
FPGA IMPLEMENTATION OF BIST WITH SELF FEEDBACK LOGIC

TO ACHIEVE COMPLETE FAULT COVERAGE

K.Veerraju

M.Tech student,

Pragathi Engineering College,

Surampalem (A.P, IND).

Abstract

This paper presents an implementation of a

deterministic BIST technique on FPGA that

can efficiently achieve complete fault coverage

without using any storage devices. A novel test

structure containing a self feedback logic unit

and a circular shift register is proposed and

the self feedback logic unit to generate a set of

seed patterns based on responses of some pre

selected internal nets .This seed patterns are

then used to generate all required test patterns

through a circular shift register .It is notice

that the self feedback logic unit requires large

routing area, when internal nets connects to

the self feedback logic. For the reduction of

routing area we use arbitrary formulae at the

internal connections.

1. Introduction

 Logic Built-In Self-Test (BIST) has been shown

to be an effective design for testability (DFT) technique

in which some on-chip test structure is used to test the

digital circuit itself [1]. Pseudo-random testing based on

linear feedback shift registers (LFSRs) is commonly

used as the basis of BIST due to its simplicity and

effectiveness. However a complex circuit often contains

some hard-to-detect faults that are random-pattern

resistant and thus a pseudo random test scheme usually

requires long time to reach satisfactory fault coverage.
To address this problem, in literature several

techniques have been proposed. The weighted random

test method [1] is presented to enhance the detectability

of hard-to-detect faults. This technique may require

long test time for a circuit containing many hard-to-

detect faults. The mixed-mode BIST technique [1] takes

advantages of both pseudo random and deterministic

patterns to achieve complete fault coverage in a short

time. To carry out the test process, complicated control

may be required to switch between different test modes,

loading required seeds and/or reconfiguring some

specific mapping logic.

D.Nagesh

Assitant Professor, Dept.of ECE

Pragathi Engineering College,

Surampalem (A.P, IND).

In alternative logic BIST methods are proposed that

use simple control logic to generate only deterministic
patterns without pseudo-random ones. In twisted-ring

counters (TRC) along with some reseeding logic are

employed to generate the required patterns. Simple

finite state diagram based control is used to load seed

patterns to the TRC and to perform the TRC operations

to generate additional patterns. The required seed

patterns can be stored in an on-chip ROM or provided

by an external tester. A large number of patterns are

generated from a seed pattern so as to reduce the

number of required seeds. Though the control is simple,

this technique may require long test time to achieve

100% fault coverage if the length of the TRC is large.

In [5] a hybrid BIST using partially rotational scan is

proposed in which a scan chain is divided into multiple

segments, each of which can independently perform

rotation operations. The required patterns for complete

fault coverage are generated based on a given set of

seeds that can be shifted to the scan chain by an

external tester and then rotated within each segment.

Since only shifting and rotation operations are required,

the test control is also simple. However it may still

require long test time if a large number of shifting and

rotation operations have to be performed.
Some techniques use circuit responses to generate

the required deterministic patterns. The circular self-

test scheme replaces each primary IO with a special

BIST cell and connects them together with the internal

scan cells to form a long circular self-test path. Both

pattern generation and signature analysis can be done

by the self-test path, and thus only small area overhead

is needed. However the fault coverage may be

degraded if some states required to detect some faults

cannot be reached by the self-test path. To address this

issue a jumping logic that can change the contents of

the scan register to any state is proposed, by which all

the desired patterns can be generated efficiently.

Authors propose to connect some internal nets of the

circuit under test (CUT) to its inputs so as to provide

the required logic values of the next pattern directly. By

exploring the relation between the responses of internal

nets and a pre-computed test set, this method aims to

generate a series of deterministic patterns that contain

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

1www.ijert.org

compatible with the pre-computed ones. However, since

the test set is pre-defined, it is difficult to identify a set

of connections that can generate all required patterns.

To get high enough fault coverage, different sets of

connections, each with a specific initial pattern, are

required. Therefore the area overhead can be high. All

of the above methods need either on-chip ROM or

external testers to provide the required seed patterns or

some input patterns. In this work we propose a

deterministic BIST scheme that requires no storage

device. A novel self-feedback logic unit along with a

circular shift register design is employed to generate the

required patterns. Unlike the work in which selects

patterns from a given test set and tries to identify a set

of internal nets to provide the required logic values, we

develop an efficient method to generate effective test

patterns (seeds) based on the current circuit responses.

