International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 1 Issue 7, September - 2012

FPGA IMPLEMENTATION OF BIST WITH SELF FEEDBACK LOGIC
TO ACHIEVE COMPLETE FAULT COVERAGE

K.Veerraju
M.Tech student,
Pragathi Engineering College,
Surampalem (A.P, IND).

Abstract

This paper presents an implementation of a
deterministic BIST technique on FPGA that
can efficiently achieve complete fault coverage
without using any storage devices. A novel test
structure containing a self feedback logic unit
and a circular shift register is proposed and
the self feedback logic unit to generate a set of
seed patterns based on responses of some pre
selected internal nets .This seed patterns are
then used to generate all required test patterns
through a circular shift register .It is notice
that the self feedback logic unit requires large
routing area, when internal nets connects to
the self feedback logic. For the reduction of
routing area we use arbitrary formulae at the
internal connections.

1. Introduction
Logic Built-In Self-Test (BIST) has been shown

to be an effective design for testability (DFT) technique
in which some on-chip test structure is used to test the
digital circuit itself [1]. Pseudo-random testing based on
linear feedback shift registers (LFSRs) is commonly
used as the basis of BIST due to its simplicity and
effectiveness. However a complex circuit often contains
some hard-to-detect faults that are random-pattern
resistant and thus a pseudo random test scheme usually
requires long time to reach satisfactory fault coverage.

To address this problem, in literature several
techniques have been proposed. The weighted random
test method [1] is presented to enhance the detectability
of hard-to-detect faults. This technique may require
long test time for a circuit containing many hard-to-
detect faults. The mixed-mode BIST technique [1] takes
advantages of both pseudo random and deterministic
patterns to achieve complete fault coverage in a short
time. To carry out the test process, complicated control
may be required to switch between different test modes,
loading required seeds and/or reconfiguring some
specific mapping logic.

D.Nagesh
Assitant Professor, Dept.of ECE
Pragathi Engineering College,
Surampalem (A.P, IND).

In alternative logic BIST methods are proposed that
use simple control logic to generate only deterministic
patterns without pseudo-random ones. In twisted-ring
counters (TRC) along with some reseeding logic are
employed to generate the required patterns. Simple
finite state diagram based control is used to load seed
patterns to the TRC and to perform the TRC operations
to generate additional patterns. The required seed
patterns can be stored in an on-chip ROM or provided
by an external tester. A large number of patterns are
generated from a seed pattern so as to reduce the
number of required seeds. Though the control is simple,
this technique may require long test time to achieve
100% fault coverage if the length of the TRC is large.
In [5] a hybrid BIST using partially rotational scan is
proposed in which a scan chain is divided into multiple
segments, each of which can independently perform
rotation operations. The required patterns for complete
fault coverage are generated based on a given set of
seeds that can be shifted to the scan chain by an
external tester and then rotated within each segment.
Since only shifting and rotation operations are required,
the test control is also simple. However it may still
require long test time if a large number of shifting and
rotation operations have to be performed.

Some techniques use circuit responses to generate
the required deterministic patterns. The circular self-
test scheme replaces each primary 10 with a special
BIST cell and connects them together with the internal
scan cells to form a long circular self-test path. Both
pattern generation and signature analysis can be done
by the self-test path, and thus only small area overhead
is needed. However the fault coverage may be
degraded if some states required to detect some faults
cannot be reached by the self-test path. To address this
issue a jumping logic that can change the contents of
the scan register to any state is proposed, by which all
the desired patterns can be generated efficiently.
Authors propose to connect some internal nets of the
circuit under test (CUT) to its inputs so as to provide
the required logic values of the next pattern directly. By
exploring the relation between the responses of internal
nets and a pre-computed test set, this method aims to
generate a series of deterministic patterns that contain

