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Abstract 
 

In digital communication system, convolution 

coding is preferred for the channel coding as it 

facilitates a better error correction as comparison 

to block coding which does not require memory. 

Among other techniques such as Cyclic 

Redundancy and Solomon Codes; orthogonal 

coding is one of the codes which can detect errors 

and correct corrupted data in an efficient way. In 

this paper, FPGA implementation of orthogonal 

code convolution is presented by employing Xilinx 

and Modelsim softwares. It is found that the 

orthogonal code implementation improved the 

error detection upto 99.9%. With this method, the 

transmitter does not have to send the parity bit 

since the parity bit is known to be always zero. 

Therefore, if there is a transmission error, the 

receiver will be able to detect it by generating a 

parity bit at the receiving end. 

 

Keywords: Code Convolution, Orthogonal 

Codes, Antipodal Codes, FPGA. 

  

 

1. Introduction  
Information and communication technology has 

brought enormous changes to our life and turned 

out to be one of the basic building blocks of 

modern society. Day by day, there is an increasing 

demand of network capacity due to the use of 

internet and real time transmission of voice and 

picture. To fulfil these requirements data 

transmission at high bit rates is essential for various 

aspects such as video, high-quality audio and 

mobile integrated service digital network (ISDN). 

However, the data transmitted at high bit rates over 

mobile radio channels, leads to inter symbol 

interference (ISI). The significant factors which 

cause the reliability of digital data communication 

are the transmission medium i.e. cable or air, 

sources of noise and some others like 

electromagnetic interface, crosstalk and distance. 

To overcome this problem, error correction coding  

 

 

 

 

 

 is a solution for the best possible communication. 

The main advantage of using coding is the 

efficiency of the channels use becomes higher as 

comparison to the case when code is not used.  

Therefore, error detection and correction 

techniques are needed which can detect errors such 

as the Cyclic Redundancy Check and others which 

can detect as well as correct errors such as 

Solomon Codes [1-3]. The CRC check includes 

table driven CRC calculation and loop driven CRC 

calculation however, this application describes the 

implementation of the CRC-16 polynomial. 

Further, there are several formats for the 

implementation of CRC such as CRC-CCITT, 

CRC-32 or other polynomials. The CRC generation 

has many advantages over simple sum techniques 

or parity check. CRC error correction gives the 

detection of single, double and bundled bit errors 

and useful where large data packages are 

transmitted. Reed–Solomon (RS) codes are non-

binary cyclic error-correcting codes which 

described a systematic way of building codes that 

could detect and correct multiple random symbol 

errors. This coding has found its applications from 

deep-space communication to consumer electronics 

(CDs, DVDs, Blu-ray Discs). Among these 

methods, orthogonal code is one of the codes which 

can detect errors and correct corrupted data in an 

efficiently with increased quantity of data 

transmitted [4]. This coding is binary valued and 

with equal number of 1‟s and 0‟s. All orthogonal 

codes can generate zero parity bits as n-bit 

orthogonal code has n/2 1‟s and n/2 0‟s. In simple 

there are n/2 positions where 1‟s and 0‟s differ and 

hence, each antipodal code can also generate a zero 

parity bit [5]. It is noted that with this method, the 

transmitter does not have to send the parity bit 

since the parity bit is known to be always zero. 

Therefore, if there is a transmission error, the 

receiver will be able to detect it by generating a 

parity bit at the receiving end. 

In this paper, the FPGA implementation of 

orthogonal code convolution is presented by 

employing Xilinx and Modelsim softwares; in 

section second and third, the theory of orthogonal 

coding and design approach are presented. The 

simulated results and analysis are discussed in 

section fourth. Finally, section fifth concludes the 

paper. 
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2. Theory of Orthogonal Coding 
Orthogonal codes are consists of equal number 

of 1‟s and 0‟s e.g. n-bit orthogonal code consist n/2  

1‟s and n/2 0‟. Meaning, there are n/2 positions 

where 1‟s and 0‟s differ. In this way, all orthogonal 

codes generate zero parity bits. An illustration of 

16-bit orthogonal code is shown in figure 1.  

 

Figure 1. A 16-bit orthogonal code has 16 

orthogonal codes and 16-antipodal codes for a 

total of 32 bi-orthogonal codes.  

It is comprised of 16-orthogonal codes and 16-

antipodal codes (just the inverse of orthogonal 

codes) for a total of 32 bi-orthogonal codes as 

depicted in figure 2. The advantage with this 

approach is that transmitter does not need to send 

the parity bit as parity bit is known to be always 

zero. In this way, if error exists during, the receiver 

can detect by generating a parity bit at the receiving 

end. In orthogonal coding, a k-bit data set is 

mapped into a unique n-bit before transmission. 

