
FPGA Implementation of 32-bit MIPS Processor

with CISC Multiplication Operation

Anu Mariam John
Assistant Professor,

Dept. of Electronics and Communication Engineering

Mar Baselios College of Engineering and Technology,

Thiruvananthapuram, Kerala, India

Shilpi Varshney

Senior Design Engineer,

AMD Research & Development Ctr.

India Private Limited

Mindspace – Cyberabad, Madhapur, Hyderabad

Abstract—MIPS architecture is one of the first commercially

available RISC processor. MIPS stands for ‘Microprocessor

without Interlocked Pipeline Stages’. In a normal MIPS RISC

architecture, for 32-bit multiply operation it can hold the

processor for more than 32 clock cycles, which affects the

processor performance. In order to avoid this problem, here we

have implemented 32-bit MIPS processor with one CISC

operation for multiplication which is realized using a Booth

multiplier. Processor is tested in Xilinx Nexsys Spartan3 board,

using a 177MHz clock frequency.

Keywords—MIPS, ISA, Pipeline, booth multiplier

I. INTRODUCTION

 The Arithmetic and Logic Unit is the most important part
of a processor, which executes all the arithmetic and logical
operations. To make a processor with lighter hardware, the
Arithmetic and Logic Unit(ALU) should be simple. But the
instructions like multiply and divide takes many clock cycles
with normal ALU. So it is better to implement those
instructions separately with a dedicated hardware.

This paper implements a 32-bit 5-stage RISC Processor,
with one CISC operation, which is implemented using Booth
Multiplication Algorithm. This algorithm uses less number of
cycles for execution than normal multipliers. A dedicated
ALU is designed, for realizing the booth multiplier. The
normal ALU does all other operations except multiplication.

Processor is designed using Verilog (IEEE 1364)
Hardware Description Language (HDL) language. The design
is synthesized in Xilinx ISE design suite 12.4. For
implementing the processor, Xilinx Nexsys Spartan-3E board
with FG320 package has been used.

The paper is organized as follows: Section II gives an
Introduction to MIPS processor; Section III explains MIPS
pipeline architecture and Instruction Set Architecture. In
Section IV CISC Operation-multiplication algorithm is given.
Section V deals with the FPGA Implementation of the
proposed design. Section VI gives Simulation results and
Section VII: conclusion and future scope.

II. MIPS PROCESSOR

 MIPS processor, designed in 1984 by researchers at
Stanford University, is typically a Reduced Instruction Set
Computer (RISC) with Harvard architecture. Here we have
implemented a 32-bit processor which follows MIPS

Instruction Set architecture (ISA). Along with this 32-bit
RISC processor, a CISC operation - multiplication have been
incorporated, with normal ALU operation.

 RISC processors typically support fewer and much
simpler instructions. RISC architecture has a simpler
hardware compared to CISC. The CISC operation adds more
hardware to the design. Even if it increases hardware
complexity, it reduces number of cycles required to execute a
multiplication operation.

 The ISA has 32-bit instructions, with 5-bit opcode, 5-bit
each for registers and rest of the bits are for shift amount and
function value in the case of R-type instructions, 16-bit data
in the case of I-type instructions, and Jump address for J-type
instructions.

 The instruction execution in a processor can be split into a
number of stages. As shown in Fig.1, in a MIPS processor
there are 5 stages:

1. The Instruction Fetch stage fetches the next instruction
from memory using the address in the Program
Counter (PC) register and stores this instruction in the
Instruction Register (IR).

2. The Instruction Decode stage decodes the instruction
in the IR, calculates the next PC, and reads any
operands required from the register file.

3. The Execute stage executes the above decoded
instruction. ALU units are there in the execute stage.

4. The Memory Access stage performs any memory
access required by the current instruction. For load
instruction, it is to load an operand from the memory.
For store instruction, it is to store an operand into
memory.

5. For instructions that have a result which have to be
written into a register, the Write Back writes this
result back to the register file.

