
FPGA Implementation of Efficient Pipelined

CORDIC Processor for DSP Applications

Dickson Warepam
Dept. of Instrumentation and Electronics Engineering

Dayananda Sagar College of Engineering

Bangalore, India

U. S. Pavitha

Dept. of Instrumentation and Electronics Engineering

Dayananda Sagar College of Engineering

Bangalore, India

Abstract— The CORDIC processor plays a vital role in real

time Digital signal processing applications where it reduces the

complexity in terms of area and speed. The traditional CORDIC

Processors are based on basic algorithm where the ranges of

angle calculations are limited. In this paper, we modify the

existing CORDIC architecture to compute for angles 0 to 360

degrees. The modified CORDIC is designed by using pre-

processing block with existing CORDIC block. The comparator

is used as pre-processing unit to calculate angles greater than

90° by using trigonometric functions. The output of the

comparator is fed to CORDIC unit to obtain the values of Sin θ

and Cos θ for angle 0° to 360° and also the CORDIC

architecture is modified for pipelining design path. The

proposed CORDIC can be used for signal processing

applications for angle requirements of 0 to 360 degrees.

Keywords—CORDIC processor, Pre-processing block,

Pipelining design etc.

I. INTRODUCTION

CORDIC is an acronym for Coordinate Rotation Digital

computer. CORDIC algorithm is used in various applications

such as Fast Fourier transform, SVD, and evaluating

trigonometric functions. In digital signal processing,

microprocessors are often not fast enough for truly

demanding DSP tasks. Algorithm optimized for these

microprocessor based systems do not usually map well into

hardware. CORDIC algorithm uses reduced hardware

architecture and faster computation of the elementary

functions by using simple add-shift operations.

CORDIC algorithm was implemented for the first time by

Jack E. Volder [1] in 1959. It is an iterative algorithm for the

calculation of the rotation of a two dimensional vector in

linear, circular, or hyperbolic coordinate systems. The

rotation is carried out by means of a sequence of iterations in

each of which one rotation over a given elementary angle

(micro-rotation) is evaluated by means of addition and shift

operations. The rotated vector is scaled by a constant factor

that must be compensated. The implementations of the

CORDIC algorithm [2] have been carried out on word serial

architectures using conventional non redundant arithmetic

with radix-2 micro-rotations and fixed point internal format.

In order to extend the number of basic functions, Walter

proposed a uniform CORDIC arithmetic in 1971[3]. In 2004,

Juang and others proposed a modified CORDIC arithmetic

with paralleling, it used the methods which were binary-to-

bipolar recoding (BBR) and micro-rotation angle recoding

(MAR)[4]. The modified CORDIC arithmetic could speed up

the iterations and have a higher precision than before.

CORDIC arithmetic is an iterative algorithm for the

calculation of the rotation of a two-dimensional vector in

linear, circular and hyperbolic coordinate systems [5]. Each

system has two ways to be done which are the rotation mode

and the vectoring mode. In nowadays, the proper control of

the tradeoff between latency time and the hardware

complexity enables the designer to use higher radix CORDIC

unit in place of the conventional radix-2 CORDIC unit in

high speed application purposes. A CORDIC architecture that

suggests a circuit for scale factor correction is presented in

[6]. Some efforts have also been made to implement the

CORDIC architectures on an FPGA [7].

By making slight adjustments to the initial conditions and

the LUT values, it can be used to efficiently implement

trigonometric, hyperbolic, exponential functions, coordinate

transformations etc. using the same hardware. Since it uses

only shift-add arithmetic, the VLSI implementation of such

an algorithm is easily achievable

II. BASIC CORDIC ALGORITHM

The main objective of this algorithm is to eliminate the

ROM and a large barrel shifter in the hardware

implementation. The CORDIC algorithm operates either in,

rotation mode or vectoring mode, following linear, circular or

hyperbolic coordinate trajectories. In this paper, we focus on

rotation mode CORDIC using circular trajectory.