www.ijert.org

compatible with the pre-computed ones. However, since
the test set is pre-defined, it is difficult to identify a set
of connections that can generate all required patterns.
To get high enough fault coverage, different sets of
connections, each with a specific initial pattern, are
required. Therefore the area overhead can be high. All
of the above methods need either on-chip ROM or
external testers to provide the required seed patterns or
some input patterns. In this work we propose a
deterministic BIST scheme that requires no storage
device. A novel self-feedback logic unit along with a
circular shift register design is employed to generate the
required patterns. Unlike the work in which selects
patterns from a given test set and tries to identify a set
of internal nets to provide the required logic values, we
develop an efficient method to generate effective test
patterns (seeds) based on the current circuit responses.
These patterns are then used to regenerate more patterns
through a circular shift register. Experimental results
show that our method can achieve 100% stuck-at fault
coverage using much fewer test cycles than those in [2]
and [5]. On average 92.27% and 88.05% test cycle
reductions can be achieved compared with [2] and [5],
respectively. The comparison also shows that we can
use much lower area overhead and comparable test time
to reach complete fault coverage. In the rest of this
paper we first describe the proposed BIST architecture
in Section 2. The method to generate all test patterns
and to determine the associated hardware configurations
is then detailed in Section 3. Section 4 provides the
experimental results along with the comparisons with
previous work. Finally, this paper is concluded in
Section 5.

2 .The Proposed BIST Architecture

As shown in Figure 1 the proposed BIST
architecture consists of a self-feedback logic unit (SFL),
a circular shift register (CSR), a response monitor and
an on-chip BIST control unit. The SFL along with the
CSR are used to generate all the required test patterns,
and the response monitor is employed to capture the test
responses. The whole test procedure is managed by the
control unit.

In our BIST architecture all the primary inputs and
scan cells of a CUT are serially connected to form the
CSR. During test application an initial pattern stored in
the CSR is circularly shifted (rotated) by one bit per test
cycle. Thus up to n-1 additional test patterns can be
generated if the length of the CSR is n. However it
should be pointed out that in our architecture full
rotation is not always required for each initial pattern.
In other words, each initial pattern can have its own

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 1 Issue 7, September - 2012

rotation number in order to reach 100% fault coverage
in a shorter time. Due to this novel feature, much fewer
test cycles are required than previous work [2-5] that
uses a fixed number of shift or rotation cycles for each
initial pattern or seed.

The required initial patterns for the CSR can be
generated by simply resetting the CSR or through the
SFL based on the current responses of some pre-
determined internal nets. In the latter case, some logic
operations of the response bits are employed to change
the state of the CSR directly. In this work unary logic
operations including no-operation, inversion, short-to-
VDD and short-to-GND, and binary ones including
and/or, and/nor and xor/xnor are considered.
Throughout this paper we shall define each such a logic
operation of response bit(s) as one feedback candidate.
Some related definitions are also given: a set of
feedback candidates that together can provide the
required logic values of an initial pattern is defined as a
configuration; a pattern generated by the SFL via a
configuration is defined as a feedback pattern, the set
containing all feedback patterns is called the feedback
test set, and a pattern generated by a rotation operation
based on a feedback pattern is defined as a rotation
pattern. To generate all required feedback patterns we
may require multiple configurations. In this work one
configuration may be reused to generate multiple
feedback patterns so as to reduce the area overhead.

SelfFeedback
» LogicUnit || Control
(SFL) Unit
|

Circular Shift Register
(CSR)

!

— Circuit Under Test
! .

Response Monitor

Figure 1: proposed BIST architecture

A control unit is employed to control the switching
between the self-feedback mode and the circular
shifting mode as well as to control the selection of
different configurations. Thus the complexity of the
control unit depends on 1) the frequency of the
switching between the two modes and 2) the number of
configurations. Next we present an efficient method
which aims to minimize both 1) and 2) described
above.

www.ijert.org

3. Test generation and configuration
determination

This section presents our method for test
generation and configuration determination, which
consists of two phases. In Phase 1, a set of feedback
patterns are generated with full rotation consideration so
as to drop as many easy-to-detect faults as possible. A
predefined fault coverage value will be used as a
criterion to determine when to stop Phase 1. If any
faults are not detected after this phase, Phase 2 is
executed in which a new set of feedback patterns are
generated with variable rotation number consideration.
The main objective of Phase 2 is to determine
appropriate rotation numbers for each feedback pattern
so as to minimize both test time and test control
complexity. Note that in both phases each configuration
will be utilized to generate multiple feedback patterns.
Phase 1: Feedback Pattern Generation with Full
Rotation Consideration