Here, we have considered a 5-bit data set which is 

can be represented by a unique 16-bit orthogonal 

code and transmitted without the parity bit. After 

receiving the data, it is decoded based on code 

correlation by setting a threshold midway between 

two orthogonal codes. The threshold midway is 

represented as  

                              
4

n
d th                   (1) 

Where n is the code length and dth is the threshold 

midway between two orthogonal codes.  According 

to above equation, for 16-bit orthogonal coding, 

threshold midway is 4 between two orthogonal 

codes. This approach offers a decision process, 

where the incoming impaired orthogonal code is 

examined for correlation with the neighbouring 

codes for a possible match. It is noted that the 

acceptance criterion for a valid code is that an n-bit 

comparison must yield a good autocorrelation 

value; otherwise, a false detection will occur.  

 

Figure 2.  Encoding and Decoding Process. 

This is governed by the correlation process, where 

a pair of n-bit codes  nxxxx ...,,, 321  and 

nyyyy ...,,, 321  is compared to yield, autocorrelation 

value which is given as 
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Where ),( yxR = autocorrelation function, n= code 

length, and thd =threshold midway. For reliable 

detection, an additional 1-bit offset is added to 

equation (2).  

Further, we can estimate the average number of 

errors which can be corrected by combining 

equation (1) and equating (2), and can be 

represented as  

                           1
4

),(
n

yxRnt              (3) 

Here, t is the number of errors which can be 

corrected by means of an n-bit orthogonal code.  

 

3. Design Approach 
Our design approach is based on the comparison 

between the received code and all the orthogonal 

code combinations stored in a look up table; which 

has two major components such as a transmitter 

and a receiver. The first component (transmitter) 

consists of two blocks such as encoder and shift 

register which is shown in figure 3. 
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Figure 3. Block diagram of the 5-bit data 

transmitter. 

Here, encoder encodes a k-bit data set to n=2k-1 

bits of the orthogonal code and the shift register 

transforms this code to a serial data in order 

transmit these. In our case of 5-bit data, it can be 

encoded to 16-bit (24) orthogonal code according 

to the lookup table shown in figure 3. Further, the 

generated orthogonal code can be serially 

transmitted by using a shift register with the rising 

edge of the clock. 

 

Figure 4. Block diagram of Receiver. 

 

The second component (receiver) consists of two 

major blocks such as serial to parallel converter and 

decoder as shown in figure 4. Here, the incoming 

serial bits are converted into n-bit parallel codes 

and compared with all the codes in the lookup table 

for error detection. This is processed by counting 

the number of ones in the signal resulting from 

„XOR‟ operation between the received code and 

each combination of the orthogonal codes in the 

lookup table. Further, counter is used to count the 

number of ones in the resulting n-bit signal and 

also searches for the minimum count. However, a 

value rather than zero shows an error in the 

received code. The orthogonal code in the lookup 

table which is associated with the minimum count 

is the closest match for the corrupted received 

code. The matched orthogonal code in the lookup 

table is the corrected code, which is then decoded 

to k-bit data. The receiver is able to correct up to 

(n/4)-1 bits in the received impaired code. Signal 

(REQ), goes high when the minimum count is 

associated with more than one combination of 

orthogonal code.  

3.1 Encoder Simulation 

We have done RTL simulation of encoder to 

ensure the proper working of stand alone module. 

The encoder reset, using the reset signal „reset‟. 

This resets the encoder to the default value 

“0000000000000000”. The encoder is then enabled 

using the signal „data_rdy‟. This signal is HIGH 

when the data is ready.  

 

Figure 5. Simulated result of encoder. 

The input data is encoded to 16-bit orthogonal code 

with the rising edge of the clock signal. The 16-bit 

orthogonal code is outputted through a signal 

„data_out‟. The signal „data_out_rdy‟ is using to 

indicate the availability of output data. This signal 

is HIGH when the output data is ready. For 

example, the 5-bit data “00001” is encoded to 

“0101010101010101” 16-bit orthogonal code, this 

is shown in figure 5.  

3.2 Parallel to Serial Shift Register Simulation 

The shift register reset, using the reset signal 

„reset‟. This resets the shift register to the default 

value “0000000000000000”. The shift register is 

then enabled using the signal „data_rdy‟.  

 

Figure 6. Simulated result of parallel to serial 

shift register. 

This signal is HIGH when the data is ready. The 

parallel input data is loaded into a temporary 

register „shft_reg‟.  The simulated result of parallel 

to serial shift register is shown in figure 6. The shift 

register transmits the bits serially using a signal 

„data_out‟ with the rising edge of the clock signal. 

