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Abstract 

This paper presents an implementation of a 

deterministic BIST technique on FPGA that 

can efficiently achieve complete fault coverage 

without using any storage devices. A novel test 

structure containing a self feedback logic unit 

and a circular shift register is proposed and 

the self feedback logic unit to generate a set of 

seed patterns based on responses of some pre 

selected internal nets .This seed patterns are 

then used to generate all required test patterns 

through a circular shift register .It is notice 

that the self feedback logic unit requires large 

routing area, when internal nets connects to 

the self feedback logic. For the reduction of 

routing area we use arbitrary formulae at the 

internal connections. 
 

1. Introduction 

             Logic Built-In Self-Test (BIST) has been shown 

to be an effective design for testability (DFT) technique 

in which some on-chip test structure is used to test the 

digital circuit itself [1]. Pseudo-random testing based on 

linear feedback shift registers (LFSRs) is commonly 

used as the basis of BIST due to its simplicity and 

effectiveness. However a complex circuit often contains 

some hard-to-detect faults that are random-pattern 

resistant and thus a pseudo random test scheme usually 

requires long time to reach satisfactory fault coverage.  
To address this problem, in literature several 

techniques have been proposed. The weighted random 

test method [1] is presented to enhance the detectability 

of hard-to-detect faults. This technique may require 

long test time for a circuit containing many hard-to-

detect faults. The mixed-mode BIST technique [1] takes 

advantages of both pseudo random and deterministic 

patterns to achieve complete fault coverage in a short 

time. To carry out the test process, complicated control 

may be required to switch between different test modes, 

loading required seeds and/or reconfiguring some 

specific mapping logic. 
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In alternative logic BIST methods are proposed that 

use simple control logic to generate only deterministic 
patterns without pseudo-random ones. In twisted-ring 

counters (TRC) along with some reseeding logic are 

employed to generate the required patterns. Simple 

finite state diagram based control is used to load seed 

patterns to the TRC and to perform the TRC operations 

to generate additional patterns. The required seed 

patterns can be stored in an on-chip ROM or provided 

by an external tester. A large number of patterns are 

generated from a seed pattern so as to reduce the 

number of required seeds. Though the control is simple, 

this technique may require long test time to achieve 

100% fault coverage if the length of the TRC is large. 

In [5] a hybrid BIST using partially rotational scan is 

proposed in which a scan chain is divided into multiple 

segments, each of which can independently perform 

rotation operations. The required patterns for complete 

fault coverage are generated based on a given set of 

seeds that can be shifted to the scan chain by an 

external tester and then rotated within each segment. 

Since only shifting and rotation operations are required, 

the test control is also simple. However it may still 

require long test time if a large number of shifting and 

rotation operations have to be performed.  
Some techniques use circuit responses to generate 

the required deterministic patterns. The circular self-

test scheme replaces each primary IO with a special 

BIST cell and connects them together with the internal 

scan cells to form a long circular self-test path. Both 

pattern generation and signature analysis can be done 

by the self-test path, and thus only small area overhead 

is needed. However the fault coverage may be 

degraded if some states required to detect some faults 

cannot be reached by the self-test path. To address this 

issue a jumping logic that can change the contents of 

the scan register to any state is proposed, by which all 

the desired patterns can be generated efficiently. 

Authors propose to connect some internal nets of the 

circuit under test (CUT) to its inputs so as to provide 

the required logic values of the next pattern directly. By 

exploring the relation between the responses of internal 

nets and a pre-computed test set, this method aims to 

generate a series of deterministic patterns that contain 
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compatible with the pre-computed ones. However, since 

the test set is pre-defined, it is difficult to identify a set 

of connections that can generate all required patterns. 

To get high enough fault coverage, different sets of 

connections, each with a specific initial pattern, are 

required. Therefore the area overhead can be high. All 

of the above methods need either on-chip ROM or 

external testers to provide the required seed patterns or 

some input patterns. In this work we propose a 

deterministic BIST scheme that requires no storage 

device. A novel self-feedback logic unit along with a 

circular shift register design is employed to generate the 

required patterns. Unlike the work in  which selects 

patterns from a given test set and tries to identify a set 

of internal nets to provide the required logic values, we 

develop an efficient method to generate effective test 

patterns (seeds) based on the current circuit responses. 