A. The CORDIC Algorithm

As shown in Fig. 1, the rotation of a two-dimensional

vector p0 =[x0 y0] through an angle θ, to obtain a rotated

vector pn =[xn yn] could be performed by the matrix product

,pn=Rp0, where R is the rotation matrix:

𝑹 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] (1)

By factoring out the cosine term in (1), the rotation matrix R

can be rewritten as

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

1

𝑹 = [((1 + 𝑡𝑎𝑛2 𝜃)−
1

2] [
1 −𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜃 1
] (2)

and can be interpreted asa product of a scale-factor K=

[𝟏(𝒕𝒂𝒏𝟐𝜽)−
𝟏

𝟐] with a pseudo-rotation matrix Rc , given by

𝑹𝑐 = [
1 −𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜃 1
] (3)

The pseudo-rotation operation rotates the vector by

an angle θ and changes its magnitude by a factor k = cosθ, to

produce a pseudo-rotated vector p'=Rcp0 .

To achieve simplicity of hardware realization of the

rotation, the key ideas used in CORDIC arithmetic are to (i)

decompose the rotations into a sequence of elementary

rotations through predefined angles that could be

implemented with minimum hardware cost; and (ii) to avoid

scaling, that might involve arithmetic operation, such as

square-root and division. The second idea is based on the fact

the scale-factor contains only the magnitude information but

no information about the angle of rotation.

Fig .1. Rotation of vector on a two-dimensional plane

The CORDIC algorithm performs the rotation iteratively by
breaking down the angle of rotation into a set of small pre-
defined angles, αi= arctan(2-i), so that tanαi=2-i could be
implemented in hardware by shifting through bit locations.
Instead of performing the rotation directly through an angle,
CORDIC performs it by a certain number of micro-rotations
through angle αi

 that satisfies the CORDIC convergence

theorem[8]: σi -∑ 𝜎𝑖 < 𝛼𝑛−1,⩝ 𝑖, 𝑖 = 0,1, … , 𝑛 − 2 𝑛−1
𝑗=𝑖+1 .,

where

𝜃 = ∑ 𝜎𝑖𝛼𝑖
𝑛−1
𝑖=0 (4)

 𝜎𝑖 = ±1 (5)

 But, the decomposition according to (10) could be used
only for -1.74329≤ θ ≤ 1.74329 (called the “convergence
range”)since∑ (𝛼𝑖) = 1.73296. .∞

𝑖=0 Therefore, the angular
decomposition of (10) is applicable for angles in the first and
fourth quadrants. To obtain on-the-fly decomposition of
angles into the discrete base αi, one may otherwise use the
non-restoring decomposition [9]

 ω0=0 and ωi+1 = ωi - σi.αi (6)

 with σi= 1 if and ωi ≥ 0 and σi = -1 otherwise, where the
rotation matrix for the iteration corresponding to the selected
angle is given by

 𝑅(𝑖) = 𝑘𝑖 [
1 −𝜎, 2−𝑖

𝜎, 2−𝑖 1
] (7)

Ki=(1/√1 + 2−2𝑖) being the scale-factor, and the pseudo-
rotation matrix

𝑅𝑐(𝑖) = [
1 −𝜎, 2−𝑖

𝜎, 2−𝑖 1
] (8)

Note that the pseudo-rotation matrix Rc(i) for the ith
iteration alters the magnitude of the rotated vector by a scale-

factor Ki = (1/√1 + 2−2𝑖) during the i th micro-rotation,
which is independent of the value of σi(direction of micro-
rotation) used in the angle decomposition.

Fig .2. Hardware implementation of a CORDIC

III. MODIFIED CORDIC ALGORITHM

The modified CORDIC is designed to compute angles

from 0° to 360° by using pre-processing block and existing
CORDIC block as shown in the Fig. 1a The comparator is
used as pre-processing unit for angles greater than 90° by
using trigonometric functions as shown in Fig. 1(b). The
output of the comparator is fed to CORDIC unit to obtain the
values of Sinθ and Cosθ for angle 0° to 360°. The parallel
CORDIC architecture used in modified CORDIC unit is
shown in Fig. 2.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

2

 Fig.3. Modified CORDIC

As to operate from 0 to ± 3600, the comparator output is
given from 0 to 900

Fig.4. Pre-processing Unit

IV. HARDWARE IMPLEMENTATION

In this type of architecture, all the iterations take place in a

single clock cycle. The architecture is shown below figure 5.