List ofleslilble faults, F

Add an alkzero pattern to the
generated test S, and drop all
detected faults by this pattern form 7*

Build a feedback binary tree FBT I

Generate a partially-specified test
set T for F

Perform circular-merge process to
generated a compressed test set CS;

-t

Any pattern in S,
compatible to current

Select the compatible pattern that
can generate the mast patterns in
T via full rotation

Add the selected pattern 1wl
remove it from CS,

v
Drup all detected Faults ln the
selected pattera from F

Fault
v
<_coverage=100
G

Figure 2: Procedure of Phase 1

Figure 2 provides the procedure of Phase 1. At first
we use an all-zero pattern as the initial pattern. We add
this pattern to the feedback pattern set S and drop all
faults detected by this pattern from the testable fault list
F. Based on this pattern, we build a special data structure
called a feedback binary tree (FBT) to record the sets of
current available feedback candidates that can provide
the required logic-0 and logic-1 values for the next

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 1 Issue 7, September - 2012

feedback pattern. We will use an example shown in
Figure 3 to illustrate how a FBT is constructed. Assume
the CUT has 4 input pins {ly, I,, I3, I;} and 5 internal
nets {N1, N 5, N 3, N4, N5s}. For simplicity, in Figure 3
we directly use internal net responses as feedback
candidates without performing any logic operations.
After applying the all-zero pattern, the FBT is built in
which the root is linked to the all-zero pattern and the
two leaf nodes {Class,, Class;} are linked to the set of
feedback candidates that provide logic-0 and logic-1
values, respectively. As indicated, since the responses
on the nets of N, and N5 are logic-0, the Class, node is
linked to the set {N4, Ns}. Similarly the Class; node is
linked

to the set {N;, N,, N3}.

Next a partially-specified test set (T,) is generated
for all remaining faults in F. This set is used to help
determine the feedback patterns to be generated in the
following process. We execute a circular merge
process on T, to generate a set of compressed patterns
(CSy). An example to generate one compressed pattern
is shown in Figure 4, where P, and P 3 can be
generated by circularly shifting P, for one and six
cycles, respectively. Thus the three patterns can be
merged into one. In our procedure each pattern in CS;
is associated with a weight which indicates the number
of patterns that can be generated by this pattern
through rotation operations.

Test Test Internal net @ Inital
Cycle Pattern responses configuration
/1 |Classg

et dy g [N N N N N o @ A

1 11100 i cl /s |Class;
assg 288 /: |Class;
TP,ILO 01101100 ={N:, N5} =Ny, N, N3}
3/1001(0 1100
4/1100{1 1001 @ Updated
‘ configuration
i01 10/11 1101 o o Classy
TP;l6 10111 0111 /2 |Classpp
. IONOIORO)
— /s |Class;
8(1110/1 0010
Classyp Classy; Class;p Class;
9 »0 111110 11 =M} =M ={) ={Ny, Nz, N3}

Figure 3: Example of feedback pattern generation
and configuration determination

Test Circular Shift
cycle Register
P, OXIXX101 —=1 0X1XX101
Py 10X11X10 =2 10X1XX10
P; 1X01010X 3 FVOIOXIXXI
4 1010X1XX
5 X1010X1X
6 XX1010X1
7 1XX1010X
8 [XIXX1010
Figure 4: Example of the circular merge process

We say that a pattern is compatible to the FBT if the
required logic values of the pattern can be provided by
the sets of feedback candidates linked to the FBT.
Among those patterns in CS; that are compatible to
FBT, we select the one that has the maximum weight as
the next feedback pattern. For the example in Figure 3,

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 1 Issue 7, September - 2012

assume now the pattern TP,=0011 is such a pattern.
This pattern is compatible to FBT because the values of
I, and 1, of TP, can be provided by any net in {Ng4, N5}
and those of |5 and I, can be provided by any net in {N;,
N,, N3}. This pattern is then used as the first feedback
pattern and will be applied at Cycle 2.

