology and Research,

Bhubaneswar, Odisha, India

Abstract—The focus of this paper is on the implementation of

a single cycle signed multiplier through use of the booth recoding

algorithm on an FPGA. By utilizing fewer partial products, this

implementation offers benefits such as reduced delay, power

consumption, and usage of hardware resources. Additionally, this

signed multiplier is capable of performing multiplication of both

signed and unsigned numbers. The paper presents a comparative

analysis of the 32-bit multiplier's performance in terms of power

consumption and FPGA hardware resource utilization. The

proposed 32-bit multiplier is designed using Verilog HDL and

implemented through Xilinx Vivado 2022.2 software for Xilinx

Virtex-7 FPGA.

Keywords—Booth recoding; Signed Multiplier; FPGA; Verilog

HDL.

I. INTRODUCTION

The process for binary multiplication is analogous to that of
the decimal system. The regulations governing binary
multiplication are illustrated in the following table.

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

Table 1:1-bit binary multiplication

 In binary arithmetic, when multiplying two numbers, each
bit of the multiplier is multiplied by the multiplicand one at a
time, similar to how it's done in the decimal system. The
resulting partial products are arranged such that the least
significant bit (LSB) is positioned under the corresponding bit
in the multiplier.

 Once the partial products have been calculated through
binary multiplication, they are summed together to form the final
product.

 It is important to keep in mind that any multiplication by zero
would result in all bits of the partial product being zero, which
can be skipped in intermediate steps.

 Furthermore, when multiplied by 1, the bits of the
multiplicand remain unaltered, but they are shifted one bit
position to the left. Performing intermediate sums of partial
products simplifies the multiplication process of binary
numbers.

 Binary multiplication offers several benefits. It involves
adding the multiplicand to itself, after a suitable shift based on
the multiplier, which simplifies the process into a series of
shifting and adding steps. These steps should be repeated until
the MSB of the multiplier has been shifted, and the final addition
has been performed.

 The paper is organized as follows. Section II presents the
design of booth recoding multiplier. Section III contains the
sub-modules of implemented booth recoding multiplier. Section
IV describes partial product addition unit. Experimental results
and comparison are given in Section V. Finally, Section VI
concludes the paper.

II. DESIGN OF BOOTH RECODING MULTIPLIER

A. 32x32 bit multiplier(Heading 2)

The Booth recoding multiplier requires two 32-bit inputs
representing the multiplier and multiplicand, respectively. The
output of the multiplier is 64-bit. Additionally, two control
signals are included to specify whether the multiplier and
multiplicand are signed or unsigned.

Figure 1: 32-bit booth recoding multiplier top module

Signal Name Width Source Description

mplier 32 input Top module multiplier input

mplier_s_u 1 input
1= multiplier is signed,

0 =multiplier is unsigned

mplicand 32 input Top module multiplicand input

mplicand_s_u 1 input
1 = multiplier is signed,

0 =multiplier is unsigned

prod 64 output
Output from the multiplier

block

Table 2: Signal Description of top module

B. Mathematical Representation of Signed Number

2’s complement representation of A

= −231𝑎31 + 230𝑎30 + (2 − 1)29𝑎29 +

 228𝑎28 + (2 − 1)27𝑎27 + 226𝑎26 +

mplier

mplier_s_u

mplicand_s_u

mplicand

prod
32-bit booth

recoding

multiplier

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030115
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

177

www.ijert.org
www.ijert.org
www.ijert.org

 (2 − 1)25𝑎25 + … … … … . + 22𝑎2 +

 (2 − 1)1𝑎1 + 20𝑎0 + 20𝑎−1

 where 𝑎−1 ≡ 0

= −231𝑎31 + 230𝑎30 + 230𝑎29

−229𝑎29 + 228𝑎28 + 228𝑎27

 −227𝑎27 + 226𝑎26 + 226𝑎25

 ……………………………

 ……………………………

−23𝑎3 + 22𝑎2 + 22𝑎1

−21𝑎1 + 20𝑎0 + 20𝑎−1

 where 𝑎−1 ≡ 0

= 230(−231𝑎31 + 230𝑎30 + 230𝑎29)

228(−229𝑎29 + 228𝑎28 + 228𝑎27)

 226(−227𝑎27 + 226𝑎26 + 226𝑎25)

 ……………………………

 ……………………………

22(−23𝑎3 + 22𝑎2 + 22𝑎1)

20(−21𝑎1 + 20𝑎0 + 20𝑎−1)

 where 𝑎−1 ≡ 0

= ∑ 22𝑖(−2𝑎2𝑖+1 + 𝑎2𝑖 + 𝑎2𝑖−1)15
𝑖=0

= ∑ 22𝑖𝑓2𝑖
15
𝑖=0 … … … … … … … (1)