The signal „data_out_rdy‟ is used to indicate the 

availability of output data. This signal is HIGH 

when the output data is ready  
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3.3 Transmitter Simulation 

After simulating encoder and parallel to shift 

register, the transmitter is simulated and results are 

shown in figure 7.  The transmitter reset, using the 

reset signal „reset‟. This resets the transmitter to the 

default value “00000”.  The encoder encodes a k-bit 

data set to n=2k-1 bits of the orthogonal code and 

the shift register transforms this code to a serial data 

in order to be transmitted. The transmitter is then 

enabled using the signal „data_rdy‟. This signal is 

HIGH when the data is ready. For example, the 5-

bit data “00001” is encoded to 

“0101010101010101” 16-bit orthogonal code. The 

generated orthogonal code is then transmitted 

serially using a shift register with the rising edge of 

the clock. The bits are outputted through a signal 

„data_out‟. The signal „data_out_rdy‟ is using to 

indicate the availability of output data. This signal 

is HIGH when the output data is ready. 

 

 

Figure 7. Simulated result of Transmitter 

3.4 Serial to Parallel Shift Register Simulation 

The sub module of receiver, serial to parallel 

shift register is simulated and shown in figure 8. 

The shift register reset, using the reset signal 

„reset‟. This resets the shift register to the default 

value “0000000000000000”. The shift register is 

then enabled using the signal „data_rdy‟. This 

signal is HIGH when the data is ready. The input 

data bits are serially loaded into a temporary 

register „shft_reg‟ with the rising edge of the clock 

signal. After the final input bit is clocked in the 

signal „cnt‟ is greater than “10000”. 

 

Figure 8. Simulated result of serial to parallel 

shift register. 

 

When the „cnt‟ value is greater than “10000” the 

data in temporary register is available at the output 

signal „data_out‟. The signal „data_out_rdy‟ is 

using to indicate the availability of output data. 

This signal is HIGH when the output data is ready. 

 

3.5 Counter Simulation 

The simulated result of counter module is 

shown in figure 9. The counter reset, using the reset 

signal „reset‟. This resets the counter to the default 

value “00000”. The counter is then enabled using 

the signal „data_rdy‟. This signal is HIGH when the 

data is ready. The counter counts the number of 1‟s 

present in the given 16-bit data and produces the 

count value at the signal „cnt_out‟. The signal 

„cnt_rdy‟ is using to indicate the availability of 

output data. This signal is HIGH when the output 

data is ready. 

 

Figure 9. Simulated result of Counter. 

3.6 Receiver Simulation 

The receiver is simulated with its components 

such as serial to parallel converter and counter; and 

results are shown in figure 10. The receiver reset, 

using the reset signal „reset‟. This resets the 

receiver to the default value “00000”. The receiver 

is then enabled using the signal „data_rdy‟. This 

signal is HIGH when the data is ready. The 16-bit 

code at the signal „data‟ is compared with all the 
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codes in the lookup table for error detection. This is 

done by counting the number of ones in the signal 

resulting from „XOR‟ operation between the 

received code and each combination of the 

orthogonal codes in the lookup table. A counter is 

used to count the number of ones in the resulting 

16-bit signal and also searches for the minimum 

count. However a value rather than zero shows an 

error in the received code. The orthogonal code in 

the lookup table which is associated with the 

minimum count is the closest match for the 

corrupted received code. The matched orthogonal 

code in the lookup table is the corrected code, 

which is then decoded to 5-bit data which is 

available at signal „data_out‟. The signal 

„data_out_rdy‟ is using to indicate the availability 

of output data. This signal is HIGH when the 

output data is ready.  

For example, if the 16-bit data is 

“0101010101010101”, is XORed with each 

combination of 16-bit orthogonal codes in the 

lookup table. The resulting 16-bit data is given as 

an input to counter. The counter counts the number 

of 1‟s in each 16-bit XORed output. The minimum 

count value is “00000” for the orthogonal code is 

“0101010101010101”. Therefore the associated 5-

bit data is “00001”. Another example, if the 16-bit 

data is “0101010101011101”, is XORed with each 

combination of 16-bit orthogonal codes in the 

lookup table. The resulting 16-bit data is given as 

an input to counter. The counter counts the number 

of 1‟s in each 16-bit XORed output. The minimum 

count value is “00001” for the orthogonal code is 

“0101010101010101”. Therefore the associated 5-

bit data is “00001”. 

 

 

Figure 10. Simulated result of receiver. 

 

 

4. Results and Discussion  

In previous section, module by module 

simulation is done. Finally transmitter and receiver 

modules are combined and simulated.  figure 11 

shows the RTL schematic of transmitter and 

receiver.  

