
FPGA Implementation of Orthogonal Code Convolution for Efficient

Digital Communication

 *Raghvendra Dubey & P. Lakshmi Sarojini

Department of Electronics & Communication Engineering

Swarnandhra College of Engineering and Technology, Seetharampuram, Narsapur (A.P.), INDIA

Abstract

In digital communication system, convolution

coding is preferred for the channel coding as it

facilitates a better error correction as comparison

to block coding which does not require memory.

Among other techniques such as Cyclic

Redundancy and Solomon Codes; orthogonal

coding is one of the codes which can detect errors

and correct corrupted data in an efficient way. In

this paper, FPGA implementation of orthogonal

code convolution is presented by employing Xilinx

and Modelsim softwares. It is found that the

orthogonal code implementation improved the

error detection upto 99.9%. With this method, the

transmitter does not have to send the parity bit

since the parity bit is known to be always zero.

Therefore, if there is a transmission error, the

receiver will be able to detect it by generating a

parity bit at the receiving end.

Keywords: Code Convolution, Orthogonal

Codes, Antipodal Codes, FPGA.

1. Introduction
Information and communication technology has

brought enormous changes to our life and turned

out to be one of the basic building blocks of

modern society. Day by day, there is an increasing

demand of network capacity due to the use of

internet and real time transmission of voice and

picture. To fulfil these requirements data

transmission at high bit rates is essential for various

aspects such as video, high-quality audio and

mobile integrated service digital network (ISDN).

However, the data transmitted at high bit rates over

mobile radio channels, leads to inter symbol

interference (ISI). The significant factors which

cause the reliability of digital data communication

are the transmission medium i.e. cable or air,

sources of noise and some others like

electromagnetic interface, crosstalk and distance.

To overcome this problem, error correction coding

 is a solution for the best possible communication.

The main advantage of using coding is the

efficiency of the channels use becomes higher as

comparison to the case when code is not used.

Therefore, error detection and correction

techniques are needed which can detect errors such

as the Cyclic Redundancy Check and others which

can detect as well as correct errors such as

Solomon Codes [1-3]. The CRC check includes

table driven CRC calculation and loop driven CRC

calculation however, this application describes the

implementation of the CRC-16 polynomial.

Further, there are several formats for the

implementation of CRC such as CRC-CCITT,

CRC-32 or other polynomials. The CRC generation

has many advantages over simple sum techniques

or parity check. CRC error correction gives the

detection of single, double and bundled bit errors

and useful where large data packages are

transmitted. Reed–Solomon (RS) codes are non-

binary cyclic error-correcting codes which

described a systematic way of building codes that

could detect and correct multiple random symbol

errors. This coding has found its applications from

deep-space communication to consumer electronics

(CDs, DVDs, Blu-ray Discs). Among these

methods, orthogonal code is one of the codes which

can detect errors and correct corrupted data in an

efficiently with increased quantity of data

transmitted [4]. This coding is binary valued and

with equal number of 1‟s and 0‟s. All orthogonal

codes can generate zero parity bits as n-bit

orthogonal code has n/2 1‟s and n/2 0‟s. In simple

there are n/2 positions where 1‟s and 0‟s differ and

hence, each antipodal code can also generate a zero

parity bit [5]. It is noted that with this method, the

transmitter does not have to send the parity bit

since the parity bit is known to be always zero.

Therefore, if there is a transmission error, the

receiver will be able to detect it by generating a

parity bit at the receiving end.

In this paper, the FPGA implementation of

orthogonal code convolution is presented by

employing Xilinx and Modelsim softwares; in

section second and third, the theory of orthogonal

coding and design approach are presented. The

simulated results and analysis are discussed in

section fourth. Finally, section fifth concludes the

paper.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

2. Theory of Orthogonal Coding
Orthogonal codes are consists of equal number

of 1‟s and 0‟s e.g. n-bit orthogonal code consist n/2

1‟s and n/2 0‟. Meaning, there are n/2 positions

where 1‟s and 0‟s differ. In this way, all orthogonal

codes generate zero parity bits. An illustration of

16-bit orthogonal code is shown in figure 1.

Figure 1. A 16-bit orthogonal code has 16

orthogonal codes and 16-antipodal codes for a

total of 32 bi-orthogonal codes.

It is comprised of 16-orthogonal codes and 16-

antipodal codes (just the inverse of orthogonal

codes) for a total of 32 bi-orthogonal codes as

depicted in figure 2. The advantage with this

approach is that transmitter does not need to send

the parity bit as parity bit is known to be always

zero. In this way, if error exists during, the receiver

can detect by generating a parity bit at the receiving

end. In orthogonal coding, a k-bit data set is

mapped into a unique n-bit before transmission.