 𝑤ℎ𝑒𝑟𝑒 𝑓2𝑖 = −2𝑎2𝑖+1 + 𝑎2𝑖 + 𝑎2𝑖−1

C. Mathematical Representation of Unsigned Number

= −232𝑎32 + 231𝑎31 + 231𝑎30

−230𝑎30 + 229𝑎29 + 229𝑎28

−228𝑎28 + 227𝑎27 + 227𝑎26

 ……………………………

 ……………………………

−22𝑎2 + 21𝑎1 + 21𝑎0

−20𝑎0 + 2−1𝑎−1 + 2−1𝑎−2

 Where 𝑎−1 = 𝑎−2 ≡ 0

= 231(−2𝑎32 + 𝑎31 + 𝑎30) +

229(−2𝑎30 + 𝑎29 + 𝑎28) +

 ……………………………

 ……………………………

21(−2𝑎2 + 𝑎1 + 𝑎0) +

2−1(−2𝑎0 + 𝑎−1 + 𝑎−2)

 Where 𝑎−1 = 𝑎−2 ≡ 0

= ∑ 22𝑖−1(−2𝑎2𝑖 + 𝑎2𝑖−1 + 𝑎2𝑖−2)16
𝑖=0

= ∑ 22𝑖−1𝑓2𝑖
16
𝑖=0 … … … … … … … … … … … … … … (2)

𝑤ℎ𝑒𝑟𝑒 𝑓2𝑖−1 = −2𝑎2𝑖 + 𝑎2𝑖−1 + 𝑎2𝑖−2

Comparing equation 1 and 2 it is apparent that one can
process the integer A before re-coding basic unsigned and
signed integer.

𝒂𝟐𝒊+𝟏 𝒂𝟐𝒊 𝒂𝟐𝒊−𝟏 𝒇𝟐𝒊
�̅�

(+/−)

𝑭𝟏

(x1/0)

𝑭𝟐

(x2/0)

0 0 0 0 0 0 0

0 0 1 1 0 1 0

0 1 0 1 0 1 0

0 1 1 2 0 1 1

1 0 0 -2 1 1 1

1 0 1 -1 1 1 0

1 1 0 -1 1 1 0

1 1 1 0 0 0 0

Table 3:Booth recoding truth table

III. SUB-MODULES OF IMPLEMENTED BOOTH

RECODING MULTIPLIER

A. 33rd bit extension unit

Our implementation involves using a signed multiplier to
perform an unsigned operation. To cover the entire range of
unsigned multiplication, we add an extra bit at the MSB. For
unsigned numbers, the 33rd bit is zero, while for signed
numbers, the 33rd bit is sign-extended.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030115
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

178

www.ijert.org
www.ijert.org
www.ijert.org

Figure 2: 33rd bit extension unit block diagram

B. Preprocessing/F block formation unit

• During the pre-processing phase, we will append a "0" to
the least significant bit (LSB) of "a", which is a 32-bit
input to the pre-processing block, and serves as the
output of the 33rd bit extension unit.

• Following that, we need to create blocks consisting of
three bits each, where the least significant bit (LSB) of
the current block becomes the most significant bit (MSB)
of the previous block.

• Since we are forming blocks in the 33-bit number "a",
adding a "0" to the least significant bit results in a
shortage of one bit required to form the F block.

• To address this situation, we will add a number to the
most significant bit (MSB) that is the same as the 33rd
bit, regardless of whether we are generating signed or
unsigned partial products.

Extra bit added for
block formation

Extended 33-bit
number (output
of 33rd bit
extension unit)

0 added in
LSB

a [32] a [32:0] 0

Table 4:Extended 34-bit multiplier

After preprocessing total width of the number is 34-bit.

Note: preprocessing of number “a” is nothing but just
rewiring.

F0 {𝑎1, 𝑎0, 0}

F2 {𝑎3, 𝑎2, 𝑎1}

F4 {𝑎5, 𝑎4, 𝑎3}

F6 {𝑎7, 𝑎6, 𝑎5}

F8 {𝑎9, 𝑎8, 𝑎7}

F10 {𝑎11, 𝑎10, 𝑎9}

F12 {𝑎13, 𝑎12, 𝑎11}

F14 {𝑎15, 𝑎14, 𝑎13}

F16 {𝑎17, 𝑎16, 𝑎15}

F18 {𝑎19, 𝑎18, 𝑎17}

F20 {𝑎21, 𝑎20, 𝑎19}

F22 {𝑎23, 𝑎22, 𝑎21}

F24 {𝑎25, 𝑎24, 𝑎23}

F26 {𝑎27, 𝑎26, 𝑎25}

F28 {𝑎29, 𝑎28, 𝑎27}

F30 {𝑎31, 𝑎30, 𝑎29}

F32 {𝑎32, 𝑎32, 𝑎31}

Table 5: F Block Formation

C. Partial product generation

• There will be 16 rows of partial products for each of the
16 "F" blocks. Table 3 was used to generate �̅�, 𝐹1 and 𝐹2
which are then used for the required bit manipulation to
generate the necessary partial products. The hardware
implementation for �̅�, 𝐹1 and 𝐹2 is provided below.

