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                                    Abstract 
Image Processing is an important part of analyzing a 
scene in a video image and has application in many 
areas such as security monitoring and computer 
vision. It involves identifying places in an image 
where there is an abrupt change in 
intensity.Embedded Systems for Real-Time Video 
Image  Processing must perform some operations 
faster than is possible since video data from a 
camera consists of a sequence of many frames, each 
of which is a rectangular array of many picture 
elements (pixels).Applications that involve less 
regularly structured data, or data that arrives at 
irregular intervals, are much harder to 
accelerate.We can accelerate performance of an 
operation by replication of hardware (Accelerator) 
resources to perform steps in parallel, up to the 
limits on parallelism implied by the data 
dependencies and the availability of data. It is 
possible to design custom FPGA-Based hardware 
(Accelerator) to provide parallelism and performing 
the operation at the required speed for real-time 
video image processing. 
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1. Introduction 
 
In recent years,much research has been performed 
that relies to various degrees on video image 
processing.A simple but accurate,effective and 
powerful accelerator that can be easily integrated 
and adapted for various applications is 
needed.Also,from technological standpoint,a 
flexible,has interface with camera,a link with  
 

 
Finite State Machine(FSM) and interface with GUI for 
controlling and monitoring the video image 
processing operation.Using Field Programmable  
Gate  Array (FPGA)  with a serial RS 232 interface to a 
PC with a graphical front-end.Such a flexible 
accelerator can be implemented and used in a 
variety of video image processing applications.In this 
paper we present the software and hardware details 
for FPGA-Based Parallelism  for Real-Time Video 
Image Processing(Accelerator) which comprise:Image data 
and datapath computation,Image data pipeline, 
address generator,interfacing,Finite State Machine and 
Visual Basic Graphical User Interface. 
 

2. System  Architecture 
 

Overview 
 
In our development system of Parallelism for Real-
Time Video Image Processing,we will adopt the 
approach of reading three rows of four adjacent 
pixels from the original image and storing them in 
registers,rather than including memories for whole 
rows.we will design the accelerator to process blocks 
of data, where a block consists of the three complete 
rows of the original image used to form a complete 
row of the derivative image. As we will see, 
processing a block involves a start-up phase, a 
repetitive sequence of computation, and a 
completion phase. These phases are repeated for 
each derivative image row. 
The architecture for the accelerator datapath is 
shown in Figure 2. It is essentially a pipeline, with 
pixel data read from the original image entering into 
the registers at the top right, flowing through the 3 x 
3 multiplier array on the left, then down through the 
adders to the Dx and Dy registers, then through the 
absolute value circuits and adder to the |D| register, 
and finally into the register at the bottom left. The 
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resulting derivative pixels are then written from that 
register to memory.(While a right-to-left data flow is 
opposite to usual practice, in this case, it has the 
advantage of preserving the same arrangement of 
pixels as that in an image.) 
 

 
 
                  Camera 

Figure 1:Parallelism for real-Time Image Processing System 
Architecture Diagram 

 
The pipeline generates the derivative pixels for a 
given row in groups of four. The accelerator reads 
four pixels from each of the preceding, current, and 
next rows in memory into the three 32-bit registers 
at the top right of the figure1. Each register consist 
of four 8-bit pixel registers.Over the four subsequent 
clock cycles, pixels are shifted out to the left, one 
pixel at a time, into the multiplier array. Each cell in 
the array contains a pixel register and one or two 
circuits that multiply the stored pixel by a constant 
coefficient value. Since the coefficients are all -1, +1, 
-2, or +2, the circuits are not full-blown multipliers. 
Instead, multiplying by -1 is simply a negator, 
multiplying by +1 is a through connection with no 
circuitry, multiplying by -2 is a left shift of the result 
of a negator, and multiplying by +2 is simply a left 
shift. On each clock cycle, the array provides the 
partial products for a single derivative pixel,and the 
partial products are added and stored in the Dx and 
Dy registers. 

