

FPGA-Based Parallelism For Real-Time Video Image Processing

1,2Bethord A. B .Mahundi,1Xuewen Ding
Image Processing Theatre,School of Electronics Engineering

1 Tianjin University of Technology and Education,China.
2BeM Technologies&Consultancy Center

 Abstract
Image Processing is an important part of analyzing a
scene in a video image and has application in many
areas such as security monitoring and computer
vision. It involves identifying places in an image
where there is an abrupt change in
intensity.Embedded Systems for Real-Time Video
Image Processing must perform some operations
faster than is possible since video data from a
camera consists of a sequence of many frames, each
of which is a rectangular array of many picture
elements (pixels).Applications that involve less
regularly structured data, or data that arrives at
irregular intervals, are much harder to
accelerate.We can accelerate performance of an
operation by replication of hardware (Accelerator)
resources to perform steps in parallel, up to the
limits on parallelism implied by the data
dependencies and the availability of data. It is
possible to design custom FPGA-Based hardware
(Accelerator) to provide parallelism and performing
the operation at the required speed for real-time
video image processing.

Keywords:Accelerator,Verilog,Field Programmable

Gate Array,Video Image Processing,Graphical User

Interface

1. Introduction

In recent years,much research has been performed
that relies to various degrees on video image
processing.A simple but accurate,effective and
powerful accelerator that can be easily integrated
and adapted for various applications is
needed.Also,from technological standpoint,a
flexible,has interface with camera,a link with

Finite State Machine(FSM) and interface with GUI for
controlling and monitoring the video image
processing operation.Using Field Programmable
Gate Array (FPGA) with a serial RS 232 interface to a
PC with a graphical front-end.Such a flexible
accelerator can be implemented and used in a
variety of video image processing applications.In this
paper we present the software and hardware details
for FPGA-Based Parallelism for Real-Time Video
Image Processing(Accelerator) which comprise:Image data
and datapath computation,Image data pipeline,
address generator,interfacing,Finite State Machine and
Visual Basic Graphical User Interface.

2. System Architecture

Overview

In our development system of Parallelism for Real-
Time Video Image Processing,we will adopt the
approach of reading three rows of four adjacent
pixels from the original image and storing them in
registers,rather than including memories for whole
rows.we will design the accelerator to process blocks
of data, where a block consists of the three complete
rows of the original image used to form a complete
row of the derivative image. As we will see,
processing a block involves a start-up phase, a
repetitive sequence of computation, and a
completion phase. These phases are repeated for
each derivative image row.
The architecture for the accelerator datapath is
shown in Figure 2. It is essentially a pipeline, with
pixel data read from the original image entering into
the registers at the top right, flowing through the 3 x
3 multiplier array on the left, then down through the
adders to the Dx and Dy registers, then through the
absolute value circuits and adder to the |D| register,
and finally into the register at the bottom left. The

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

resulting derivative pixels are then written from that
register to memory.(While a right-to-left data flow is
opposite to usual practice, in this case, it has the
advantage of preserving the same arrangement of
pixels as that in an image.)

 Camera

Figure 1:Parallelism for real-Time Image Processing System
Architecture Diagram

The pipeline generates the derivative pixels for a
given row in groups of four. The accelerator reads
four pixels from each of the preceding, current, and
next rows in memory into the three 32-bit registers
at the top right of the figure1. Each register consist
of four 8-bit pixel registers.Over the four subsequent
clock cycles, pixels are shifted out to the left, one
pixel at a time, into the multiplier array. Each cell in
the array contains a pixel register and one or two
circuits that multiply the stored pixel by a constant
coefficient value. Since the coefficients are all -1, +1,
-2, or +2, the circuits are not full-blown multipliers.
Instead, multiplying by -1 is simply a negator,
multiplying by +1 is a through connection with no
circuitry, multiplying by -2 is a left shift of the result
of a negator, and multiplying by +2 is simply a left
shift. On each clock cycle, the array provides the
partial products for a single derivative pixel,and the
partial products are added and stored in the Dx and
Dy registers.

