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Abstract—The focus of this paper is on the implementation of 

a single cycle signed multiplier through use of the booth recoding 

algorithm on an FPGA. By utilizing fewer partial products, this 

implementation offers benefits such as reduced delay, power 

consumption, and usage of hardware resources. Additionally, this 

signed multiplier is capable of performing multiplication of both 

signed and unsigned numbers. The paper presents a comparative 

analysis of the 32-bit multiplier's performance in terms of power 

consumption and FPGA hardware resource utilization. The 

proposed 32-bit multiplier is designed using Verilog HDL and 

implemented through Xilinx Vivado 2022.2 software for Xilinx 

Virtex-7 FPGA. 

Keywords—Booth recoding; Signed Multiplier; FPGA; Verilog 

HDL. 

I. INTRODUCTION 

The process for binary multiplication is analogous to that of 
the decimal system. The regulations governing binary 
multiplication are illustrated in the following table. 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Table 1:1-bit binary multiplication 

 In binary arithmetic, when multiplying two numbers, each 
bit of the multiplier is multiplied by the multiplicand one at a 
time, similar to how it's done in the decimal system. The 
resulting partial products are arranged such that the least 
significant bit (LSB) is positioned under the corresponding bit 
in the multiplier. 

 Once the partial products have been calculated through 
binary multiplication, they are summed together to form the final 
product.  

 It is important to keep in mind that any multiplication by zero 
would result in all bits of the partial product being zero, which 
can be skipped in intermediate steps. 

 Furthermore, when multiplied by 1, the bits of the 
multiplicand remain unaltered, but they are shifted one bit 
position to the left. Performing intermediate sums of partial 
products simplifies the multiplication process of binary 
numbers.  

 Binary multiplication offers several benefits. It involves 
adding the multiplicand to itself, after a suitable shift based on 
the multiplier, which simplifies the process into a series of 
shifting and adding steps. These steps should be repeated until 
the MSB of the multiplier has been shifted, and the final addition 
has been performed. 

 The paper is organized as follows. Section II presents the 
design of booth recoding multiplier. Section III contains the   
sub-modules of implemented booth recoding multiplier. Section 
IV describes partial product addition unit. Experimental results 
and comparison are given in Section V. Finally, Section VI 
concludes the paper. 

II.  DESIGN OF BOOTH RECODING MULTIPLIER 

A. 32x32 bit multiplier(Heading 2) 

The Booth recoding multiplier requires two 32-bit inputs 
representing the multiplier and multiplicand, respectively. The 
output of the multiplier is 64-bit. Additionally, two control 
signals are included to specify whether the multiplier and 
multiplicand are signed or unsigned.  

 

Figure 1: 32-bit booth recoding multiplier top module 

Signal Name Width Source Description 

mplier 32 input Top module multiplier input 

mplier_s_u 1 input 
1= multiplier is signed,  

0 =multiplier is unsigned 

mplicand 32 input Top module multiplicand input 

mplicand_s_u 1 input 
1 = multiplier is signed,  

0 =multiplier is unsigned 

prod 64 output 
Output from the multiplier 

block 

Table 2: Signal Description of top module 

B. Mathematical Representation of Signed Number 

2’s complement representation of A        

= −231𝑎31 + 230𝑎30 + (2 − 1)29𝑎29 + 

       228𝑎28 + (2 − 1)27𝑎27 + 226𝑎26 + 

mplier 

mplier_s_u 

mplicand_s_u 

mplicand 

prod 
32-bit booth 

recoding 

multiplier 
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      (2 − 1)25𝑎25 + … … … … . + 22𝑎2 + 

                           (2 − 1)1𝑎1 + 20𝑎0 +  20𝑎−1  

      where 𝑎−1 ≡ 0 

 

= −231𝑎31 +  230𝑎30 + 230𝑎29 

−229𝑎29 + 228𝑎28 + 228𝑎27 

 −227𝑎27 + 226𝑎26 + 226𝑎25 

   …………………………… 

   …………………………… 

−23𝑎3 + 22𝑎2 + 22𝑎1 

−21𝑎1 + 20𝑎0 + 20𝑎−1 

      where 𝑎−1 ≡ 0 

 

= 230(−231𝑎31 + 230𝑎30 + 230𝑎29) 

228(−229𝑎29 + 228𝑎28 + 228𝑎27) 