These patterns are then used to regenerate more patterns

through a circular shift register. Experimental results

show that our method can achieve 100% stuck-at fault

coverage using much fewer test cycles than those in [2]

and [5]. On average 92.27% and 88.05% test cycle

reductions can be achieved compared with [2] and [5],

respectively. The comparison also shows that we can

use much lower area overhead and comparable test time

to reach complete fault coverage. In the rest of this

paper we first describe the proposed BIST architecture

in Section 2. The method to generate all test patterns

and to determine the associated hardware configurations

is then detailed in Section 3. Section 4 provides the

experimental results along with the comparisons with

previous work. Finally, this paper is concluded in

Section 5.

2 .The Proposed BIST Architecture

As shown in Figure 1 the proposed BIST

architecture consists of a self-feedback logic unit (SFL),

a circular shift register (CSR), a response monitor and

an on-chip BIST control unit. The SFL along with the

CSR are used to generate all the required test patterns,

and the response monitor is employed to capture the test

responses. The whole test procedure is managed by the

control unit.
In our BIST architecture all the primary inputs and

scan cells of a CUT are serially connected to form the

CSR. During test application an initial pattern stored in

the CSR is circularly shifted (rotated) by one bit per test

cycle. Thus up to n-1 additional test patterns can be

generated if the length of the CSR is n. However it

should be pointed out that in our architecture full

rotation is not always required for each initial pattern.

In other words, each initial pattern can have its own

rotation number in order to reach 100% fault coverage

in a shorter time. Due to this novel feature, much fewer

test cycles are required than previous work [2-5] that

uses a fixed number of shift or rotation cycles for each

initial pattern or seed.
The required initial patterns for the CSR can be

generated by simply resetting the CSR or through the

SFL based on the current responses of some pre-

determined internal nets. In the latter case, some logic

operations of the response bits are employed to change

the state of the CSR directly. In this work unary logic

operations including no-operation, inversion, short-to-

VDD and short-to-GND, and binary ones including

and/or, and/nor and xor/xnor are considered.

Throughout this paper we shall define each such a logic

operation of response bit(s) as one feedback candidate.

Some related definitions are also given: a set of

feedback candidates that together can provide the

required logic values of an initial pattern is defined as a

configuration; a pattern generated by the SFL via a

configuration is defined as a feedback pattern, the set

containing all feedback patterns is called the feedback

test set, and a pattern generated by a rotation operation

based on a feedback pattern is defined as a rotation

pattern. To generate all required feedback patterns we

may require multiple configurations. In this work one

configuration may be reused to generate multiple

feedback patterns so as to reduce the area overhead.

 Figure 1: proposed BIST architecture

A control unit is employed to control the switching

between the self-feedback mode and the circular

shifting mode as well as to control the selection of

different configurations. Thus the complexity of the

control unit depends on 1) the frequency of the

switching between the two modes and 2) the number of

configurations. Next we present an efficient method

which aims to minimize both 1) and 2) described

above.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

2www.ijert.org

3. Test generation and configuration

determination

 This section presents our method for test

generation and configuration determination, which

consists of two phases. In Phase 1, a set of feedback

patterns are generated with full rotation consideration so

as to drop as many easy-to-detect faults as possible. A

predefined fault coverage value will be used as a

criterion to determine when to stop Phase 1. If any

faults are not detected after this phase, Phase 2 is

executed in which a new set of feedback patterns are

generated with variable rotation number consideration.

The main objective of Phase 2 is to determine

appropriate rotation numbers for each feedback pattern

so as to minimize both test time and test control

complexity. Note that in both phases each configuration

will be utilized to generate multiple feedback patterns.

 Phase 1: Feedback Pattern Generation with Full

Rotation Consideration

Figure 2: Procedure of Phase 1

Figure 2 provides the procedure of Phase 1. At first

we use an all-zero pattern as the initial pattern. We add

this pattern to the feedback pattern set S and drop all

faults detected by this pattern from the testable fault list

F. Based on this pattern, we build a special data structure

called a feedback binary tree (FBT) to record the sets of

current available feedback candidates that can provide

the required logic-0 and logic-1 values for the next

feedback pattern. We will use an example shown in

Figure 3 to illustrate how a FBT is constructed. Assume

the CUT has 4 input pins {I1, I2, I3, I4} and 5 internal

nets {N1, N 2, N 3, N4, N5}. For simplicity, in Figure 3

we directly use internal net responses as feedback

candidates without performing any logic operations.