Fig .5. Parallel CORDIC Architecture

 It has considerable delay, but processing time is reduced as
compared to the iterative process. Shifters are of fixed size

and so can be implemented in the wiring. Constants can be
hardwired instead of requiring storage space.

The basic CORDIC equations are given in equation xi+1 =
xi ± yi. di. 2−i (9)

 yi+1 = yi ± x. di. 2−i (10)

 𝑧𝑖+1 = 𝑧𝑖 − 𝑑𝑖 . tan−1(2−𝑖) (11)

Where 𝑑𝑖 = −1 if 𝑧𝑖 is negative (-ve)

 𝑑𝑖 = +1 if 𝑧𝑖 is positive (+ve)

 K~1.6467605 is called scaling factor.

 The equation (2) is modified by eliminating 2−i
term using equation (3) which reduces the hardware
requirements.

 xi+1 = xi ± yi. di. (≫ i) (12)
 yi+1 = yi ± x. di. (≫ i) (13)

V. FPGA IMPLEMENTATION AND COMPARISON

The proposed hardware architectures is being coded and

synthesized using Xilinx ISE 14.5. On comparing the

proposed method with the existing techniques, the proposed

technique has certain advantage and in some area it is more

efficient. The comparison is shown in the following table

TABLE I. COMPARISION WITH EXISTING TECHNIQUE

 Existing algorithm Proposed algorithm

Range of angle -99.9o to +99.9o 0 to ±360

Radix 4 2

frequency 155.174 MHz >300 MHz

Error 10% 3-6%

VI. CONCLUSION

The CORDIC algorithm is a powerful and widely used tool

for DSP applications. So, the implementation of DSP using

CORDIC algorithm on FPGA is the need of the day as the

FPGAs can give enhanced speed at low cost with a lot of

flexibility. This is due to the fact that the hardware

implementation of a lot of multipliers can be done on FPGA.

The operation with angle from 0 to ± 360 degree is possible.

REFERENCES

[1] J. E. Volder, “The CORDIC trigonometric computing technique,” IRE

Trans. Electron. Computers, Vol. EC-8, pp. 330–334, Sept. 1959.

[2] J.R. Cavallaro and F.T. Luk, “CORDIC Arithmetic for an SVD
Processor,” J. Parallel and Distributed Computing, No. 5, pp. 271-
290,1988.

[3] Walther J S. “A unified algorithm for elementary functions” Spring
Joint Computer Conference, New York, USA. 1971, pp.297–385.

[4] Juang T B, Hsaio S F, Tsai M Y. Para-CORDIC: Parallel CORDIC
rotation algorithm. Circuits and Systems: Regular Papers, 2004, 51(8):
1515–1524.

[5] Kaushik B, Rakesh B., “Architectural design and FPGA
implementation of radix-4 CORDIC processor”, Microprocessors and
Microsystems, 2010: 96–101.

[6] M.G.B. Sumanasena, “A scale factor correction scheme for the
CORDIC algorithm”, IEEE Transactions on Computers, Vol. 57, pp.
1148–1152, 2008.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

3

[7] F.Angarita, A. Perez-Pascual, T. Sansaloni, and J. Valls. “Efficient
FPGA implementation of CORDIC algorithm for circular and linear
coordinates”. In Proc. 2005 IEEE Int. Conf. Field Prog. Logic Appl.,
pp. 535–538, 2005.

[8] J. S. Walther, “A unified algorithm for elementary functions,” in
 Proc. 38th Spring Joint Computer Conf., Atlantic City, NJ, 1971, pp.

 379–385.

[9] D. Timmermann, H. Hahn, and B. J. Hosticka, “Low latency time

 CORDIC algorithms,” IEEE Trans. Computers, vol. 41, no. 8, pp.

 1010–1015, Aug. 1992.

[10] J. S.Walther, “The story of unified CORDIC,” J. VLSI Signal Process.,

vol. 25, no. 2, pp. 107–112, June 2000

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

4