Figure 2:Architecture Diagram for Accelerator datapath

Also,on each clock cycle,the Dx and Dy values for the
preceding pixel have their absolute values computed
and added and stored in the |D| register. The
resulting derivative pixel values are shifted into the
result row register. When four result pixels are ready
in the register, they are subsequently written to
memory.
In the steady state, during processing of a row, the
accelerator needs to write the pixels to memory
from the result register before it can shift new pixels
into the multiplier array and the Dx, Dy and |D|
registers. Otherwise, the result values would be
overwritten.Having written four pixels, the
accelerator can push four more pixels through the
pipeline,thus emptying the read registers and filling
the result register. It can then write those result
pixels and read in three more groups of four pixels,
and repeat the process. However, this group of four
pixel values is what we should write to the beginning
of the derivative image row.The left-most position
does not have a complete set of neighbors, so we
don’t compute a value for it.We will rely on the
embedded software to clear that pixel value to 0
subsequently.
When we reach the end of a row, we need to drain
the pipeline. Since the number of pixels in a row is a
multiple of four (640 =160X 4),we can always read
complete groups of four pixels each. After reading
the last group, we perform four computation cycles
normally. This gives us four result pixels to write, plus
three remaining pixel values in the pipeline.We wish
to finish the row by writing the four result pixels,

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

omitting the reads,performing four further
computation cycles to drain the pipeline and shift
the last pixel values into the required positions in the
result register, and performing a final write. Note
that this places an invalid value in the right-most
result pixel register. This corresponds to the right-
most pixel of a row, which does not have a complete
set of neighbors. Again,we will rely on the embedded
software to clear that pixel value to 0.

3. Implementation of Video Image
Processing Technique

A.Verilog Modeling FPGA-Based Parallelism for
Real-Time Video Image Processing

Verilog Modeling for Image Data computation
// Computational datapath
always @(posedge clk_i) // Previous row
register
if (prev_row_load) prev_row <= dat_i;
else if (shift_en) prev_row[31:8] <=
prev_row[23:0];
always @(posedge clk_i) // Current row register
if (curr_row_load) curr_row <= dat_i;
else if (shift_en) curr_row[31:8] <=
curr_row[23:0];
always @(posedge clk_i) // Next row register
if (next_row_load) next_row <= dat_i;
else if (shift_en) next_row[31:8] <=
next_row[23:0];
function [10:0] abs (input signed [10:0] x);
abs = x >= 0 ? x :-x;
endfunction

Verilog Modeling for Image data Pipeline
always @(posedge clk_i) // Computation
pipeline
if (shift_en) begin
D = abs(Dx) + abs(Dy);
abs_D <= D[10:3];
Dx <= -$signed({3'b000, O[-1][-1]}) // ®C 1 *
0[-1][-1]+ $signed({3'b000,O[-1][+1]}) // + 1 *
0[-1][+1]- ($signed({3'b000, O[0][-1]}) // ®C 2
* 0[0][-1] <<
1)+($signed({3'b000, O[0][+1]}) // + 2 *
0[0][+1]<< 1)-$signed({3'b000, O[+1][-1]}) //
®C 1 * 0[+1][-1]+$signed({3'b000, O[+1][+1]});
// + 1 * 0[+1][+1]
Dy <= $signed({3'b000, O[-1][-1]}) // + 1 * O[-
1][-1]+ ($signed({3'b000, O[-1][0]}) // + 2 * 0[-
1][0]<< 1)+ $signed({3'b000, O[-1][+1]}) // + 1
* 0[-1][+1] - $signed({3'b000, O[+1][-1]}) //
®C 1 * 0[+1][-1] - ($signed({3'b000, O[+1][0]})

// ®C 2 * 0[+1][0] << 1)
 - $signed({3'b000, O[+1][+1]}); // ®C 1 *
0[+1][+1]
O[+1][-1] <= O[+1][0];
O[+1][0] <= O[+1][+1];
O[+1][+1] <= next_row[31:24];
………
end
always @(posedge clk_i) // Result row register
begin
if (shift_en) result_row <= {result_row[23:0],
abs_D};
end

The first three always blocks in the module represent

the three registers into which groups of four pixels

are read from memory. Each block has a separate

control signal governing loading, since the registers

are loaded in successive memory read operations.

They share a control signal for shifting, since they all

shift a pixel out into the pipeline in parallel.

The next always block, represents the computational

pipeline of the accelerator. The signals to which the

block assigns, governed by the shift_en control

signal, represent the pipeline registers. The signal O

is a 3 x 3 array of pixel values, with indices

corresponding to the difference in row and column

numbers from those of the derivative pixel computed

from the register values. For example, the element

with indices [-1][+1] contains the pixel in the

previous row and next column from the pixel being

computed. Values are shifted into this array leftward

from the left-most 8 bits of each of the input registers.