 
Figure 2:Architecture Diagram for Accelerator datapath 
 

Also,on each clock cycle,the Dx and Dy values for the 
preceding pixel have their absolute values computed 
and added and stored in the |D| register. The 
resulting derivative pixel values are shifted into the 
result row register. When four result pixels are ready 
in the register, they are subsequently written to 
memory. 
In the steady state, during processing of a row, the 
accelerator needs to write the pixels to memory 
from the result register before it can shift new pixels 
into the multiplier array and the Dx, Dy and |D| 
registers. Otherwise, the result values would be 
overwritten.Having written four pixels, the 
accelerator can push four more pixels through the 
pipeline,thus emptying the read registers and filling 
the result register. It can then write those result 
pixels and read in three more groups of four pixels, 
and repeat the process. However, this group of four 
pixel values is what we should write to the beginning 
of the derivative image row.The left-most position 
does not have a complete set of neighbors, so we 
don’t compute a value for it.We will rely on the 
embedded software to clear that pixel value to 0 
subsequently. 
When we reach the end of a row, we need to drain 
the pipeline. Since the number of pixels in a row is a 
multiple of four (640 =160X 4),we can always read 
complete groups of four pixels each. After reading 
the last group, we perform four computation cycles 
normally. This gives us four result pixels to write, plus 
three remaining pixel values in the pipeline.We wish 
to finish the row by writing the four result pixels, 
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omitting the reads,performing four further 
computation cycles to drain the pipeline and shift  
the last pixel values into the required positions in the 
result register, and performing a final write. Note 
that this places an invalid value in the right-most 
result pixel register. This corresponds to the right-
most pixel of a row, which does not have a complete 
set of neighbors. Again,we will rely on the embedded 
software to clear that pixel value to 0. 
 

3. Implementation of Video Image        
Processing Technique 
 
A.Verilog Modeling FPGA-Based Parallelism for 
Real-Time Video Image Processing 

 
Verilog Modeling for Image  Data computation 
// Computational datapath 
always @(posedge clk_i) // Previous row 
register 
if (prev_row_load) prev_row       <= dat_i; 
else if (shift_en) prev_row[31:8] <= 
prev_row[23:0]; 
always @(posedge clk_i) // Current row register 
if (curr_row_load) curr_row       <= dat_i; 
else if (shift_en) curr_row[31:8] <= 
curr_row[23:0]; 
always @(posedge clk_i) // Next row register 
if (next_row_load) next_row       <= dat_i; 
else if (shift_en) next_row[31:8] <= 
next_row[23:0]; 
function [10:0] abs (input signed [10:0] x); 
abs = x >= 0 ? x :-x; 
endfunction 
 

Verilog Modeling for Image data Pipeline 
always @(posedge clk_i) // Computation 
pipeline 
if (shift_en) begin 
D = abs(Dx) + abs(Dy); 
abs_D <= D[10:3]; 
Dx <= -$signed({3'b000, O[-1][-1]}) // ®C 1 * 
0[-1][-1]+ $signed({3'b000,O[-1][+1]}) // + 1 * 
0[-1][+1]- ($signed({3'b000, O[ 0][-1]}) // ®C 2 
* 0[ 0][-1] <<  
1)+($signed({3'b000, O[ 0][+1]}) // + 2 * 
0[ 0][+1]<< 1)-$signed({3'b000, O[+1][-1]}) // 
®C 1 * 0[+1][-1]+$signed({3'b000, O[+1][+1]}); 
// + 1 * 0[+1][+1] 
Dy <= $signed({3'b000, O[-1][-1]}) // + 1 * O[-
1][-1]+ ($signed({3'b000, O[-1][ 0]}) // + 2 * 0[-
1][ 0]<< 1)+  $signed({3'b000, O[-1][+1]}) // + 1 
* 0[-1][+1] -  $signed({3'b000, O[+1][-1]}) // 
®C 1 * 0[+1][-1] - ($signed({3'b000, O[+1][ 0]}) 

// ®C 2 * 0[+1][ 0] << 1) 
 -  $signed({3'b000, O[+1][+1]}); // ®C 1 * 
0[+1][+1] 
O[+1][-1] <= O[+1][ 0]; 
O[+1][ 0] <= O[+1][+1]; 
O[+1][+1] <= next_row[31:24]; 
……… 
end 
always @(posedge clk_i)  // Result row register 
begin 
if (shift_en) result_row <= {result_row[23:0], 
abs_D}; 
end 
 

The first three always blocks in the module represent 

the three registers into which groups of four pixels 

are read from memory. Each block has a separate 

control signal governing loading, since the registers 

are loaded in successive memory read operations. 

They share a control signal for shifting, since they all 

shift a pixel out into the pipeline in parallel. 