 226(−227𝑎27 + 226𝑎26 + 226𝑎25) 

   …………………………… 

   …………………………… 

22(−23𝑎3 + 22𝑎2 + 22𝑎1) 

20(−21𝑎1 + 20𝑎0 + 20𝑎−1) 

      where 𝑎−1 ≡ 0 

 

= ∑ 22𝑖(−2𝑎2𝑖+1 + 𝑎2𝑖 + 𝑎2𝑖−1)15
𝑖=0   

 

= ∑ 22𝑖𝑓2𝑖
15
𝑖=0 … … … … … … … (1)  

 𝑤ℎ𝑒𝑟𝑒 𝑓2𝑖 =  −2𝑎2𝑖+1 + 𝑎2𝑖 + 𝑎2𝑖−1 

C. Mathematical Representation of Unsigned Number 

= −232𝑎32 + 231𝑎31 + 231𝑎30 

−230𝑎30 +  229𝑎29 + 229𝑎28 

−228𝑎28 + 227𝑎27 + 227𝑎26 

  …………………………… 

  …………………………… 

−22𝑎2 +  21𝑎1 + 21𝑎0 

−20𝑎0 + 2−1𝑎−1 + 2−1𝑎−2 

    Where 𝑎−1 = 𝑎−2 ≡ 0 

 

= 231(−2𝑎32 +  𝑎31 + 𝑎30) + 

229(−2𝑎30 + 𝑎29 + 𝑎28) + 

  …………………………… 

  …………………………… 

21(−2𝑎2 + 𝑎1 + 𝑎0) + 

2−1(−2𝑎0 + 𝑎−1 + 𝑎−2) 

    Where 𝑎−1 = 𝑎−2 ≡ 0 

 

= ∑ 22𝑖−1(−2𝑎2𝑖 + 𝑎2𝑖−1 + 𝑎2𝑖−2)16
𝑖=0   

 

= ∑ 22𝑖−1𝑓2𝑖
16
𝑖=0   … … … … … … … … … … … … … … (2)  

𝑤ℎ𝑒𝑟𝑒 𝑓2𝑖−1 =  −2𝑎2𝑖 + 𝑎2𝑖−1 + 𝑎2𝑖−2 

Comparing equation 1 and 2 it is apparent that one can 
process the integer A before re-coding basic unsigned and 
signed integer. 

 

𝒂𝟐𝒊+𝟏 𝒂𝟐𝒊 𝒂𝟐𝒊−𝟏 𝒇𝟐𝒊 
�̅� 

(+/−) 

𝑭𝟏
 

(x1/0) 

𝑭𝟐 

(x2/0) 

0 0 0 0 0 0 0 

0 0 1 1 0 1 0 

0 1 0 1 0 1 0 

0 1 1 2 0 1 1 

1 0 0 -2 1 1 1 

1 0 1 -1 1 1 0 

1 1 0 -1 1 1 0 

1 1 1 0 0 0 0 

Table 3:Booth recoding truth table 

III.  SUB-MODULES OF IMPLEMENTED BOOTH 

RECODING MULTIPLIER 

A. 33rd bit extension unit 

Our implementation involves using a signed multiplier to 
perform an unsigned operation. To cover the entire range of 
unsigned multiplication, we add an extra bit at the MSB. For 
unsigned numbers, the 33rd bit is zero, while for signed 
numbers, the 33rd bit is sign-extended. 
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Figure 2: 33rd bit extension unit block diagram 

B. Preprocessing/F block formation unit 

• During the pre-processing phase, we will append a "0" to 
the least significant bit (LSB) of "a", which is a 32-bit 
input to the pre-processing block, and serves as the 
output of the 33rd bit extension unit. 

• Following that, we need to create blocks consisting of 
three bits each, where the least significant bit (LSB) of 
the current block becomes the most significant bit (MSB) 
of the previous block. 

• Since we are forming blocks in the 33-bit number "a", 
adding a "0" to the least significant bit results in a 
shortage of one bit required to form the F block.  

• To address this situation, we will add a number to the 
most significant bit (MSB) that is the same as the 33rd 
bit, regardless of whether we are generating signed or 
unsigned partial products. 

Extra bit added for 
block formation 

Extended 33-bit 
number (output 
of 33rd bit 
extension unit) 

0 added in 
LSB 

a [32] a [32:0] 0 

Table 4:Extended 34-bit multiplier 

After preprocessing total width of the number is 34-bit. 