Once a proper pattern in CS; is selected, the pattern
is added to S and removed from CS;. Next all the faults
detected by the selected pattern and its associated
rotation patterns are dropped. If now all testable faults
are detected, the procedure ends. Otherwise the FBT
will be updated based on the current test responses.
Also refer to Figure 3. After fully rotating TP, we will
enter Test Cycle 5 and the responses at this cycle will
be used to update the current FBT. Since now the logic
value of N4 is 0, N, is linked to a new leaf node
Classg o, which means N, can provide a logic-0 value
for generating TP ; and a Logic-0 value for the next
feedback pattern. Similarly N5 and {N;, N,, N3} are
linked to new leaf nodes Classy; and Class,,
respectively, while no net is linked to the node Class, .
After the updating of FBT, if the current fault
coverage is equal to or greater than a predefined value
(PDFC) then we will enter Phase 2 and the current
FBT will be still used. Otherwise another iteration of
Phase 1 will be started. In Figure 3, the second
feedback pattern TP, is selected which can be
generated by connecting N5 to I3, N4 to I,, and any one
net in {N;, N,, N3} to both I3 and I,.

Phase 2: Feedback Pattern Generation with
Variable Rotation Number Consideration

Figure 5 presents the procedure of Phase 2. Similar
to Phase 1, a partially specified test set, T,, for the
remaining undetected faults is first generated. A circular
merge process is then executed to compress T,. In this
process we re-order patterns in T, in order to determine
the smallest rotation number for each pattern in CS..
Refer to Figure 4 again. If the patterns are re-ordered
such that P5 is used as the initial pattern, then the other
two patterns can be generated using only 3 rotation
operations, comparing to the 6 rotations without pattern
re-ordering.

To simplify test control, we next divide the patterns
in CS, into L groups such that patterns that have the
same or similar rotation numbers will be tentatively put
into the same group,and the maximum of the rotation
numbers of all patterns in the same group will be used
as the rotation number for all patterns in that group.
Various tentative grouping results will be evaluated
according to their resulting numbers of test cycles, and
the one that leads to the fewest test cycles will be
adopted.

’ Generate a partially-specified test
set 7; for

Perform circular-merge process to generate
a compressed test set CS: and determine the
associated rotation numbers

Perform pattern grouping process to
divide patterns in CS:to L groups

Select a groupin CS: that has the I
smallest rotation number i

Any pattern in the
selected group compatible

to current FBT?

d a

Any unselected~
pattern in the
group?

Select the compatible pattern that
can generate the most patterns in
T, via the determined rotations

Update FBT

Add the selected pattern to S, and
remove it from CS,

Drop all detected faults by the
selected pattern from F

Fault

¥
coverage=100
Y?

Figure 5: Procedure of Phase 2

To simplify test control, we next divide the patterns in
CS, into L groups such that patterns that have the same
or similar rotation numbers will be tentatively put into
the same group, and the maximum of the rotation
numbers of all patterns in the same group will be used
as the rotation number for all patterns in that group.
Various tentative grouping results will be evaluated
according to their resulting numbers of test cycles, and
the one that leads to the fewest test cycles will be
adopted.

We next examine the group that has the smallest
rotation number and select a pattern from the group
using the same selection criteria as that used in Phase
1: compatible to FBT and can generate the most
patterns in T, via rotation. Once one such pattern is
identified, it is added to S and all the faults detected by
the pattern and its associated rotation patterns are
dropped. If now all testable faults can be detected, the
procedure ends. Otherwise additional pattern(s) have to
be selected. In this case if no any unselected pattern in
the group can be generated using the current
configuration, we start a new configuration for which
the response of the last pattern of the current
configuration is used as its initial pattern and a new
FBT is built. Thus our method needs no storage space.
On the other hand if all the patterns in the targeted
group are already added to S, another group of patterns
will be processed in the next iteration.