The next always block, represents the computational 

pipeline of the accelerator. The signals to which the 

block assigns, governed by the shift_en control 

signal, represent the pipeline registers. The signal O 

is a 3 x 3 array of pixel values, with indices 

corresponding to the difference in row and column 

numbers from those of the derivative pixel computed 

from the register values. For example, the element 

with indices [-1][+1] contains the pixel in the 

previous row and next column from the pixel being 

computed. Values are shifted into this array leftward 

from the left-most 8 bits of each of the input registers. 

The Dx and Dy values are computed from the array 

element values. In each case, the values are resized to 

11 bits and converted to signed numbers, as we 

discussed earlier in our analysis of the precision 

requirements for the computation. Multiplying by 2 is 

performed with a logical shift left by one position, 

and multiplying by a negative coefficient is 

implemented by subtraction instead of addition. The 

absolute values of the Dx and Dy values, 

implemented by the abs function defined in the 

module, are added, and then scaled back from 11 to 8 

bits to yield the final derivative pixel value. 

The remaining always block represents the register 

that accumulates groups of four derivative pixels for 

writing to memory. Pixels are shifted into this register 

under control of the shift_en signal. 
 

Verilog Modeling for Address Generator 

There are several alternatives for deriving the read 

and write addresses, including maintaining counters 

for the image rows and columns. However, we can 

avoid the need to multiply by 640 by counting pixel 

offsets from the base addresses. In the case of the 
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original image, we start counting from an offset of 0 

and increment by 1 for each group of four pixels read 

from memory. We add the offset to the base address 

to form the pixel-group address for the previous row. 

We add 640/4 to that to form the read address for the 

current row, and add 1280/4 to form the read address 

for the next row (assuming 00 for the least significant 

bits in both cases). In the case of the derivative image, 

we start counting from an offset of 640/4 and 

increment by 1 for each memory write.  

always @(posedge clk_i) // 0 base address register 

if (base_ce_0) base_0 <= dat_i[21:2]; 

always @(posedge clk_i) // 0 address offset counter 

if (offset_reset) offset_0 <= 0; 

else if (offset_cnt_en_0) offset_0 <= offset_0 + 1; 

assign prev_addr_0 = base_0 + offset_0; 

assign curr_addr_0 = prev_addr_0 + 640/4; 

assign next_addr_0 = prev_addr_0 + 1280/4; 

…….. 

always @(posedge clk_i) // D base address register 

if (D_base_ce) D_base <= dat_i[21:2]; 

always @(posedge clk_i) // D address offset counter 

begin  

if (offset_reset) D_offset <= 0; 

else if (D_offset_cnt_en) D_offset <= D_offset + 1; 

end 

assign D_addr = D_base + D_offset; 

assign adr_o[21:2] = prev_row_load ? prev_addr_0 : 

 curr_row_load ? curr_addr_0 : 

 next_row_load ? next_addr_0 : 

 D_addr; 

assign adr_o[1:0] = 2'b00; 

…….. 

end 
 

The always blocks commented as being base address 

registers represent the base address registers for the 

original and derivative images, respectively. The 

always blocks commented as being address offset 

counters represent the counters for pixel groups read 

and written, respectively. The registers and counters 

are governed by control signals generated by the 

accelerator’s control section. The adders are 

represented by the combinational assignments to the 

four address signals O_prev_addr, O_curr_addr, 

O_next_addr and D_addr. The assignment to the 

bus address signal adr_o represents the multiplexer 

that chooses among the generated addresses for 

memory read and write operations. 

 

Verilog Modeling for Control Sequencing 

We also need to sequence the accelerator’s response 

as a bus slave when the user through GUI writes to 

the base address registers. Finally,we need to provide 

for synchronization with the embedded software 

controlling the accelerator. That requires some 

additional control and status registers, as follows: 

A control register that, when written to, causes the 

accelerator to start processing an image. The value 

written is ignored. 

 A control register with an interrupt enable bit in bit 0. 

A status register in which bit 0 is the done bit, set to 1 

when the processor has completed processing an 

image. Other bits are read as 0. When the done bit is 

1 and the interrupt enable bit is 1, the accelerator 

requests an interrupt. Reading the done bit has the 

side effect of acknowledging the interrupt and 

clearing the bit. 