Here, we have considered a 5-bit data set which is

can be represented by a unique 16-bit orthogonal

code and transmitted without the parity bit. After

receiving the data, it is decoded based on code

correlation by setting a threshold midway between

two orthogonal codes. The threshold midway is

represented as

4

n
d th (1)

Where n is the code length and dth is the threshold

midway between two orthogonal codes. According

to above equation, for 16-bit orthogonal coding,

threshold midway is 4 between two orthogonal

codes. This approach offers a decision process,

where the incoming impaired orthogonal code is

examined for correlation with the neighbouring

codes for a possible match. It is noted that the

acceptance criterion for a valid code is that an n-bit

comparison must yield a good autocorrelation

value; otherwise, a false detection will occur.

Figure 2. Encoding and Decoding Process.

This is governed by the correlation process, where

a pair of n-bit codes nxxxx ...,,, 321 and

nyyyy ...,,, 321 is compared to yield, autocorrelation

value which is given as

n

i

ii

n
yxyxR

1

1
4

),((2)

Where),(yxR = autocorrelation function, n= code

length, and thd =threshold midway. For reliable

detection, an additional 1-bit offset is added to

equation (2).

Further, we can estimate the average number of

errors which can be corrected by combining

equation (1) and equating (2), and can be

represented as

 1
4

),(
n

yxRnt (3)

Here, t is the number of errors which can be

corrected by means of an n-bit orthogonal code.

3. Design Approach
Our design approach is based on the comparison

between the received code and all the orthogonal

code combinations stored in a look up table; which

has two major components such as a transmitter

and a receiver. The first component (transmitter)

consists of two blocks such as encoder and shift

register which is shown in figure 3.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 3. Block diagram of the 5-bit data

transmitter.

Here, encoder encodes a k-bit data set to n=2k-1

bits of the orthogonal code and the shift register

transforms this code to a serial data in order

transmit these. In our case of 5-bit data, it can be

encoded to 16-bit (24) orthogonal code according

to the lookup table shown in figure 3. Further, the

generated orthogonal code can be serially

transmitted by using a shift register with the rising

edge of the clock.

Figure 4. Block diagram of Receiver.

The second component (receiver) consists of two

major blocks such as serial to parallel converter and

decoder as shown in figure 4. Here, the incoming

serial bits are converted into n-bit parallel codes

and compared with all the codes in the lookup table

for error detection. This is processed by counting

the number of ones in the signal resulting from

„XOR‟ operation between the received code and

each combination of the orthogonal codes in the

lookup table. Further, counter is used to count the

number of ones in the resulting n-bit signal and

also searches for the minimum count. However, a

value rather than zero shows an error in the

received code. The orthogonal code in the lookup

table which is associated with the minimum count

is the closest match for the corrupted received

code. The matched orthogonal code in the lookup

table is the corrected code, which is then decoded

to k-bit data. The receiver is able to correct up to

(n/4)-1 bits in the received impaired code. Signal

(REQ), goes high when the minimum count is

associated with more than one combination of

orthogonal code.

3.1 Encoder Simulation

We have done RTL simulation of encoder to

ensure the proper working of stand alone module.

The encoder reset, using the reset signal „reset‟.

This resets the encoder to the default value

“0000000000000000”. The encoder is then enabled

using the signal „data_rdy‟. This signal is HIGH

when the data is ready.

Figure 5. Simulated result of encoder.

The input data is encoded to 16-bit orthogonal code

with the rising edge of the clock signal. The 16-bit

orthogonal code is outputted through a signal

„data_out‟. The signal „data_out_rdy‟ is using to

indicate the availability of output data. This signal

is HIGH when the output data is ready. For

example, the 5-bit data “00001” is encoded to

“0101010101010101” 16-bit orthogonal code, this

is shown in figure 5.

3.2 Parallel to Serial Shift Register Simulation

The shift register reset, using the reset signal

„reset‟. This resets the shift register to the default

value “0000000000000000”. The shift register is

then enabled using the signal „data_rdy‟.

Figure 6. Simulated result of parallel to serial

shift register.

This signal is HIGH when the data is ready. The

parallel input data is loaded into a temporary

register „shft_reg‟. The simulated result of parallel

to serial shift register is shown in figure 6. The shift

register transmits the bits serially using a signal

„data_out‟ with the rising edge of the clock signal.