www.ijert.org

4. Experimental Results

Experiments using QUARTUS 12.0 targeting
100% fault coverage. We will compare the results with
some related work that also employs only deterministic
patterns but needs some space to store the required seed
patterns or initial patterns. Quartus Il software improves
FPGA designer productivity by offering a complete
design suite of industry-leading tools and features. The
design environment enables FPGAs designers to meet
aggressive time-to-market goals with leading-edge
synthesis and place-and-route algorithms, as well as
advanced DSP design and system integration tools, and
includes a broad portfolio of pre-verified IP cores. The
development suite targets all aspects of the FPGA
design process, from design entry, to timing closure to
verificaAltera’s Quartus II software improves FPGA
designer productivity by offering a complete design
suite of industry-leading tools and features.

Here we use 92, 94, 96 and 98% and report the
best results. In our method can completely test all
circuits using only | or 2 configurations and also the
number of required feedback patterns (|S]) is small.

I bare LB

fie EE Vo Aid e Tok Wk

-]
T
1 O |

BREnERE P 53075 Dekze 3
Tl Wanae

Tdoman., | o {al

In the last column of Table 1, we provide the test
time in our method and the comparisons with previous
work [2] and [5] which use a fixed shift/rotation cycles
for each initial pattern or seed. The column “RD %”
shows the reduction in test time. On average 99.27%
and 88.05% test time reduction can be achieved by our
method. compares our results with the work in which
also generates patterns based on circuit responses. As
indicated, in most cases our method can achieve better

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 1 Issue 7, September - 2012

(100%) fault coverage while using a smaller number of
configurations. For some circuits the numbers of test
cycles using our method are larger than those reported.

5. Conclusions

In this paper we have developed an efficient test-
per-clock BIST technique to achieve complete fault
coverage and implementing this on FPGA. No storage
devices are required by this technique. We employ a
self-feedback logic unit to generate a set of seed
patterns based on responses of some pre-selected
internal nets. The seed patterns are then used to
generate all required test patterns through a circular
shift register. An efficient method to concurrently
determine the test patterns to be generated and the
feedback connections is provided which results in
much shorter test time or much smaller area overhead
compared to previous work.

Although the number of configurations is small, we
do notice that the connections from the internal nets to
the self-feedback logic unit still require large routing
area. We are currently investigating this problem.

References

[1] L.T. Wang, C.W. Wu, and X. Wen, VLSI Test
Principles and Architectures: Design for
Testability, Morgan Kaufmann, 2006.

[2] K. Chakrabarty, B. T. Murray and V. lyengar,
"Built-in test generation for high-performance
circuits using twisted-ring counters," in Proc. VLSI
Test Symp., pp. 22-27, 1999.

[3] S. Swaminathan and K. Chakrabarty, "On using
twisted-ring counters for test set embedding in
BIST," Journal of Electronic Testing-Theory &
Applications 17(6), pp. 529-542, 2001.

[4] B. Zhou, Y.-Z. Ye, Z.-L. Li, J.-W. Zhang, X.-C.
Wu and R. Ke, "A test set embedding approach
based on twisted-ring counter with few seeds,"
Integration VVLSI Journal 43(1), pp. 81-100, 2010.

[5] K. Ichino, T. Asakawa, S. Fukumoto, K. lwasaki
and S. Kajihara, "Hybrid BIST using partially
rotational scan,” in Proc. Asian Test Symp., pp.
379-384, 2001.

[6] A. Krasniewski and S. Pilarski, “Circuilar self-test
path: A low-cost BIST technique for VLSI
circuits,” IEEE Trans. on CAD 8(1), pp. 46-55,
1989.

[7] J.Carletta and C.Papachristou, "Structural
constraints for circular self-test paths,” in Proc. of
VLSI Test Symp., 1994, pp. 87-92.

[8]W. Ke, H. Yu and Li Xiaowei, “Deterministic
Circular Self Test Path,” Tsinghua Science and
Tech.12(1), pp. 20-25, 2007.

www.ijert.org