To keep the bus interface simple, we will map each of 

these registers at 32-bit aligned addresses. 
 

REGISTER OFFSET READ/WRITE 

Interrupt control 0 Write-only 

Start 4 Write-only 

Original image 

base address 

8 Write-only 

Derivative 

image base 

address 

12 Write-only 

Status 0 Read-only 

   

        Table 1:Register Map   for the Accelerator 

 

In each case, the accelerator can respond by setting 

ack_o to 1 in the next cycle, then back to 0 in the 

following cycle. We need to decode the bus address 

input to derive a select signal for the accelerator, and 

use the less significant address bits to determine 

which register to read or write. 

In the case of a write to the start-register address, 

since there is no real register,we derive a control 

signal, start, that will be used by the accelerator 

control section to initiate a computation sequence. 

assign start  = cyc_i && stb_i && we_i && adr_i == 

2'b01; 

assign base_ce_0 = cyc_i && stb_i && we_i && 

adr_i == 2'b10; 

assign D_base_ce = cyc_i && stb_i && we_i && 

adr_i == 2'b11; 

……. 

For write operations,we generate clock-enable signals 

using combinational logic.. For read operations,we 

form the data value to be returned to the GUI.The 

only real register is the status register, for which we 

return the value of the done bit,zero extended to 32 

bits wide. For other register offsets, we just return all 

zeros.  

The read value is multiplexed with the value of the 

result row register to drive the accelerator’s data 

output bus, dat_o. 
 

always @(posedge clk_i) // Interrupt enable register 

if (rst_i) 
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int_en <= 1'b0; 

else if (cyc_i && stb_i && we_i && adr_i == 2'b00) 

int_en <= dat_i[0]; 

always @(posedge clk_i) // Status register 

if (rst_i) 

done <= 1'b0; 

else if (done_set) 

…… 

// This occurs when last write is acknowledged, 

// and so cannot coincide with a read of the 

// status register. 

done <= 1'b1; 

else if (cyc_i && stb_i && we_i && adr_i == 2'b00 

&& ack_o) 

done <= 1'b0; 

assign int_req = int_en && done; 

always @(posedge clk_i) // Generate ack output 

ack_o <= cyc_i && stb_i && !ack_o; 

……… 

 

// Data output multiplexer 

always @(*) 

begin  

if (cyc_i && stb_i && !we_i) 

if (adr_i == 2'b00) 

dat_o = {31'b0, done}; // status register read 

else 

dat_o = 32'b0; // other registers read as 0 

else 

dat_o = result_row; // for master write 

end 
 

Finite State Machine Control an Accelerator 

  
Verilog Modeling Finite State Machine 

The control-section code includes declarations of 

internal signals for the control FSM, the row and 

column counters, and the control signals: 

declarations of internal signals: 

parameter [4:0] idle = 5'b00000, 

                          read_prev_0 = 5'b00001, 

                          …….. 

reg [4:0] current_state, next_state; 

reg [9:0] row; // range 0 to 477; 

reg [7:0] col; // range 0 to 159; 

wire start; 

……… 

The row and column counters: 

always @(posedge clk_i) // Row counter 

if (row_reset) row <= 0; 

else if (row_cnt_en)  row <= row + 1; 

always @(posedge clk_i)  // Column counter 

if (col_reset) col <= 0; 

else if (col_cnt_en) col <= col + 1; 

 

Blocks representing the finite-state machine: 

always @(posedge clk_i) // State register 

if (rst_i) current_state <= idle; 

else current_state <= next_state; 

 

A final always block combines both the state 

transition function and the output function into the 

one block. 

always @* begin // FSM logic 

offset_reset = 1'b0; row_reset = 1'b0; 

col_reset = 1'b0; 

row_cnt_en = 1'b0; col_cnt_en = 1'b0; 

offset_cnt_en_0 = 1'b0; D_offset_cnt_en = 1'b0; 

prev_row_load = 1'b0; curr_row_load = 1'b0; 

……… 

endmodule 
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Figure 3: Register Transfer Level of the Implemented 

System 

 

B. Camera Link Interface 

 
The camera link standard has been devised to provide 

a generic 26 pin interface to a wide range of digital 

camera and as such we can specify a standard 

interface at the top level of my design. Although the 

interface requires 26 pins, they are configured 

differentially, and so we can specify the basic 

interface functionally using only 11 pins.There is a 

clock pin,which we can define as camera_clk,and 

then 4 camera control lines defined as cc1 to cc4, 

respectively. Using the ‘camera_’ prefix, we can 

therefore name these as cam- 

era_cc1,camera_cc2,camera_cc3 and camera_cc4. 