Note: preprocessing of number “a” is nothing but just 
rewiring. 

F0 {𝑎1, 𝑎0, 0} 

F2 {𝑎3, 𝑎2, 𝑎1} 

F4 {𝑎5, 𝑎4, 𝑎3} 

F6 {𝑎7, 𝑎6, 𝑎5} 

F8 {𝑎9, 𝑎8, 𝑎7} 

F10 {𝑎11, 𝑎10, 𝑎9} 

F12 {𝑎13, 𝑎12, 𝑎11} 

F14 {𝑎15, 𝑎14, 𝑎13} 

F16 {𝑎17, 𝑎16, 𝑎15} 

F18 {𝑎19, 𝑎18, 𝑎17} 

F20 {𝑎21, 𝑎20, 𝑎19} 

F22 {𝑎23, 𝑎22, 𝑎21} 

F24 {𝑎25, 𝑎24, 𝑎23} 

F26 {𝑎27, 𝑎26, 𝑎25} 

F28 {𝑎29, 𝑎28, 𝑎27} 

F30 {𝑎31, 𝑎30, 𝑎29} 

F32 {𝑎32, 𝑎32, 𝑎31} 

Table 5: F Block Formation 

C. Partial product generation 

• There will be 16 rows of partial products for each of the 
16 "F" blocks. Table 3 was used to generate �̅�, 𝐹1 and 𝐹2 
which are then used for the required bit manipulation to 
generate the necessary partial products. The hardware 
implementation for �̅�, 𝐹1 and 𝐹2 is provided below. 

 

Figure 3: Hardware realization for �̅�, 𝐹1 and 𝐹2 

Note: 1. �̅� is high when 𝑓2𝑖 is -ve, low otherwise. 

   2. 𝐹1 is high for 𝑓2𝑖 ≠ 0 ,low otherwise. 

   3. 𝐹2 is high for 𝑓2𝑖 = ±2 ,low otherwise. 

• We need to process all the F block in this hardware to get 
corresponding �̅�, 𝐹1 and 𝐹2. For example, if we process 

F0 block we can get the  𝐹0̅̅̅̅ , 𝐹01 and 𝐹02. Similarly, we 

can get the values for 𝐹2̅̅̅̅ , 𝐹21 and 𝐹22------𝐹32̅̅ ̅̅ ̅, 𝐹321 
and 𝐹322by processing corresponding F blocks. 

• As we are using booth recoding algorithm, so our partial 
product will reduce. There will be 17 rows of partial 

mplier [31:0] 

mplier_s_u 

mplier [31] 

mux_out 

a [32:0] 

0 

1 

 

b [32:0] 
mplicand [31:0] 

mplicand [31] 

mux_out 

0 

1 

mplicand_s_u 

�̅� 

𝑎2𝑖−1 

𝑎2𝑖 
𝑎2𝑖+1 

𝐹1 

𝑎2𝑖−1 
𝑎2𝑖  𝑎2𝑖+1 

𝐹2 

𝑎2𝑖+1 

𝑎2𝑖  
𝑎2𝑖−1 

0 

1 
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product which we need to add. For generating ROW#0 

partial product we need to  𝐹0̅̅̅̅ , 𝐹01 and 𝐹02 in b (33-bit 
multiplicand, output of preprocessing unit). Similarly for 

ROW#2 we need to use  𝐹2̅̅̅̅ , 𝐹21 and 𝐹22 on “b” and so 
on for other ROW’S  

 

Figure 4: ROW#0 calculation using  𝐹0̅̅̅̅ , 𝐹01 and 𝐹02 

Similar structure can be used for calculation of other ROW’s. 

 

Figure 5: ROW#2 calculation using 𝐹2̅̅̅̅ , 𝐹21 and 𝐹22 

IV. PARTIAL PRODUCT ADDITION UNIT 

The process in this unit involves the addition of all partial 
products, namely ROW#0, ROW#2, ..., ROW#32. To achieve 
this, we use full adders and half adders. The carries are 
propagated diagonally to the left and downward to achieve 
superior speed. However, when processing the last row, 
ROW#32, there is no row below it, and so we propagate the 
carries horizontally instead. 

Note: Horizontal carry propagation is feasible because the 
augend is unoccupied, given the absence of a row beneath it.  