Figure 3: Hardware realization for �̅�, 𝐹1 and 𝐹2

Note: 1. �̅� is high when 𝑓2𝑖 is -ve, low otherwise.

 2. 𝐹1 is high for 𝑓2𝑖 ≠ 0 ,low otherwise.

 3. 𝐹2 is high for 𝑓2𝑖 = ±2 ,low otherwise.

• We need to process all the F block in this hardware to get
corresponding �̅�, 𝐹1 and 𝐹2. For example, if we process

F0 block we can get the 𝐹0̅̅̅̅ , 𝐹01 and 𝐹02. Similarly, we

can get the values for 𝐹2̅̅̅̅ , 𝐹21 and 𝐹22------𝐹32̅̅ ̅̅ ̅, 𝐹321
and 𝐹322by processing corresponding F blocks.

• As we are using booth recoding algorithm, so our partial
product will reduce. There will be 17 rows of partial

mplier [31:0]

mplier_s_u

mplier [31]

mux_out

a [32:0]

0

1

b [32:0]
mplicand [31:0]

mplicand [31]

mux_out

0

1

mplicand_s_u

�̅�

𝑎2𝑖−1

𝑎2𝑖
𝑎2𝑖+1

𝐹1

𝑎2𝑖−1
𝑎2𝑖 𝑎2𝑖+1

𝐹2

𝑎2𝑖+1

𝑎2𝑖
𝑎2𝑖−1

0

1

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030115
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

179

www.ijert.org
www.ijert.org
www.ijert.org

product which we need to add. For generating ROW#0

partial product we need to 𝐹0̅̅̅̅ , 𝐹01 and 𝐹02 in b (33-bit
multiplicand, output of preprocessing unit). Similarly for

ROW#2 we need to use 𝐹2̅̅̅̅ , 𝐹21 and 𝐹22 on “b” and so
on for other ROW’S

Figure 4: ROW#0 calculation using 𝐹0̅̅̅̅ , 𝐹01 and 𝐹02

Similar structure can be used for calculation of other ROW’s.

Figure 5: ROW#2 calculation using 𝐹2̅̅̅̅ , 𝐹21 and 𝐹22

IV. PARTIAL PRODUCT ADDITION UNIT

The process in this unit involves the addition of all partial
products, namely ROW#0, ROW#2, ..., ROW#32. To achieve
this, we use full adders and half adders. The carries are
propagated diagonally to the left and downward to achieve
superior speed. However, when processing the last row,
ROW#32, there is no row below it, and so we propagate the
carries horizontally instead.

Note: Horizontal carry propagation is feasible because the
augend is unoccupied, given the absence of a row beneath it.

It is worth noting that if the value of 𝑓2𝑖 is negative, we must
compute the 2's complement of the number "b". However, the
structure depicted in figures 4 and 5 merely perform XOR
operations. Additionally, we need to add 1 to the LSB position,
aligned with the binary values of the respective ROWs. To
address this, we introduce an extra ROW, known as ROW#-1,
which will facilitate the addition of 1 to the aligned LSB position
for the relevant ROWs.

A. Addition Stages

During the initial stage of addition, we will add ROW#-1,
ROW#0, and ROW#2 (shifted left by 2 positions). In the
subsequent stage, we will add the sum obtained from the
previous stage, ROW#4 (shifted left by 4 positions), and the
carry generated by the first stage (shifted left by 1 position). This
procedure is repeated in a similar manner for the succeeding
stages of addition.

Figure 6 : First stage addition block

Figure 7: Second stage addition block

𝐹0̅̅̅̅

𝐹01

𝐹02 1 0

b [0]

row0[0]

1 0

b [1]

row0[1]

1 0

b [32]

row0[32]

𝐹02

b [31]
b [32]

row0[33]

row0[34]

row0[63]

𝐹0̅̅̅̅

𝐹01

𝐹02 1 0

b [0]

row2[0]

1 0

b [1]

row2[1]

1 0

b [32]

row2[32]

𝐹02

b [31]

b [32]

row2[33]

row2[34]

row2[63]

