
FPGA Based Pipelined Controller Design and

Implementation

Vaibbhav Taraate ,
 Senior Design Engineer RV VLSI Design Center

Bangalore Karnataka

Abstract— The proposed architecture is for the design,

development and implementation of a 16-bit 4 stage pipelined

Reduced Instruction Set Computer (RISC) IP core. In this

paper it is represented as pipelined controller. It is observed that

the pipelined architecture is efficient and by micro-architecture

tweaking the execution time can be reduced for the pipelined

instruction execution. The architecture presented in this paper is

designed by using mainly three units and they are instruction

memory, data memory and pipelined controller. The pipelined

controller is designed by using four units and they are fetch unit,

decode unit, execute unit and internal register unit. The major

emphasis of this paper is to design and implement the 4 stage

pipelined controller on FPGA. The pipelined controller design is

implemented using Verilog RTL. In addition to the pipelined

feature the design is having programmable register selections

and data transfer mechanism. The pipelined controller is

synthesized using Altera Quartus II and verified by using

QuestaSim. The design is implemented by using Altera Cyclone

II FPGA EP2C20F484C7

Keywords—FPGA, Verilog, pipelining, Resource Sharing,

Logic Duplication., Opcode, RISC

I. INTRODUCTION

The design with microcontroller has the advantages and these

are reduction in overall cost due to integration of peripherals

into a single chip, the product is small size, easy to

troubleshoot as well as maintaining, it can be expandable by

having on-chip RAM, ROM and I/O ports if required

additional memories can be added externally. One of the

main aspects of the architecture is the design of instruction

set for the Controller. Here the proposed RISC controller

which is efficient for specific and suitable applications and

can be used as IP core with suitable timing signals for small

applications.

The pipelined architecture executes the instructions in

pipelined manner. During the first clock cycle the instruction

is fetched from the instruction memory and during the second

clock cycle the fetched instruction is decoded and also

another instruction is fetched from the instruction memory.

So it is overlapping the decode cycle of first instruction over

fetch cycle of next immediate instruction. Now during the

third clock cycle the first fetched instruction is executed, the

second fetched instruction is decoded and third instruction is

fetched. So at the end of fourth cycle one instruction will be

executed.

But in non-pipelined architecture the instructions are

executed in a sequence. The pipelined architecture involves

clock latency but speed of design is high as compare to non-

pipelined architecture. In other terms it improves overall

performance of the design and throughput, which is termed as

the speed of execution of the processor [5].

 The paper presents very simple 16 bit 4 stage pipelined

controller on FPGA. The major objective is to design the

architecture, micro-architecture and implement design to

perform the instructions listed in section II on FPGA for

target operating frequency of 50 MHz

The paper is organized as follows. There are seven sections in

this paper, section I describes the introduction, section II

describes the instructions. Section III describes about the

architecture, pin description, opcode and register addressing.

Section IV describes about the micro-architecture and the

instruction execution in pipelined manner. Section V

describes the RTL Coding, synthesis and Verification

aspects; Section VI describes the implementation results.

Finally conclusion and future work in section VII.

II. INSTRUCTIONS

I. nop: Don‟t perform any operation

II. move [source1] [destination]: Transfer the contents of

register pointed by source1 to destination.

III. add [source1] [source2] [destination]: Addition of the

contents of registers pointed by source1 and source2

and stores the result in the register pointed by

destination address.

IV. sub [source1] [source2] [destination]: Subtraction of

the contents of registers pointed by source1 and

source2 and stores the result in the register pointed by

destination address.

V. mult [source1] [source2] [destination]: Multiplication

of the contents of registers pointed by source1 and

source2 and stores the result in the register pointed by

destination address.

VI. cjeq [source1] [source2] [code] Compare the contents

of registers pointed by source1 and source2 and jump

if equal to the location pointed by code.

VII. loadi [value] [destination]: Load the data value in the

register pointed by destination address.