It is worth noting that if the value of 𝑓2𝑖 is negative, we must 
compute the 2's complement of the number "b". However, the 
structure depicted in figures 4 and 5 merely perform XOR 
operations. Additionally, we need to add 1 to the LSB position, 
aligned with the binary values of the respective ROWs. To 
address this, we introduce an extra ROW, known as ROW#-1, 
which will facilitate the addition of 1 to the aligned LSB position 
for the relevant ROWs. 

 

A. Addition Stages 

During the initial stage of addition, we will add ROW#-1, 
ROW#0, and ROW#2 (shifted left by 2 positions). In the 
subsequent stage, we will add the sum obtained from the 
previous stage, ROW#4 (shifted left by 4 positions), and the 
carry generated by the first stage (shifted left by 1 position). This 
procedure is repeated in a similar manner for the succeeding 
stages of addition. 

 

Figure 6 : First stage addition block 

 
Figure 7: Second stage addition block 

𝐹0̅̅̅̅  

𝐹01 

𝐹02 1 0 

b [0] 

row0[0] 

1 0 

b [1] 

row0[1] 

1 0 

b [32] 

row0[32] 

𝐹02 

b [31] 
b [32] 

row0[33] 

row0[34] 

row0[63] 

𝐹0̅̅̅̅  

𝐹01 

𝐹02 1 0 

b [0] 

row2[0] 

1 0 

b [1] 

row2[1] 

1 0 

b [32] 

row2[32] 

𝐹02 

b [31] 

b [32] 

row2[33] 

row2[34] 

row2[63] 

ROW#-1= {32’b0, 𝐹32̅̅ ̅̅ ̅, 0 , 𝐹30̅̅ ̅̅ ̅, 0 , 𝐹28̅̅ ̅̅ ̅, 0 , 𝐹26̅̅ ̅̅ ̅, 0 

,𝐹24̅̅ ̅̅ ̅, 0 ,𝐹22̅̅ ̅̅ ̅, 0 ,𝐹20̅̅ ̅̅ ̅, 0 , 𝐹18̅̅ ̅̅ ̅, 0 , 𝐹16̅̅ ̅̅ ̅, 0 , 𝐹14̅̅ ̅̅ ̅, 0 , 𝐹12̅̅ ̅̅ ̅, 

0 ,𝐹10̅̅ ̅̅ ̅, 0 ,𝐹8̅̅̅̅ , 0 ,𝐹6̅̅̅̅ , 0 , 𝐹4̅̅̅̅ , 0 , 𝐹2̅̅̅̅ , 0 , 𝐹0̅̅̅̅ } 
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Figure 8: Final Stage addition block 

V. RESULTS AND COMPARISON 

A test bench program has been developed to verify the 

results of the implemented single-cycle signed multiplier using 

the Booth recoding algorithm. The code was written and 

executed using Xilinx Vivado 2022.2. The synthesized design 

was targeted towards the Virtex-7 FPGA, specifically the 

Device-XC7V585T with Package-FFG1157 and speed-1. 

Table-6 presents a comparison between the implemented 

single-cycle signed multiplier and the 32-bit complex Vedic 

multiplier [2].  

 

Parameter 

32-bit 

Vedic 

Multiplier 

Implemented 

32-bit Signed 

Multiplier 

Improvement 

Slice LUTs 7874 1305 83.43% 

Bonded 

IOBs 
258 130 49.61% 

Table 6: Comparison with Vedic multiplier 

 
Figure 9 : Simulation Waveform 

 
Figure 10 : RTL schematic of Implemented multiplier 

 
Figure 11 : On Chip Power 

Parameter Utilization 

Bonded IOB 130 

Slice 
SLICEL 223 

SLICEM 144 

LUT as Logic 

using o5 output only 0 

using o6 output only 919 

using o5 and 06 386 

Table 7:FPGA hardware utilization 

VI. CONCLUSION  

The architecture we propose in this paper can multiply 

two 32-bit signed numbers using the Booth recoding algorithm. 

Compared to conventional multipliers, our multiplier algorithm 

requires only half of the partial product addition. We examine 

the implemented multiplier's performance using various 

parameters, including power and hardware utilization. 

Compared to the 32-bit complex Vedic multiplier [2], the slice 

LUTs and bonded IOBs utilizations are significantly better, 

with improvements of 83.43% and 49.61%, respectively. 
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