Fig. 1. 5-stage MIPS Processor

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110636

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

675

III. MIPS PIPELINE ARCHITECTURE AND INSTRUCTION SET

ARCHITECTURE

Pipelining is a method used to improve processor
performance. Pipeline reduces the number of processor cycles
needed to execute a set of instructions. Pipelining is
incorporated with 5-stage MIPS processor architecture to
improve its performance.

A. MIPS Pipelined Architecture

Instructions are first stored in the instruction memory.
Based on the PC value, processor selects the instruction from
the memory and passes it on to Decode Issue environment,
which will decode the instruction into Operation code,
Operand register and Destination register. Next, it will take
the value from corresponding registers, and gives to the ALU
for execution.

There are 2 ALUs in our proposed processor:

 First one is ‘Dedicated ALU’ for Multiplication
Operation. When ALU is executing multiplication
operation, it will hold all other instruction for 4 processor
clock cycles. This multiplication operation is
implemented using Booth Algorithm. This is for the
CISC operation.

 Second ALU is for all other instructions (ADD, SUB,
AND, OR , NOR, NAND, XOR, Shift Left and Shift
Right).

After this it will Write-Back to the respective destination
Registers, as given in the instruction.

For special Instructions, it does the following:

 For J-type instructions, this will take the 26-bit
address and left shift it by 2, to make it 28 bit (this is
done to make it into a word format).

 For Load and Store instructions, address is calculated
by the ALU and is given to the PC.

Fig. 2. Implementation Approach

B. Instruction Set Architecture(ISA)

Here we have implemented R-type, I-type and J-type
instructions.

1) R-type Instruction: Register type instructions are one

which takes the operands from registers and write the result

back to a register. Format of the register instruction is as

shown in Fig. 3.

In Fig. 3, Opcode stands for operation code of the instruction.

Rs and Rt are source registers. Shamt is the shift amount and

Functval stands for function value.

2) I-type and J-type Instruction: I-type is immediate

instruction and J-type is Jump instruction. Format of the I-type

instruction is shown in Fig. 4. and J-type is in Fig. 5. The

instruction set is given in Table II and III for I-type and J-

type respectively.

Fig. 3. R-type Instruction Format

Fig. 4. I-type Instruction Format

Fig. 5. J-type Instruction Format

TABLE I.

R-TYPE INSTRUCTIONS

Sl.No.