After applying the all-zero pattern, the FBT is built in

which the root is linked to the all-zero pattern and the

two leaf nodes {Class0, Class1} are linked to the set of

feedback candidates that provide logic-0 and logic-1

values, respectively. As indicated, since the responses

on the nets of N4 and N5 are logic-0, the Class0 node is

linked to the set {N4, N5}. Similarly the Class1 node is

linked
to the set {N1, N2, N3}.

Next a partially-specified test set (T1) is generated
for all remaining faults in F. This set is used to help
determine the feedback patterns to be generated in the
following process. We execute a circular merge
process on T1 to generate a set of compressed patterns
(CS1). An example to generate one compressed pattern
is shown in Figure 4, where P2 and P 3 can be
generated by circularly shifting P1 for one and six
cycles, respectively. Thus the three patterns can be
merged into one. In our procedure each pattern in CS1
is associated with a weight which indicates the number
of patterns that can be generated by this pattern
through rotation operations.

Figure 3: Example of feedback pattern generation

and configuration determination

Figure 4: Example of the circular merge process

We say that a pattern is compatible to the FBT if the

required logic values of the pattern can be provided by
the sets of feedback candidates linked to the FBT.
Among those patterns in CS1 that are compatible to
FBT, we select the one that has the maximum weight as
the next feedback pattern. For the example in Figure 3,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

3www.ijert.org

assume now the pattern TP1=0011 is such a pattern.
This pattern is compatible to FBT because the values of
I1 and I2 of TP1 can be provided by any net in {N4, N5}
and those of I3 and I4 can be provided by any net in {N1,
N2, N3}. This pattern is then used as the first feedback
pattern and will be applied at Cycle 2.

Once a proper pattern in CS1 is selected, the pattern
is added to S and removed from CS1. Next all the faults
detected by the selected pattern and its associated
rotation patterns are dropped. If now all testable faults
are detected, the procedure ends. Otherwise the FBT
will be updated based on the current test responses.
Also refer to Figure 3. After fully rotating TP1 we will
enter Test Cycle 5 and the responses at this cycle will
be used to update the current FBT. Since now the logic
value of N4 is 0, N4 is linked to a new leaf node
Class0,0, which means N4 can provide a logic-0 value
for generating TP 1 and a Logic-0 value for the next
feedback pattern. Similarly N5 and {N1, N2, N3} are
linked to new leaf nodes Class0,1 and Class1,1,
respectively, while no net is linked to the node Class1,0.
After the updating of FBT, if the current fault
coverage is equal to or greater than a predefined value
(PDFC) then we will enter Phase 2 and the current
FBT will be still used. Otherwise another iteration of
Phase 1 will be started. In Figure 3, the second
feedback pattern TP2 is selected which can be
generated by connecting N5 to I1, N4 to I2, and any one
net in {N1, N2, N3} to both I3 and I4.

Phase 2: Feedback Pattern Generation with

Variable Rotation Number Consideration

Figure 5 presents the procedure of Phase 2. Similar
to Phase 1, a partially specified test set, T2, for the
remaining undetected faults is first generated. A circular
merge process is then executed to compress T2. In this
process we re-order patterns in T2 in order to determine
the smallest rotation number for each pattern in CS2.
Refer to Figure 4 again. If the patterns are re-ordered
such that P3 is used as the initial pattern, then the other
two patterns can be generated using only 3 rotation
operations, comparing to the 6 rotations without pattern
re-ordering.

To simplify test control, we next divide the patterns

in CS2 into L groups such that patterns that have the

same or similar rotation numbers will be tentatively put

into the same group,and the maximum of the rotation

numbers of all patterns in the same group will be used

as the rotation number for all patterns in that group.

Various tentative grouping results will be evaluated

according to their resulting numbers of test cycles, and

the one that leads to the fewest test cycles will be

adopted.

To simplify test control, we next divide the patterns in

CS2 into L groups such that patterns that have the same

or similar rotation numbers will be tentatively put into

the same group, and the maximum of the rotation

numbers of all patterns in the same group will be used

as the rotation number for all patterns in that group.

Various tentative grouping results will be evaluated

according to their resulting numbers of test cycles, and

the one that leads to the fewest test cycles will be

adopted.