VIII. readi [destination] : Read the contents of register

pointed by destination address

.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100863

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

1174

III. ARCHITECTURE

The pipelined controller consists of instruction memory, data

memory and pipelined controller. The architecture is evolved

from the design specifications. Every Controller has the

processing unit, internal register storage, and instruction

memory with instruction cache.

The pipelined processor is designed to perform the operations

on 16 bit binary inputs and has maximum 8 instructions. So it

needs 3 bit instruction code also called as Opcode. The

design has 8 internal registers of 16 bit each and to address

these registers it requires 3 bit address. The processor

operates on 16 bit data input and generates the 16 bit or 32 bit

result depending on the operation performed.

The top level architecture is shown in the Figure 1 and it

consists of pipelined Controller, instruction memory and data

memory. The major emphasis of this paper is to describe the

micro-architecture of pipelined controller and to implement

the pipelined controller on FPGA.

Figure 1: Architecture of Pipelined Controller

A. Pin Description

The Table 1 gives information about the pin/signals of the

pipelined controller.

Sr. No. Pin/Signal Description

1 instr[2:0] Three bit opcode to
perform maximum 8

instructions

2 source1[2:0] Three bit address of

internal register bank

3 source2[2:0] Three bit address of

internal register bank

4 destination[2:0] Three bit address of
internal register bank

5 data[15:0] 16-bit data input to

pipelined controller for load
instruction

6 jump One bit output from

controller to enable jump

7 result[31:0] 32 bit output from
pipelined Controller.

8 clk Input Clock signal

9 reset_n Active low asynchronous

reset

Table 1: Pin/Signal Description

B. Instruction Definition

The Table 2 gives information about the operational code

(Opcode) for the eight instructions respectively. As

maximum instructions defined for the said design are 8, it

uses 3-bit Opcode.

Sr. No. Instruction opcode

1 nop 000

2 move 001

3 add 010

4 sub 011

5 mult 100

6 loadi 101

7 readi 110

8 cjeq 111

Table 2: Opcode

C. Register Addressing

The Table 3 describes about the register addresses for

source1, source2 and destination. For the design only 8

registers are used and it requires 3-bit address.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100863

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

1175

Sr. No. Source1/source2/destination Register Name

1 000 A

2 001 B

3 010 C

4 011 D

5 100 E

6 101 H

7 110 L

8 111 W

Table3: Register Addressing

IV. MICRO-ARCHITECTURE

The Micro-architecture for pipelined processor is derived

from the architecture. The micro-architecture is detail low

level abstraction of architecture. For the pipelined

processor shown in Figure 1, the micro-architecture is

derived to implement the required instructions with four

stage pipeline. The Micro- architecture sub blocks are:

fetch, decode, execute and Internal Register unit and are

shown in Figure 2.

 Fetch Unit: It interfaces with the external instruction

cache and instruction module. This module

receives the 3 bit instruction opcode and data

required for execution of the instruction. This unit

also has interface with internal register unit. This

unit also enables the communication between the

internal register unit and execute unit.

 Decode Unit: It decodes the signals received from

the fetch unit and passes to the execute block at

the next clock cycle. For the instructions add,

sub, mult, cjea, readi this block takes one extra

clock cycle. During this it is required to pass the

values from internal register block to execute

block.

 Internal Register Unit: This block is used to hold the

data and it consists of 8 registers (A, B, C, D, E,

H, L, W) each of 16 bit. It interfaces the fetch

unit with execution unit. It accepts signals from

the fetch unit and drives the data required to the

execute unit. After completion of execution of

instruction, it also receives the signals from the

execute unit.