Instruction

Action

Opcode

Functval

1

ADD $s1,$s2,$s3

$s3$s1+$s2

000000

000001

2

SUB $s1,$s2,$s3

$s3$s1-$s2

000000

000010

3

MUL

$s1,$s2,$s3

$s3$s1*$s2

000000

000011

4

AND $s1,$s2,$s3

$s3$s1 (AND)$s2

000000

000100

5

OR $s1,$s2,$s3

$s3$s1 (OR) $s2

000000

000101

6

NOR $s1,$s2,$s3

$s3$s1 (NOR) $s2

000000

000110

7

NAND
$s1,$s2,$s3

$s3$s1 (NAND)
$s2

000000

000111

8

XOR $s1,$s2,$s3

$s3$s1 (XOR) $s2

000000

001000

9

DIV $s1,$s2,$s3

$s3$s1 / $s2

000000

001001

10

SLT $s1,$s2,$s3

Set s3 if s1<s2

000000

001010

Opcode Rs Rt Rd Shamt Functval

31 26 25 21 20 16 15 11 10 6 5 0

Opcode Rs Rd I-data

31 26 25 21 20 16 15 0

Opcode J-address of 26 bits

31 26 25 0

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110636

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

676

TABLE II. I-TYPE INSTRUCTIONS

Sl.No. Instruction Action Opcode

1. ADDI $s1,$s2,100 $s2$s1+100 000001

2. SUBI $s1,$s2,100 $s2$s1-100 000010

3. MULI $s1,$s2,100 $s2$s1*100 0000 11

4. ANDI $s1,$s2,100 $s2$s1 (AND) 100 000100

5. ORI $s1,$s2,100 $s2$s1 (OR) 100 000101

6. NORI $s1,$s2,100 $s2$s1 (NOR) 100 000110

7. NANDI $s1,$s2,100 $s2$s1 (NAND) 100 000111

8. XORI $s1,$s2,100 $s2$s1 (XOR) 100 001000

9. DIVI $s1,$s2,100 $s2$s1 / 100 001001

10. SLTI $s1,$s2,100 Set s2 if s1<100 001010

13. BEQ $s1,$s2,25 Go to location $s2 if s1=25 001101

14. BNE $s1,$s2,25 Go to location $s2 if

s1!=25

001110

15. BGT $s1,$s2,25 Go to location $s2 if s1>25 001111

16. BLT $s1,$s2,25 Go to location $s2 if s1<25 010000

17. SLL $s1,$s2,03 Shift Left Logical

$s2$s1<<3

010001

18. SRL $s1,$s2,03 Shift Right Logical
$s2$s1>>3

010010

TABLE III. J-TYPE INSTRUCTIONS

Sl.No. Instruction Action Opcode

1. J 2500 Jump to PC <= 2500 010011

2. JAL 2591 Jump to PC <= 2591, $ra = $ra
+4 , SP [$ra] = Old PC value ; { $ra is

address of stack pointer }

010100

3. JR $ra PC <= SP[$ra] ; $ra = $ra - 4 010101

IV. CISC OPERATION- MULTIPLICATION

Here the CISC operation- multiplication is implemented
using Booth multiplication algorithm. Booth’s multiplication
algorithm implements 32-bit signed binary number
multiplication using 2’s compliment method. Booth
multiplier architecture is shown in Fig. 6.

Booth's algorithm is implemented by repeatedly adding
values A and S to a product P and then performing a shift
right operation. Let m1 and m2 be the multiplicand and
multiplier, respectively; and let n1 and n2 represent the
number of bits in m1 and m2.

Step 1: First determine the value of A, S and P. Length of
each of them is n1 + n2 + 1 .

A: Fill the most significant bits with value of m1 and the
remaining (n2 + 1) bits with zeros.

S: Fill the most significant bits with 2’s compliment of m1
and remaining bits with zeros.

P: Fill the most significant n1 bits with zeros, append the
value of m2 to the right and fill the last bit with zero.

Step 2: Following operations are performed based on the two
least significant bits of P:

01: Find P + A. Ignore any overflow.

10: Find P + S. Ignore any overflow.

00: Use P directly in the next step.

11: Use P directly in the next step

Step 3: Right shift one place, the value obtained in the 2nd
step and assign the value to P.

Step 4: Repeat steps 2 and 3 for n2 times.

Step 5: Drop the least significant bit from P to obtain the final
product of m1 * m2.

Fig. 6. Multiplier Architecture

V. FPGA IMPLEMENTATION

The above proposed 32-bit MIPS processor with one
CISC operation, is implemented in Verilog language and
finally emulated in Xilinx Nexsys Spartan 3E series FPGA.
The different steps involved in mapping the Verilog source
code are Synthesis, Translate, Map, Place & Route and
finally generating the Bit file. These steps are carried out
using Xilinx ISE Design Suite 12.4. Finally Functional
verification is done and the waveforms are obtained in Xilinx
ISIM.

The processor is tested at a maximum clock frequency of
177.336MHz (5.639ns time period) and verified the ISA. Fig.
7 shows how the proposed processor is connected to input-
output pins of FPGA.

In FPGA implementation, the output of Processor is
written into a Block RAM. Then from the Block RAM output
is read using an External Clock, and given to an on-board 7-
segment display.

Fig. 7. Procssor connected with Spartan3 FPGA

VI. SIMULATION RESULTS

The proposed design is simulated Xilinx ISE and ISIM.
Design emulation is done after obtaining the Bit-file from
Xilinx ISE and dumping that to the target FPGA. The outputs
are connected to the on-board 7-segment display of the target
FPGA (Spartan3E).