These patterns are then used to regenerate more patterns 

through a circular shift register. Experimental results 

show that our method can achieve 100% stuck-at fault 

coverage using much fewer test cycles than those in [2] 

and [5]. On average 92.27% and 88.05% test cycle 

reductions can be achieved compared with [2] and [5], 

respectively. The comparison also shows that we can 

use much lower area overhead and comparable test time 

to reach complete fault coverage. In the rest of this 

paper we first describe the proposed BIST architecture 

in Section 2. The method to generate all test patterns 

and to determine the associated hardware configurations 

is then detailed in Section 3. Section 4 provides the 

experimental results along with the comparisons with 

previous work. Finally, this paper is concluded in 

Section 5. 
 

2 .The Proposed BIST Architecture 

 
 

As shown in Figure 1 the proposed BIST 

architecture consists of a self-feedback logic unit (SFL), 

a circular shift register (CSR), a response monitor and 

an on-chip BIST control unit. The SFL along with the 

CSR are used to generate all the required test patterns, 

and the response monitor is employed to capture the test 

responses. The whole test procedure is managed by the 

control unit.  
In our BIST architecture all the primary inputs and 

scan cells of a CUT are serially connected to form the 

CSR. During test application an initial pattern stored in 

the CSR is circularly shifted (rotated) by one bit per test 

cycle. Thus up to n-1 additional test patterns can be 

generated if the length of the CSR is n. However it 

should be pointed out that in our architecture full 

rotation is not always required for each initial pattern. 

In other words, each initial pattern can have its own 

rotation number in order to reach 100% fault coverage 

in a shorter time. Due to this novel feature, much fewer 

test cycles are required than previous work [2-5] that 

uses a fixed number of shift or rotation cycles for each 

initial pattern or seed.  
The required initial patterns for the CSR can be 

generated by simply resetting the CSR or through the 

SFL based on the current responses of some pre-

determined internal nets. In the latter case, some logic 

operations of the response bits are employed to change 

the state of the CSR directly. In this work unary logic 

operations including no-operation, inversion, short-to-

VDD and short-to-GND, and binary ones including 

and/or, and/nor and xor/xnor are considered. 

Throughout this paper we shall define each such a logic 

operation of response bit(s) as one feedback candidate. 

Some related definitions are also given: a set of 

feedback candidates that together can provide the 

required logic values of an initial pattern is defined as a 

configuration; a pattern generated by the SFL via a 

configuration is defined as a feedback pattern, the set 

containing all feedback patterns is called the feedback 

test set, and a pattern generated by a rotation operation 

based on a feedback pattern is defined as a rotation 

pattern. To generate all required feedback patterns we 

may require multiple configurations. In this work one 

configuration may be reused to generate multiple 

feedback patterns so as to reduce the area overhead.  

 

 

  Figure 1: proposed BIST architecture 
 

A control unit is employed to control the switching 

between the self-feedback mode and the circular 

shifting mode as well as to control the selection of 

different configurations. Thus the complexity of the 

control unit depends on 1) the frequency of the 

switching between the two modes and 2) the number of 

configurations. Next we present an efficient method 

which aims to minimize both 1) and 2) described 

above. 
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3. Test generation and configuration                      

determination 
 
           This section presents our method for test 

generation and configuration determination, which 

consists of two phases. In Phase 1, a set of feedback 

patterns are generated with full rotation consideration so 

as to drop as many easy-to-detect faults as possible. A 

predefined fault coverage value will be used as a 

criterion to determine when to stop Phase 1. If any 

faults are not detected after this phase, Phase 2 is 

executed in which a new set of feedback patterns are 

generated with variable rotation number consideration. 

The main objective of Phase 2 is to determine 

appropriate rotation numbers for each feedback pattern 

so as to minimize both test time and test control 

complexity. Note that in both phases each configuration 

will be utilized to generate multiple feedback patterns. 