The signal „data_out_rdy‟ is used to indicate the

availability of output data. This signal is HIGH

when the output data is ready

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

3.3 Transmitter Simulation

After simulating encoder and parallel to shift

register, the transmitter is simulated and results are

shown in figure 7. The transmitter reset, using the

reset signal „reset‟. This resets the transmitter to the

default value “00000”. The encoder encodes a k-bit

data set to n=2k-1 bits of the orthogonal code and

the shift register transforms this code to a serial data

in order to be transmitted. The transmitter is then

enabled using the signal „data_rdy‟. This signal is

HIGH when the data is ready. For example, the 5-

bit data “00001” is encoded to

“0101010101010101” 16-bit orthogonal code. The

generated orthogonal code is then transmitted

serially using a shift register with the rising edge of

the clock. The bits are outputted through a signal

„data_out‟. The signal „data_out_rdy‟ is using to

indicate the availability of output data. This signal

is HIGH when the output data is ready.

Figure 7. Simulated result of Transmitter

3.4 Serial to Parallel Shift Register Simulation

The sub module of receiver, serial to parallel

shift register is simulated and shown in figure 8.

The shift register reset, using the reset signal

„reset‟. This resets the shift register to the default

value “0000000000000000”. The shift register is

then enabled using the signal „data_rdy‟. This

signal is HIGH when the data is ready. The input

data bits are serially loaded into a temporary

register „shft_reg‟ with the rising edge of the clock

signal. After the final input bit is clocked in the

signal „cnt‟ is greater than “10000”.

Figure 8. Simulated result of serial to parallel

shift register.

When the „cnt‟ value is greater than “10000” the

data in temporary register is available at the output

signal „data_out‟. The signal „data_out_rdy‟ is

using to indicate the availability of output data.

This signal is HIGH when the output data is ready.

3.5 Counter Simulation

The simulated result of counter module is

shown in figure 9. The counter reset, using the reset

signal „reset‟. This resets the counter to the default

value “00000”. The counter is then enabled using

the signal „data_rdy‟. This signal is HIGH when the

data is ready. The counter counts the number of 1‟s

present in the given 16-bit data and produces the

count value at the signal „cnt_out‟. The signal

„cnt_rdy‟ is using to indicate the availability of

output data. This signal is HIGH when the output

data is ready.

Figure 9. Simulated result of Counter.

3.6 Receiver Simulation

The receiver is simulated with its components

such as serial to parallel converter and counter; and

results are shown in figure 10. The receiver reset,

using the reset signal „reset‟. This resets the

receiver to the default value “00000”. The receiver

is then enabled using the signal „data_rdy‟. This

signal is HIGH when the data is ready. The 16-bit

code at the signal „data‟ is compared with all the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

codes in the lookup table for error detection. This is

done by counting the number of ones in the signal

resulting from „XOR‟ operation between the

received code and each combination of the

orthogonal codes in the lookup table. A counter is

used to count the number of ones in the resulting

16-bit signal and also searches for the minimum

count. However a value rather than zero shows an

error in the received code. The orthogonal code in

the lookup table which is associated with the

minimum count is the closest match for the

corrupted received code. The matched orthogonal

code in the lookup table is the corrected code,

which is then decoded to 5-bit data which is

available at signal „data_out‟. The signal

„data_out_rdy‟ is using to indicate the availability

of output data. This signal is HIGH when the

output data is ready.

For example, if the 16-bit data is

“0101010101010101”, is XORed with each

combination of 16-bit orthogonal codes in the

lookup table. The resulting 16-bit data is given as

an input to counter. The counter counts the number

of 1‟s in each 16-bit XORed output. The minimum

count value is “00000” for the orthogonal code is

“0101010101010101”. Therefore the associated 5-

bit data is “00001”. Another example, if the 16-bit

data is “0101010101011101”, is XORed with each

combination of 16-bit orthogonal codes in the

lookup table. The resulting 16-bit data is given as

an input to counter. The counter counts the number

of 1‟s in each 16-bit XORed output. The minimum

count value is “00001” for the orthogonal code is

“0101010101010101”. Therefore the associated 5-

bit data is “00001”.

Figure 10. Simulated result of receiver.

4. Results and Discussion

In previous section, module by module

simulation is done. Finally transmitter and receiver

modules are combined and simulated. figure 11

shows the RTL schematic of transmitter and

receiver.

Figure 11. RTL Schematic of transmitter and

receiver.

The Transmitter and Receiver reset, using the reset

signal „reset‟. This resets the Transmitter and

Receiver to the default value “00000”. The receiver

is then enabled using the signal „data_rdy‟. This

signal is HIGH when the data is ready. For

example, the input data value “00001” labeled as

„data‟ has been encoded to the associated

orthogonal code “0101010101010101” labeled as

“p_data”. The signal „p_data_rdy‟ is used to enable

the transmission of the serial bits „p_data‟ of the

orthogonal code with every rising edge of the

clock.

Upon reception, the incoming serial data is

converted into 16-bit parallel code „p_data1‟.