Here we are demonstrating the simulation result for a
Fibonacci series test. Fibonacci series is obtained by writing
code using instructions in ISA. Following are the instructions
that are placed in the Instruction memory:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110636

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

677

0: data = 32'd1;

4: data = {6’d0, `Reg1, `Reg0, `Reg3, 5'd0, 6'd1};

8: data = {6’d0, `Reg3, `Reg1, `Reg4, 5'd0, 6'd1};

12: data = {6’d0, `Reg3, `Reg4, `Reg5, 5'd0, 6'd1};

16: data = {6’d0, `Reg5, `Reg4, `Reg6, 5'd0, 6'd1};

20: data = {6’d0, `Reg5, `Reg6, `Reg7, 5'd0, 6'd1};

24: data = {6’d0, `Reg6, `Reg7, `Reg5, 5'd0, 6'd1};

28: data = {6’d0, `Reg5, `Reg7, `Reg1, 5'd0, 6'd1};

32: data = {6’d0, `Reg1, `Reg5, `Reg4, 5'd0, 6'd1};

36: data = {6’d0, `Reg1, `Reg4, `Reg5, 5'd0, 6'd1};

In the above code 0, 4, 8… 36 are PC values. The output
obtained will be 1, 2, 3, 5, 8, 13, 21, 34, and 55. The initial
values that are loaded into the Reg0 and Reg1 are 0 and 1
respectively. Fig. 8 shows the simulation waveform obtained
for Fibonacci series test. Fig. 9 shows a multiplication
instruction output which was implemented using a Booth
multiplier.

The 32-bit MIPS processor with one CISC operation is
verified using appropriate test cases. For this we did
functional verification and then FPGA emulation, for each
testcases.

The FPGA hardware utilized by the processor design are
given in Table.IV.

A. Authors and Affiliations

Fig. 8. Output waveform for Fibanocci Series test

Fig. 9. Output waveform for a multiplication operation performed using a

Booth multiplier

TABLE IV. FPGA HARDWARE UTILIZED BY THE DESIGN

Hardware units in
FPGA

Number
occupied

Total number of
units

Percentage
Utilized

Slices

403

4656

8%

Slice Flip Flops

494

9312

5%

4 input LUT

502

9312

5%

Bounded IOBs

98

232

42%

VII. CONCLUSION AND FUTURE SCOPE

In this paper we presented a 32-bit MIPS Processor with a
CISC operation- multiplication. Typically a MIPS processor
follows RISC architecture. Here we implemented the
Multiplication operation using a 32-bit booth multiplier,
which completes multiplication in 4 processor cycles. This
greatly enhances the processor speed, whenever we need to
execute a multiply instruction. But the disadvantage with this
CISC operation is it increases the hardware complexity of the
processor.

We implemented the processor design in Verilog

Hardware Description Language (HDL) and verified the
results in Xilinx Nexsys Spartan3E board. The design is
verified at a maximum clock speed of 177MHz.

Usually in a processor design, the scope of parallelism is

limited due to some data and control hazards. These data

hazards are Read after Write (RAW), Write after Read

(WAR) and Write after Write (WAW). These data hazards

can be solved using Dynamic Scheduling algorithm. So it is

always better to incorporate Dynamic Scheduling with a 32-

bit processor, so that overall speed of the processor will be

enhanced.

REFERENCES

[1]

David A. Patterson John L. Hennessey ,Computer architecture: a
quantitative approach, 3rd edition, Morgan Kaufmann Publishers.

[2]

Balaji valli, A. Uday Kumar, B.Vijay Bhaskar, “FPGA implementation
and functional verification of a pipelined MIPS

processor”

,

International Journal Of Computational Engineering Research
(ijceronline.com) Vol. 2 Issue. 5.

[3]

Paresh Kumar Pasayat, Manoranjan Pradhan, Bhupesh Kumar Pasayat
“ FPGA based implementation of 8-bit ALU of a RISC

processor

using Booth”, International Journal of Engineering Research &
Technology (IJERT),Vol. 2 Issue 8, August –

2013.

[4]

Marri Mounika,, Aleti Shankar

“Design & Implementation Of 32-Bit

Risc (MIPS) Processor”

International Journal of Engineering Trends
and Technology (IJETT) –

Volume 4 Issue 10 -

Oct 2013.

[5]

MIPS® Architecture for Programmers Volume II-B: The
microMIPS32™ Instruction Set, Revision 3.05 April 04, 2011.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110636

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

678