There are two serial communication lines serTFG 

(comms to frame grabber) and serTC (comms to 

camera) which we can name as camera_sertfg and 

camera_sertc, respectively. Finally, we have the 4 

connection pins from the camera which will contain 

the data from the device and these are named 

camera_x0, camera_x1, camera_x2 and camera_x3. 

Clearly, the actual interface requires differential 

outputs, and so eventually an extra interface will be 

required to translate the simple form of interface 

defined here to the specific pins of the connector. 

 

C. Windows-Based Visual Basic GUI 

 
A versatile GUI is designed using Visual Basic to 

give the user easy access to the FPGA and the 

attached hardware. Graphical interface design can be 

made especially easy with an integrated development 

environment (IDE), such as Microsoft’s Visual 

Basic .NET, which was used to design the GUI. The 

code is entirely event-driven, and issues serial ASCII-

encoded commands to change and monitor register 

values and variables on the FPGA according to user 

command (i.e. when a button is pressed or control 

value altered). 

 

 
 Figure 4:Graphical User Interface for FPGA control 

 

The GUI provides many common input methods for 

changing variables. ON/OFF type functions can be 

controlled via push buttons which toggle FPGA 

registers on and off. The GUI also contains a 

recording and configuration loading function.The 

user can record a sequence of commands,objects 

image,time or variable changes and save this 

information to a configuration file. The file  can be 

sent to the database through GPRS intended to watch 

transport motion, detect jams, and determine speed 

violation.Also the file can then be re-opened later 

which will load all of the exact same settings 

instantly onto the FPGA. This is useful when an 

FPGA is reprogrammed and the control code is 

altered. Using the load function, the user can easily 

set up the FPGA variables to the previous 

configuration or any previously stored preset. 
 

D. Hardware Demonstration 

 
The System Architecture described at previous 

section is using extensively to  provide parallelism 

for high speed Real-Time image Processing 

applications. 

 

 
           Figure 5:Hardware Implementation 

 

Figure 5 shows the overall setup,with a Computer 

controlling ALTERA CYCLONE III 

EP3C26Q240C8N FPGA via RS-232. 

Here we present details of application to a Road 

Traffic Monitoring for watching cars motion,detect 

jams,determine speed violation and recognize 

License Plate Registration.The output of the system 

is displayed on the visual basic GUI in figure 6 

below(results section). 
 

E. Results 
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Figure 6:Motion Tracking and  Speed Measurement Display 
GUI 
 
The figure 6 above shows the captured video image 
processed by the system by using the below explained 
verilog algorithm of analysed the scene intensity and 
coordinates and the results are displayed on the GUI.GUI 
displayed the speed of the car and its location. 
Motion was filmed at the same  road length for some  car 
drives with known speeds V1<V2<V3<……<Vn. 
Then every video sequence was processed to get passed 
distance S dependence from frame number calculated as 
asum of car displacements fixed in n previous sequence 
frames. 

S = a1 + a2+ a3+ . . . + an, 

Where a is a distance between car image geometrical  
centers in the I and i-1 frame: 

ai  =((xi -xi-1)
2
 +( yi-yi-1)

2
)
0.5 

 

 
              Figure 7:Function of Speed  Approximation 
 
Experimental curves  Si = si(n) allow to estimate a speed of 
any car that moves within  calibrated road segment. 
Estimation is based on function v = v(s) for given frame 
number  n = no 

 Vx=Ai*Sx+Bi,    Ai=(Vi+1-Vi)/(Si+1-Si), 
Bi=(Vi*Si+1-Vi+1*Si)/(Si+1-Si). 
Speed meaning may be corrected by vx average for different 
n0 

 
 

4. Conclusion 
In this paper,parallelism technique has been 
implemented,which provides performance of Real-

Time video image processing operation steps in 

parallel,A parallel operation scheme that 

demonstrates a significant advantage over other 

conventional operation methods.This technique 

provides speed of processing of video image data 

faster than is possible.Its operation depend on the 

verilog algorithm you program to the FPGA chip. 
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