 

Figure 11. RTL Schematic of transmitter and 

receiver. 

The Transmitter and Receiver reset, using the reset 

signal „reset‟. This resets the Transmitter and 

Receiver to the default value “00000”. The receiver 

is then enabled using the signal „data_rdy‟. This 

signal is HIGH when the data is ready. For 

example, the input data value “00001” labeled as 

„data‟ has been encoded to the associated 

orthogonal code “0101010101010101” labeled as 

“p_data”. The signal „p_data_rdy‟ is used to enable 

the transmission of the serial bits „p_data‟ of the 

orthogonal code with every rising edge of the 

clock. 

Upon reception, the incoming serial data is 

converted into 16-bit parallel code „p_data1‟. 

Counter is used to count the number of 1‟s after 

XOR operation between the received code and all 

combinations of orthogonal code in the lookup 

table. The signal „cnt‟ gives the minimum count of 

one‟s among them. The orthogonal code „p_data‟ 

associated with the minimum count is the closest 

match for the received code, which is then decoded 

to the final data given by signal „data_out‟. 

 

 

Figure 12.  First Case: Simulated result of 

Transmitter and Receiver. 

We have considered five cases to observe the 

output from above simulation. In first case, the 

received code has a match in the lookup table. As 

shown in figure 12, the received code is p_data1 = 

“0101010101010101”, the value of minimum count 

is “00000” and hence the received code is not 

corrupted. The code is then decoded to the 
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corresponding final data “00001” which is given by 

signal „data_out‟. 

 

 

Figure 13. Second Case: Simulated result of 

Transmitter and Receiver. 

In second case, the received code has no match in 

the lookup table. As shown in figure 13, the 

received code is p_data11 =“0101010101011101”, 

the value of minimum count is „00001‟, which 

reveals an error. The corresponding orthogonal 

code is “0101010101010101” which is the closest 

match for the received code given by the minimum 

count, and the decoded final data is “00001” ” 

which is given by signal „data_out‟. In this case the 

single bit error is detected and corrected by the 

receiver. 

 

 

Figure 14. Third Case: Simulated result of 

Transmitter and Receiver. 

In third case, the received code has no match in the 

lookup table. As shown in figure 14, the received 

code is p_data11 = “0101010100011101”, the 

value of minimum count is „00002‟, which reveals 

an error. The corresponding orthogonal code is 

“0101010101010101” which is the closest match 

for the received code given by the minimum count, 

and the decoded final data is “00001” which is 

given by signal „data_out‟. In this case the two bit 

errors are detected and corrected by the receiver. 

 

Figure 15. Fourth Case: Simulated result of 

Transmitter and Receiver. 

In fourth case, the received code has no match in 

the lookup table. As shown in figure 15, the 

received code is p_data11 = “0101010100011111”, 

the value of minimum count is „00003‟, which 

reveals an error. The corresponding orthogonal 

code is “0101010101010101” which is the closest 

match for the received code given by the minimum 

count, and the decoded final data is “00001” which 

is given by signal „data_out‟. In this case the three 

bit errors are detected and corrected by the receiver. 

In fifth case, there is more than one possibility 

of closest match in the lookup table. As shown in 

figure 16, the received code is p_data11 = 

“0101011100011111”. The value of minimum 

count is associated with more than one orthogonal 

code and thus it is not possible to determine the 

closest match in the lookup table for the received 

code. 
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Figure 16. Fifth Case: Simulated result of 

Transmitter and Receiver. 

In summary, 5-bit data is encoded into 16-bit 

orthogonal code which has 3225  combinations 

of orthogonal code. Therefore, out of 65,536 

possible combinations of 16-bit received code the 

receiver will not able to detect error in those codes 

which are one of the combinations of orthogonal 

code. The detection percentage for 16-bit 

orthogonal code is estimated to be 99.95% which is 

able to correct three bit error.  

5. Conclusion 
In present paper, FPGA implementation of 

orthogonal code convolution is presented to ensure 

the efficient digital communication. This work 

involved the implementation of various modules of 

the transmitter and receiver using VHDL. A fully 

synthesizable HDL code was written to ensure that 

the design was feasible. This orthogonal code 

implementation has improved the error detection 

upto 99.9% for 16-bit coding. It is noted that with 

this method, the transmitter does not have to send 

the parity bit since the parity bit is known to be 

always zero. Therefore, if there is a transmission 

error, the receiver will be able to detect it by 

generating a parity bit at the receiving end. Finally, 

this work has the future scope of further 

improvement in orthogonal coding for large digital 

data processing.  
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