We next examine the group that has the smallest

rotation number and select a pattern from the group

using the same selection criteria as that used in Phase

1: compatible to FBT and can generate the most

patterns in T2 via rotation. Once one such pattern is

identified, it is added to S and all the faults detected by

the pattern and its associated rotation patterns are

dropped. If now all testable faults can be detected, the

procedure ends. Otherwise additional pattern(s) have to

be selected. In this case if no any unselected pattern in

the group can be generated using the current

configuration, we start a new configuration for which

the response of the last pattern of the current

configuration is used as its initial pattern and a new

FBT is built. Thus our method needs no storage space.

On the other hand if all the patterns in the targeted

group are already added to S, another group of patterns

will be processed in the next iteration.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

4www.ijert.org

4. Experimental Results

 Experiments using QUARTUS 12.0 targeting

100% fault coverage. We will compare the results with

some related work that also employs only deterministic

patterns but needs some space to store the required seed

patterns or initial patterns. Quartus II software improves

FPGA designer productivity by offering a complete

design suite of industry-leading tools and features. The

design environment enables FPGAs designers to meet

aggressive time-to-market goals with leading-edge

synthesis and place-and-route algorithms, as well as

advanced DSP design and system integration tools, and

includes a broad portfolio of pre-verified IP cores. The

development suite targets all aspects of the FPGA

design process, from design entry, to timing closure to

verificaAltera’s Quartus II software improves FPGA

designer productivity by offering a complete design

suite of industry-leading tools and features.

 Here we use 92, 94, 96 and 98% and report the

best results. In our method can completely test all

circuits using only l or 2 configurations and also the

number of required feedback patterns (|S|) is small.

 In the last column of Table 1, we provide the test

time in our method and the comparisons with previous

work [2] and [5] which use a fixed shift/rotation cycles

for each initial pattern or seed. The column “RD %”

shows the reduction in test time. On average 99.27%

and 88.05% test time reduction can be achieved by our

method. compares our results with the work in which

also generates patterns based on circuit responses. As

indicated, in most cases our method can achieve better

(100%) fault coverage while using a smaller number of

configurations. For some circuits the numbers of test

cycles using our method are larger than those reported.

5. Conclusions

 In this paper we have developed an efficient test-

per-clock BIST technique to achieve complete fault

coverage and implementing this on FPGA. No storage

devices are required by this technique. We employ a

self-feedback logic unit to generate a set of seed

patterns based on responses of some pre-selected

internal nets. The seed patterns are then used to

generate all required test patterns through a circular

shift register. An efficient method to concurrently

determine the test patterns to be generated and the

feedback connections is provided which results in

much shorter test time or much smaller area overhead

compared to previous work.

Although the number of configurations is small, we

do notice that the connections from the internal nets to

the self-feedback logic unit still require large routing

area. We are currently investigating this problem.

References

[1] L.T. Wang, C.W. Wu, and X. Wen, VLSI Test

Principles and Architectures: Design for

Testability, Morgan Kaufmann, 2006.

[2] K. Chakrabarty, B. T. Murray and V. Iyengar,
"Built-in test generation for high-performance
circuits using twisted-ring counters," in Proc. VLSI
Test Symp., pp. 22-27, 1999.

[3] S. Swaminathan and K. Chakrabarty, "On using

twisted-ring counters for test set embedding in

BIST," Journal of Electronic Testing-Theory &

Applications 17(6), pp. 529-542, 2001.
[4] B. Zhou, Y.-Z. Ye, Z.-L. Li, J.-W. Zhang, X.-C.

Wu and R. Ke, "A test set embedding approach

based on twisted-ring counter with few seeds,"

Integration VLSI Journal 43(1), pp. 81-100, 2010.
[5] K. Ichino, T. Asakawa, S. Fukumoto, K. Iwasaki

and S. Kajihara, "Hybrid BIST using partially
rotational scan," in Proc. Asian Test Symp., pp.
379-384, 2001.

[6] A. Krasniewski and S. Pilarski, “Circuilar self-test
path: A low-cost BIST technique for VLSI
circuits,” IEEE Trans. on CAD 8(1), pp. 46-55,
1989.

[7] J.Carletta and C.Papachristou, "Structural

constraints for circular self-test paths," in Proc. of

VLSI Test Symp., 1994, pp. 87-92.

[8] W. Ke, H. Yu and Li Xiaowei, “Deterministic

Circular Self Test Path,” Tsinghua Science and

Tech.12(1), pp. 20-25, 2007.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

5www.ijert.org