 Execute Unit: This unit is responsible for the

execution of the instruction depending on the

operational code. For example for sub instruction

the contents of [source1] and, [source2] are

subtracted and the results are stored in internal

register block pointed by [destination]

 Figure2 describes the micro-architecture for the pipelined

Controller [Note: It is assumed that all the units shown in

the Figure 2 has synchronous clock signal „clk‟ and

asynchronous active low reset signal „reset_n‟]

Figure 2: Micro-

Architecture for

Pipelined Controller

As shown in the architecture the instruction passes through

fetch, decode, internal register unit and execute units. For

example consider the execution of following instructions:

add B,C,A

add D,E,W

loadi FFh H

readi A

The above instructions are executed in pipelined manner as

shown in Table4 below:

Clock

Fetch Unit

Decode

Unit

Execute

Unit

Internal

Register Unit

I

add B,C,A

II

add D,E,W

add

B,C,A

III

loadi FFh H

add

D,E,W

add

B,C,A

IV

readi

A

loadi FFh

H

add

D,E,W

add B,C,A

V

readi

A

loadi FFh

H

add D,E,W

VI

readi

A

loadi FFh H

VII

readi

A

Table 4: Instruction Execution

V.

RTL

CODING

VERIFICATION

AND

SYNTHESIS

The major challenge is to write an efficient RTL Verilog

code for the micro-

architecture shown in Figure 2. The

RTL is implemented for the individual functional block of

the pipelined controller by using Verilog RTL and

following are key considerations while synthesizing the

design

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100863

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

1176

a. Use of efficient area/resources of FPGA: For area

optimization the resource sharing and logic

duplication techniques are used. These techniques are

proven to be very powerful while implementing the

multiplier block and even for overall design [2]. Due

to use of effective resource sharing the area had

reduced by almost around 1% from initial device

utilization value. It is observed that the resource

sharing technique is very effective for the design of

multiplier.

b. Use of Registered inputs and registered Outputs: The

registered inputs and outputs increase the number of

sequential cells but it provides the proper register to

register path and encourages the pipelining. It is

observed that the pipelining technique improves the

speed of design at the cost of latency [3].

c. Functional Verification: The functional verification of

individual block is carried out by QuestaSim for the

coverage target of 98%. The overall coverage

achieved is 98%.

d. Constraining Design: The design is constrained for the

operating clock frequency of 50MHz and for the target

area of 4% of CYCLONE II EP2C20F484C7 [4].

e. Compilation: Compilation is performed with Top-Down

approach.

VI. IMPLEMENTATION RESULTS

Implementation is performed by using the Altera Quartus II

for the target FPGA device Cyclone II EP2C20F484C7 [4]

and following are the results shown in Table 5. For the said

implementation the low power design constraints are not

considered.

a.

Sr. No Design Parameters Result

1 Device utilization 4%

2 Timing Violation

Reported

None

3 Multicycle Paths None

4 Design Speed 50MHz

5 Data Required time 20nsec

6 Data Arrival Time 18.7nsec

Table 5: Implementation Results

VII. CONCLUSION AND FUTURE WORK

The presented architecture of 16 bit 4 stage pipelined

processor is implemented on Altera Cyclone II

EP2C20F484C7. The design is implemented by using Verilog

hardware description language and synthesized using Quartus

II . The design is verified by using QuestSim simulator. The

total available logic elements in Cyclone II EP2C20 are

around 18 K [4] and are sufficient to implement the design.

The design just utilizes only 4% of the available logic

elements for the performance of 50 MHz

The architecture can be modified by adding few additional

instructions and features. The additional features includes use

of stack pointer, program counter, flag registers, efficient

multiply and Accumulate (MAC) unit and floating point unit.

The architecture can be constrained for the low power.

ACKNOWLEDGMENT

The author would like to express sincere gratitude to

Venkatesh Prasad CEO RV VLSI for constant encouragement

and for providing the research set up with research

environment.

REFERENCES

[1] Samir Palnitkar.1996, “Verilog HDL A guide to Digital Design and

Synthesis”, SunSoft Pre

[2] D. J. Smith. (2010), “HDL Chip Design”, International Edition, Doone

Publications

[3] Wayne Wolf. 2005, “FPGA Based System Design”, Prentice Hall

[4] Altera Quartus II Software documentation www.altera.com

[5] Weng Fook Lee , “ VHDL Coding and Logic Synthesis” Academic Press

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100863

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

1177