Counter is used to count the number of 1‟s after

XOR operation between the received code and all

combinations of orthogonal code in the lookup

table. The signal „cnt‟ gives the minimum count of

one‟s among them. The orthogonal code „p_data‟

associated with the minimum count is the closest

match for the received code, which is then decoded

to the final data given by signal „data_out‟.

Figure 12. First Case: Simulated result of

Transmitter and Receiver.

We have considered five cases to observe the

output from above simulation. In first case, the

received code has a match in the lookup table. As

shown in figure 12, the received code is p_data1 =

“0101010101010101”, the value of minimum count

is “00000” and hence the received code is not

corrupted. The code is then decoded to the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

corresponding final data “00001” which is given by

signal „data_out‟.

Figure 13. Second Case: Simulated result of

Transmitter and Receiver.

In second case, the received code has no match in

the lookup table. As shown in figure 13, the

received code is p_data11 =“0101010101011101”,

the value of minimum count is „00001‟, which

reveals an error. The corresponding orthogonal

code is “0101010101010101” which is the closest

match for the received code given by the minimum

count, and the decoded final data is “00001” ”

which is given by signal „data_out‟. In this case the

single bit error is detected and corrected by the

receiver.

Figure 14. Third Case: Simulated result of

Transmitter and Receiver.

In third case, the received code has no match in the

lookup table. As shown in figure 14, the received

code is p_data11 = “0101010100011101”, the

value of minimum count is „00002‟, which reveals

an error. The corresponding orthogonal code is

“0101010101010101” which is the closest match

for the received code given by the minimum count,

and the decoded final data is “00001” which is

given by signal „data_out‟. In this case the two bit

errors are detected and corrected by the receiver.

Figure 15. Fourth Case: Simulated result of

Transmitter and Receiver.

In fourth case, the received code has no match in

the lookup table. As shown in figure 15, the

received code is p_data11 = “0101010100011111”,

the value of minimum count is „00003‟, which

reveals an error. The corresponding orthogonal

code is “0101010101010101” which is the closest

match for the received code given by the minimum

count, and the decoded final data is “00001” which

is given by signal „data_out‟. In this case the three

bit errors are detected and corrected by the receiver.

In fifth case, there is more than one possibility

of closest match in the lookup table. As shown in

figure 16, the received code is p_data11 =

“0101011100011111”. The value of minimum

count is associated with more than one orthogonal

code and thus it is not possible to determine the

closest match in the lookup table for the received

code.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 16. Fifth Case: Simulated result of

Transmitter and Receiver.

In summary, 5-bit data is encoded into 16-bit

orthogonal code which has 3225 combinations

of orthogonal code. Therefore, out of 65,536

possible combinations of 16-bit received code the

receiver will not able to detect error in those codes

which are one of the combinations of orthogonal

code. The detection percentage for 16-bit

orthogonal code is estimated to be 99.95% which is

able to correct three bit error.

5. Conclusion
In present paper, FPGA implementation of

orthogonal code convolution is presented to ensure

the efficient digital communication. This work

involved the implementation of various modules of

the transmitter and receiver using VHDL. A fully

synthesizable HDL code was written to ensure that

the design was feasible. This orthogonal code

implementation has improved the error detection

upto 99.9% for 16-bit coding. It is noted that with

this method, the transmitter does not have to send

the parity bit since the parity bit is known to be

always zero. Therefore, if there is a transmission

error, the receiver will be able to detect it by

generating a parity bit at the receiving end. Finally,

this work has the future scope of further

improvement in orthogonal coding for large digital

data processing.

References
[1] Baicheva, T., S. Dodunekov, and P. Kazakov,

“Undetected error probability performance of cyclic

redundancy- check codes of 16-bit redundancy,” IEEE

Proc. Comms., Vol. 147, No. 5, Oct. 2000, pp. 253- 256.

[2] A. Hokanin, H. Delic, S. Sarin, “Two dimensional

CRC for efficient transmission of ATM Cells over

CDMA,” IEEE Communications Letters, Vol. 4, No. 4,

April 2000, pp.131-133.

[3] Stylianakis V., Toptchiyski S, “A Reed-Solomon

coding/decoding structure for an ADS modem,”

Electronics, Circuits and Systems, 1999. Proceedings of

ICECS apos; 99. The 6th IEEE International Conference,

Volume 1, Issue , 1999, pp. 473 – 476.

[4] Saleh Faruque, “Error Control Coding Based on

Orthogonal Codes,” Wireless Proceedings, Vol. 2, pp.

608-615, 2004.

[5] Naima Kaabouch, Aparna Dhirde, and Saleh Faruque,

“Improvement of the Orthogonal Code Convolution

Capabilities Using FPGA Implementation,” IEEE

Proceedings, Nov. 2007, pp.337-341.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