The Dx and Dy values are computed from the array

element values. In each case, the values are resized to

11 bits and converted to signed numbers, as we

discussed earlier in our analysis of the precision

requirements for the computation. Multiplying by 2 is

performed with a logical shift left by one position,

and multiplying by a negative coefficient is

implemented by subtraction instead of addition. The

absolute values of the Dx and Dy values,

implemented by the abs function defined in the

module, are added, and then scaled back from 11 to 8

bits to yield the final derivative pixel value.

The remaining always block represents the register

that accumulates groups of four derivative pixels for

writing to memory. Pixels are shifted into this register

under control of the shift_en signal.

Verilog Modeling for Address Generator

There are several alternatives for deriving the read

and write addresses, including maintaining counters

for the image rows and columns. However, we can

avoid the need to multiply by 640 by counting pixel

offsets from the base addresses. In the case of the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

original image, we start counting from an offset of 0

and increment by 1 for each group of four pixels read

from memory. We add the offset to the base address

to form the pixel-group address for the previous row.

We add 640/4 to that to form the read address for the

current row, and add 1280/4 to form the read address

for the next row (assuming 00 for the least significant

bits in both cases). In the case of the derivative image,

we start counting from an offset of 640/4 and

increment by 1 for each memory write.

always @(posedge clk_i) // 0 base address register

if (base_ce_0) base_0 <= dat_i[21:2];

always @(posedge clk_i) // 0 address offset counter

if (offset_reset) offset_0 <= 0;

else if (offset_cnt_en_0) offset_0 <= offset_0 + 1;

assign prev_addr_0 = base_0 + offset_0;

assign curr_addr_0 = prev_addr_0 + 640/4;

assign next_addr_0 = prev_addr_0 + 1280/4;

……..

always @(posedge clk_i) // D base address register

if (D_base_ce) D_base <= dat_i[21:2];

always @(posedge clk_i) // D address offset counter

begin

if (offset_reset) D_offset <= 0;

else if (D_offset_cnt_en) D_offset <= D_offset + 1;

end

assign D_addr = D_base + D_offset;

assign adr_o[21:2] = prev_row_load ? prev_addr_0 :

 curr_row_load ? curr_addr_0 :

 next_row_load ? next_addr_0 :

 D_addr;

assign adr_o[1:0] = 2'b00;

……..

end

The always blocks commented as being base address

registers represent the base address registers for the

original and derivative images, respectively. The

always blocks commented as being address offset

counters represent the counters for pixel groups read

and written, respectively. The registers and counters

are governed by control signals generated by the

accelerator’s control section. The adders are

represented by the combinational assignments to the

four address signals O_prev_addr, O_curr_addr,

O_next_addr and D_addr. The assignment to the

bus address signal adr_o represents the multiplexer

that chooses among the generated addresses for

memory read and write operations.

Verilog Modeling for Control Sequencing

We also need to sequence the accelerator’s response

as a bus slave when the user through GUI writes to

the base address registers. Finally,we need to provide

for synchronization with the embedded software

controlling the accelerator. That requires some

additional control and status registers, as follows:

A control register that, when written to, causes the

accelerator to start processing an image. The value

written is ignored.

 A control register with an interrupt enable bit in bit 0.

A status register in which bit 0 is the done bit, set to 1

when the processor has completed processing an

image. Other bits are read as 0. When the done bit is

1 and the interrupt enable bit is 1, the accelerator

requests an interrupt. Reading the done bit has the

side effect of acknowledging the interrupt and

clearing the bit.

To keep the bus interface simple, we will map each of

these registers at 32-bit aligned addresses.

REGISTER OFFSET READ/WRITE

Interrupt control 0 Write-only

Start 4 Write-only

Original image

base address

8 Write-only

Derivative

image base

address

12 Write-only

Status 0 Read-only

 Table 1:Register Map for the Accelerator

In each case, the accelerator can respond by setting

ack_o to 1 in the next cycle, then back to 0 in the

following cycle. We need to decode the bus address

input to derive a select signal for the accelerator, and

use the less significant address bits to determine

which register to read or write.

In the case of a write to the start-register address,

since there is no real register,we derive a control

signal, start, that will be used by the accelerator

control section to initiate a computation sequence.

assign start = cyc_i && stb_i && we_i && adr_i ==

2'b01;

assign base_ce_0 = cyc_i && stb_i && we_i &&

adr_i == 2'b10;

assign D_base_ce = cyc_i && stb_i && we_i &&

adr_i == 2'b11;

…….