 Phase 1: Feedback Pattern Generation with Full 

Rotation Consideration 

 
 

 

Figure 2: Procedure of Phase 1 
 

Figure 2 provides the procedure of Phase 1. At first 

we use an all-zero pattern as the initial pattern. We add 

this pattern to the feedback pattern set S and drop all 

faults detected by this pattern from the testable fault list 

F. Based on this pattern, we build a special data structure 

called a feedback binary tree (FBT) to record the sets of 

current available feedback candidates that can provide 

the required logic-0 and logic-1 values for the next 

feedback pattern. We will use an example shown in 

Figure 3 to illustrate how a FBT is constructed. Assume 

the CUT has 4 input pins {I1, I2, I3, I4} and 5 internal 

nets {N1, N 2, N 3, N4, N5}. For simplicity, in Figure 3 

we directly use internal net responses as feedback 

candidates without performing any logic operations. 

After applying the all-zero pattern, the FBT is built in 

which the root is linked to the all-zero pattern and the 

two leaf nodes {Class0, Class1} are linked to the set of 

feedback candidates that provide logic-0 and logic-1 

values, respectively. As indicated, since the responses 

on the nets of N4 and N5 are logic-0, the Class0 node is 

linked to the set {N4, N5}. Similarly the Class1 node is 

linked 
to the set {N1, N2, N3}.  

Next a partially-specified test set (T1) is generated 
for all remaining faults in F. This set is used to help 
determine the feedback patterns to be generated in the 
following process. We execute a circular merge 
process on T1 to generate a set of compressed patterns 
(CS1). An example to generate one compressed pattern 
is shown in Figure 4, where P2 and P 3 can be 
generated by circularly shifting P1 for one and six 
cycles, respectively. Thus the three patterns can be 
merged into one. In our procedure each pattern in CS1 
is associated with a weight which indicates the number 
of patterns that can be generated by this pattern 
through rotation operations. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Example of feedback pattern generation 

and configuration determination 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Example of the circular merge process  
 
We say that a pattern is compatible to the FBT if the 

required logic values of the pattern can be provided by 
the sets of feedback candidates linked to the FBT. 
Among those patterns in CS1 that are compatible to 
FBT, we select the one that has the maximum weight as 
the next feedback pattern. For the example in Figure 3, 
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assume now the pattern TP1=0011 is such a pattern. 
This pattern is compatible to FBT because the values of 
I1 and I2 of TP1 can be provided by any net in {N4, N5} 
and those of I3 and I4 can be provided by any net in {N1, 
N2, N3}. This pattern is then used as the first feedback 
pattern and will be applied at Cycle 2.  

Once a proper pattern in CS1 is selected, the pattern 
is added to S and removed from CS1. Next all the faults 
detected by the selected pattern and its associated 
rotation patterns are dropped. If now all testable faults 
are detected, the procedure ends. Otherwise the FBT 
will be updated based on the current test responses. 
Also refer to Figure 3. After fully rotating TP1 we will 
enter Test Cycle 5 and the responses at this cycle will 
be used to update the current FBT. Since now the logic 
value of N4 is 0, N4 is linked to a new leaf node 
Class0,0, which means N4 can provide a logic-0 value 
for generating TP 1 and a Logic-0 value for the next 
feedback pattern. Similarly N5  and {N1, N2, N3} are 
linked to new leaf nodes Class0,1 and Class1,1, 
respectively, while no net is linked to the node Class1,0. 
After  the updating of FBT, if the current fault 
coverage is equal to or greater than a predefined value 
(PDFC) then we will enter Phase 2 and the current 
FBT will be still used. Otherwise another iteration of 
Phase 1 will be started. In Figure 3, the second 
feedback pattern TP2 is selected which can be 
generated by connecting N5 to I1, N4 to I2, and any one 
net in {N1, N2, N3} to both I3 and I4. 
 
 
Phase 2: Feedback Pattern Generation with 

Variable Rotation Number Consideration 

 
 

Figure 5 presents the procedure of Phase 2. Similar 
to Phase 1, a partially specified test set, T2, for the 
remaining undetected faults is first generated. A circular 
merge process is then executed to compress T2. In this 
process we re-order patterns in T2 in order to determine 
the smallest rotation number for each pattern in CS2. 
Refer to Figure 4 again. If the patterns are re-ordered 
such that P3 is used as the initial pattern, then the other 
two patterns can be generated using only 3 rotation 
operations, comparing to the 6 rotations without pattern 
re-ordering. 