ROW#-1= {32’b0, 𝐹32̅̅ ̅̅ ̅, 0 , 𝐹30̅̅ ̅̅ ̅, 0 , 𝐹28̅̅ ̅̅ ̅, 0 , 𝐹26̅̅ ̅̅ ̅, 0

,𝐹24̅̅ ̅̅ ̅, 0 ,𝐹22̅̅ ̅̅ ̅, 0 ,𝐹20̅̅ ̅̅ ̅, 0 , 𝐹18̅̅ ̅̅ ̅, 0 , 𝐹16̅̅ ̅̅ ̅, 0 , 𝐹14̅̅ ̅̅ ̅, 0 , 𝐹12̅̅ ̅̅ ̅,

0 ,𝐹10̅̅ ̅̅ ̅, 0 ,𝐹8̅̅̅̅ , 0 ,𝐹6̅̅̅̅ , 0 , 𝐹4̅̅̅̅ , 0 , 𝐹2̅̅̅̅ , 0 , 𝐹0̅̅̅̅ }

R
#

-1
[6

3
]

R
#
0

[6
3

]

C#2[63]

S#2[63]

R
#
2

[6
1

]

R
#

-1
[2

]

R
#
0

[2
]

C#2[2]

S#2[2]

R
#
2

[0
]

R
#

-1
[1

]

R
#
0

[1
]

C#2[1]

S#2[1]

R
#

-1
[0

]

R
#
0

[0
]

C#2[0]

S#2[0]

C
#
2

[6
2

]

S
#

2
[6

3
]

C#4[63]

S#4[63]

R
#
4

[5
9

]

C
#
2

[3
]

S
#

2
[4

]

C#4[4]

S#4[4]

R
#
4

[0
]

C
#
2

[0
]

S
#

2
[1

]

C#4[1]

S#4[1]

1
’b

0

S
#

2
[0

]

C#4[0]

S#4[0]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030115
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

180

www.ijert.org
www.ijert.org
www.ijert.org

Figure 8: Final Stage addition block

V. RESULTS AND COMPARISON

A test bench program has been developed to verify the

results of the implemented single-cycle signed multiplier using

the Booth recoding algorithm. The code was written and

executed using Xilinx Vivado 2022.2. The synthesized design

was targeted towards the Virtex-7 FPGA, specifically the

Device-XC7V585T with Package-FFG1157 and speed-1.

Table-6 presents a comparison between the implemented

single-cycle signed multiplier and the 32-bit complex Vedic

multiplier [2].

Parameter

32-bit

Vedic

Multiplier

Implemented

32-bit Signed

Multiplier

Improvement

Slice LUTs 7874 1305 83.43%

Bonded

IOBs
258 130 49.61%

Table 6: Comparison with Vedic multiplier

Figure 9 : Simulation Waveform

Figure 10 : RTL schematic of Implemented multiplier

Figure 11 : On Chip Power

Parameter Utilization

Bonded IOB 130

Slice
SLICEL 223

SLICEM 144

LUT as Logic

using o5 output only 0

using o6 output only 919

using o5 and 06 386

Table 7:FPGA hardware utilization

VI. CONCLUSION

The architecture we propose in this paper can multiply

two 32-bit signed numbers using the Booth recoding algorithm.

Compared to conventional multipliers, our multiplier algorithm

requires only half of the partial product addition. We examine

the implemented multiplier's performance using various

parameters, including power and hardware utilization.

Compared to the 32-bit complex Vedic multiplier [2], the slice

LUTs and bonded IOBs utilizations are significantly better,

with improvements of 83.43% and 49.61%, respectively.

REFERENCES

[1] Saha, P., Banerjee, A., Bhattacharyya, P., and Dandapat, A. (2011,

January). “High speed ASIC design of complex multiplier using
vedicmathematics”. In Students’ Technology Symposium (TechSym),
2011 IEEE (pp. 237-241). IEEE.

[2] Ankush Nikam, Swati Salunke, Sweta Bhurse. “Design and
Implementation of 32bit Complex Multiplier using Vedic Algorithm”
IJERT ,2015 March,Vol 4.

[3] A. Dandapat, S. Ghosal, P. Sarkar, D. Mukhopadhyay, “A 1.2-ns16×16-
Bit Binary Multiplier Using High Speed Compressors”, International
Journal of Electrical and Electronics Engineering, 2010.

[4] M. Morris Mano, “Digital Design”,3rd edition, Prentice Hall,2002.

C
#
3
2

[6
2

]

S
#

3
2

[6
3

]

M[63]

C
#
3
2

[1
6

]

S
#

3
2

[1
7

]

M[17]

carry

C
#
3
2

[0
]

S
#

3
2

[1
]

M[1]

1
’b

0

S
#

3
2

[0
]

M[0]

carry

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030115
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

181

www.ijert.org
www.ijert.org
www.ijert.org