For write operations,we generate clock-enable signals

using combinational logic.. For read operations,we

form the data value to be returned to the GUI.The

only real register is the status register, for which we

return the value of the done bit,zero extended to 32

bits wide. For other register offsets, we just return all

zeros.

The read value is multiplexed with the value of the

result row register to drive the accelerator’s data

output bus, dat_o.

always @(posedge clk_i) // Interrupt enable register

if (rst_i)

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

int_en <= 1'b0;

else if (cyc_i && stb_i && we_i && adr_i == 2'b00)

int_en <= dat_i[0];

always @(posedge clk_i) // Status register

if (rst_i)

done <= 1'b0;

else if (done_set)

……

// This occurs when last write is acknowledged,

// and so cannot coincide with a read of the

// status register.

done <= 1'b1;

else if (cyc_i && stb_i && we_i && adr_i == 2'b00

&& ack_o)

done <= 1'b0;

assign int_req = int_en && done;

always @(posedge clk_i) // Generate ack output

ack_o <= cyc_i && stb_i && !ack_o;

………

// Data output multiplexer

always @(*)

begin

if (cyc_i && stb_i && !we_i)

if (adr_i == 2'b00)

dat_o = {31'b0, done}; // status register read

else

dat_o = 32'b0; // other registers read as 0

else

dat_o = result_row; // for master write

end

Finite State Machine Control an Accelerator

Verilog Modeling Finite State Machine

The control-section code includes declarations of

internal signals for the control FSM, the row and

column counters, and the control signals:

declarations of internal signals:

parameter [4:0] idle = 5'b00000,

 read_prev_0 = 5'b00001,

 ……..

reg [4:0] current_state, next_state;

reg [9:0] row; // range 0 to 477;

reg [7:0] col; // range 0 to 159;

wire start;

………

The row and column counters:

always @(posedge clk_i) // Row counter

if (row_reset) row <= 0;

else if (row_cnt_en) row <= row + 1;

always @(posedge clk_i) // Column counter

if (col_reset) col <= 0;

else if (col_cnt_en) col <= col + 1;

Blocks representing the finite-state machine:

always @(posedge clk_i) // State register

if (rst_i) current_state <= idle;

else current_state <= next_state;

A final always block combines both the state

transition function and the output function into the

one block.

always @* begin // FSM logic

offset_reset = 1'b0; row_reset = 1'b0;

col_reset = 1'b0;

row_cnt_en = 1'b0; col_cnt_en = 1'b0;

offset_cnt_en_0 = 1'b0; D_offset_cnt_en = 1'b0;

prev_row_load = 1'b0; curr_row_load = 1'b0;

………

endmodule

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 3: Register Transfer Level of the Implemented

System

B. Camera Link Interface

The camera link standard has been devised to provide

a generic 26 pin interface to a wide range of digital

camera and as such we can specify a standard

interface at the top level of my design. Although the

interface requires 26 pins, they are configured

differentially, and so we can specify the basic

interface functionally using only 11 pins.There is a

clock pin,which we can define as camera_clk,and

then 4 camera control lines defined as cc1 to cc4,

respectively. Using the ‘camera_’ prefix, we can

therefore name these as cam-

era_cc1,camera_cc2,camera_cc3 and camera_cc4.

There are two serial communication lines serTFG

(comms to frame grabber) and serTC (comms to

camera) which we can name as camera_sertfg and

camera_sertc, respectively. Finally, we have the 4

connection pins from the camera which will contain

the data from the device and these are named

camera_x0, camera_x1, camera_x2 and camera_x3.

Clearly, the actual interface requires differential

outputs, and so eventually an extra interface will be

required to translate the simple form of interface

defined here to the specific pins of the connector.

C. Windows-Based Visual Basic GUI

A versatile GUI is designed using Visual Basic to

give the user easy access to the FPGA and the

attached hardware. Graphical interface design can be

made especially easy with an integrated development

environment (IDE), such as Microsoft’s Visual

Basic .NET, which was used to design the GUI. The

code is entirely event-driven, and issues serial ASCII-

encoded commands to change and monitor register

values and variables on the FPGA according to user

command (i.e. when a button is pressed or control

value altered).