 
To simplify test control, we next divide the patterns 

in CS2 into L groups such that patterns that have the 

same or similar rotation numbers will be tentatively put 

into the same group,and the maximum of the rotation 

numbers of all patterns in the same group will be used 

as the rotation number for all patterns in that group. 

Various tentative grouping results will be evaluated 

according to their resulting numbers of test cycles, and 

the one that leads to the fewest test cycles will be 

adopted.  

 

 
 

 
To simplify test control, we next divide the patterns in 

CS2 into L groups such that patterns that have the same 

or similar rotation numbers will be tentatively put into 

the same group, and the maximum of the rotation 

numbers of all patterns in the same group will be used 

as the rotation number for all patterns in that group. 

Various tentative grouping results will be evaluated 

according to their resulting numbers of test cycles, and 

the one that leads to the fewest test cycles will be 

adopted. 
 

We next examine the group that has the smallest 

rotation number and select a pattern from the group 

using the same selection criteria as that used in Phase 

1: compatible to FBT and can generate the most 

patterns in T2 via rotation. Once one such pattern is 

identified, it is added to S and all the faults detected by 

the pattern and its associated rotation patterns are 

dropped. If now all testable faults can be detected, the 

procedure ends. Otherwise additional pattern(s) have to 

be selected. In this case if no any unselected pattern in 

the group can be generated using the current 

configuration, we start a new configuration for which 

the response of the last pattern of the current 

configuration is used as its initial pattern and a new 

FBT is built. Thus our method needs no storage space. 

On the other hand if all the patterns in the targeted 

group are already added to S, another group of patterns 

will be processed in the next iteration. 
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4. Experimental Results 
 
            Experiments using QUARTUS 12.0 targeting 

100% fault coverage. We will compare the results with 

some related work that also employs only deterministic 

patterns but needs some space to store the required seed 

patterns or initial patterns. Quartus II software improves 

FPGA designer productivity by offering a complete 

design suite of industry-leading tools and features. The 

design environment enables FPGAs designers to meet 

aggressive time-to-market goals with leading-edge 

synthesis and place-and-route algorithms, as well as 

advanced DSP design and system integration tools, and 

includes a broad portfolio of pre-verified IP cores. The 

development suite targets all aspects of the FPGA 

design process, from design entry, to timing closure to 

verificaAltera’s Quartus II software improves FPGA 

designer productivity by offering a complete design 

suite of industry-leading tools and features. 

         Here we use 92, 94, 96 and 98% and report the 

best results. In  our method can completely test all 

circuits using only l or 2 configurations and also the 

number of required feedback patterns (|S|) is small. 

 
 

      
 

    In the last column of Table 1, we provide the test 

time in our method and the comparisons with previous 

work [2] and [5] which use a fixed shift/rotation cycles 

for each initial pattern or seed. The column “RD %” 

shows the reduction in test time. On average 99.27% 

and 88.05% test time reduction can be achieved by our 

method. compares our results with the work in which 

also generates patterns based on circuit responses. As 

indicated, in most cases our method can achieve better 

(100%) fault coverage while using a smaller number of 

configurations. For some circuits the numbers of test 

cycles using our method are larger than those reported. 

 

5. Conclusions 
 

    In this paper we have developed an efficient test-

per-clock BIST technique to achieve complete fault 

coverage and implementing this on FPGA. No storage 

devices are required by this technique. We employ a 

self-feedback logic unit to generate a set of seed 

patterns based on responses of some pre-selected 

internal nets. The seed patterns are then used to 

generate all required test patterns through a circular 

shift register. An efficient method to concurrently 

determine the test patterns to be generated and the 

feedback connections is provided which results in 

much shorter test time or much smaller area overhead 

compared to previous work. 
 

Although the number of configurations is small, we 

do notice that the connections from the internal nets to 

the self-feedback logic unit still require large routing 

area. We are currently investigating this problem. 
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