 Figure 4:Graphical User Interface for FPGA control

The GUI provides many common input methods for

changing variables. ON/OFF type functions can be

controlled via push buttons which toggle FPGA

registers on and off. The GUI also contains a

recording and configuration loading function.The

user can record a sequence of commands,objects

image,time or variable changes and save this

information to a configuration file. The file can be

sent to the database through GPRS intended to watch

transport motion, detect jams, and determine speed

violation.Also the file can then be re-opened later

which will load all of the exact same settings

instantly onto the FPGA. This is useful when an

FPGA is reprogrammed and the control code is

altered. Using the load function, the user can easily

set up the FPGA variables to the previous

configuration or any previously stored preset.

D. Hardware Demonstration

The System Architecture described at previous

section is using extensively to provide parallelism

for high speed Real-Time image Processing

applications.

 Figure 5:Hardware Implementation

Figure 5 shows the overall setup,with a Computer

controlling ALTERA CYCLONE III

EP3C26Q240C8N FPGA via RS-232.

Here we present details of application to a Road

Traffic Monitoring for watching cars motion,detect

jams,determine speed violation and recognize

License Plate Registration.The output of the system

is displayed on the visual basic GUI in figure 6

below(results section).

E. Results

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 6:Motion Tracking and Speed Measurement Display
GUI

The figure 6 above shows the captured video image
processed by the system by using the below explained
verilog algorithm of analysed the scene intensity and
coordinates and the results are displayed on the GUI.GUI
displayed the speed of the car and its location.
Motion was filmed at the same road length for some car
drives with known speeds V1<V2<V3<……<Vn.
Then every video sequence was processed to get passed
distance S dependence from frame number calculated as
asum of car displacements fixed in n previous sequence
frames.

S = a1 + a2+ a3+ . . . + an,

Where a is a distance between car image geometrical
centers in the I and i-1 frame:

ai =((xi -xi-1)
2
 +(yi-yi-1)

2
)
0.5

 Figure 7:Function of Speed Approximation

Experimental curves Si = si(n) allow to estimate a speed of
any car that moves within calibrated road segment.
Estimation is based on function v = v(s) for given frame
number n = no

 Vx=Ai*Sx+Bi, Ai=(Vi+1-Vi)/(Si+1-Si),
Bi=(Vi*Si+1-Vi+1*Si)/(Si+1-Si).
Speed meaning may be corrected by vx average for different
n0

4. Conclusion
In this paper,parallelism technique has been
implemented,which provides performance of Real-

Time video image processing operation steps in

parallel,A parallel operation scheme that

demonstrates a significant advantage over other

conventional operation methods.This technique

provides speed of processing of video image data

faster than is possible.Its operation depend on the

verilog algorithm you program to the FPGA chip.

References

[1] Douglas J Smith HDL Chip Design”A Practical guide
for designing,synthesizing and simulating ASICs and
FPGAs using VHDL or Verilog”Doone
Publications,1996,pp.195-251.
[2] M.Schlett, “Trends in Embedded Microprocessor
Design”, Computer, vol. 31, no. 8, Aug, 1998,pp.44-
49.
[3] Lipton, A.J. et al., “Moving target classification
and tracking from real-time video”,Applications of
Computer Vision, 1998,pp.8-14. WACV ’98.
Proceedings., Fourth IEEE Workshop on, 1998.
[4] S. C. Chan, et al., “A programmable image
processing
system using FPGA”
[5] Lou Tylee “Learn Visual Basic 6.0”1998,pp 7-10.
[6] www.altera.com

 Bethord A.B.Mahundi
He received Bachelor’s Degree of Science in
Electronics and Communication Engineering
fromSt.Joseph College of Engineering and
Technology,Tanzania in 2008. He is currently pursuing
a Master’s Degree of Science in Electronics
Engineering at Tianjin University of Technology and
Education,China,Where his field of specialization is in
Information Processing and Embedded Systems.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

 Xuewen Ding

He received Master’s Degree of Science in
Engineering and Ph.D.Degree in Signal and
Information Processing from Tianjin University,China
in 2005 and 2008 respectively.He has acted as a
primary role in multi-projects such as National
Nature Science Foundation of China,Key Nature
Science Foundation of Tianjin and Tianjin Science
and Technology Fund Planning Project.He has
published over ten papers in video and image
processing and applied for two patents.His current
interest researches include digital image
processing,video processing and transmission and
machine vision.He has been teaching Information
Theory and Code and Digital Image Processing to
graduate students at Tianjin University of Technology
and Education.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

IJ
E
R
T

