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Abstract—ODbject tracking is a popular operation in defense
as well as surveillance and robotics. This paper presents a novel
approach to an FPGA based object tracking system for
sequential images which also supports an implementation in high
speed hardware. The paper develops an efficient tracking
algorithm as well as an online learning module incorporated to
improve the coherence of the process. The paper implements a
Sobel-edge based feature extraction for dimensionality reduction
of images for easy processing. Sobel masks are also efficient in
extracting edges of images in all four directions — horizontal,
vertical, along +45°, and along -45° directions. The information
from each image frame is encapsulated into a set of 16-D vectors,
corresponding to different sections of the image frame. These
feature vectors are correlated with the feature vector of the
object to be tracked and depending on the degree of resemblance,
a statistical approach is taken to direct the tracking. With the
online learning process, the number of templates available for
correlation is updated as newer object versions are procured
during the tracking process. Thus, this hardware implementation
presents an object tracker that can adapt to the environment
dependent complexities like screen illumination changes, partial
occlusion, slight deformations, etc.

Keywords—Directional edge feature, Sobel edge detection,
field-programmable gate array (FPGA) implementation, object
tracking, online learning.

1. INTRODUCTION

Object tracking plays an important role in many applications,
such as video surveillance, human—computer interface, vehicle
navigation, and robot control. It is generally defined as a
problem of estimating the position of an object over a
sequence of images. In practical applications, however, there
are many factors that make the problem complex, such as
illumination variation, appearance change, shape deformation,
partial occlusion, and camera motion. Moreover, lots of these
applications require a real-time response. Therefore, the
development of real-time working algorithms is of essential
importance. In order to accomplish such a challenging task, a
number of tracking algorithms [1]—-[7] and real-time working
systems [8]—[13] have been developed in recent years.

These algorithms usually improve the performance of
the object tracking task in two major aspects, i.e., the target
object representation and the location prediction. Despite the
better performance of these algorithms with more complex
structures, they suffer from the high computational cost that
prevents their implementation from working in real time.
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Some implementations using dedicated processors
always result in power-hungry systems [11], [15]. Many
implementations parallelize the time-consuming part of
algorithms, thus increasing the processing speed to achieve
real-time performance [16]-[18]. These solutions depend
heavily on the nature of algorithms and the performance
enhancement would be limited if the algorithms are not
designed for efficient hardware implementation. Some specific
implementations can be employed to speed up a certain part of
the algorithm, such as feature extraction [19] or localization
[20]. In this case, it is necessary to consider how to integrate
them into the total system most efficiently. Several problems
may arise when building parallel systems, such as
transmission of large amount of data.

In this paper, we have explored a solution to the
object tracking task that considers an efficient implementation
as the first priority. A hardware-friendly tracking framework
has been established and implemented on field-programmable
gate array (FPGA), thus verifying its compatibility with very
large-scale integration (VLSI) technology. Several problems
that limit the hardware performance, such as complex
computation, data transmission, and cost of hardware
resources, have been resolved.

Since our solution provides a high flexibility in its
configuration, it can be integrated into a lot of other more
complex intelligent systems as their subsystems. In tracking
algorithms, how to represent the target image is of particular
importance because it greatly influences the tracking
performance under certain tracking framework. Colour, edge,
and texture are typical attributes used for representing objects.
A number of other features, including active contour, scale-
invariant feature transform (SIFT) feature, oriented energy,
and optical flow, are also used in many works. Some works
also combine these features or incorporate online learning of
the model of an object and background.

It is well known that animals have excellent ability in
visual tracking, but the biological mechanism has not yet been
clarified. However, it was revealed that the visual perception
of animals relies heavily on directional edges [26]. In this
paper, therefore, the directional-edge-based image feature
representation algorithm based on Sobel edge detection is
employed to represent the object image. The purpose of this
paper is to develop an object tracking system that is robust
against disturbing situations like illumination variation, object
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shape deformation, and partial occlusion of target images. By
employing the directional-edge based feature vector
representation, the system has been made robust against
illumination variation and small variation in object shapes. In
order to achieve real-time performance in tracking, a VLSI
hardware-implementation friendly algorithm has been
developed. It employs a direct approach, in which candidate
locations are identified during tracking. The basic idea was
inherited from the particle filter and Multiple Candidate
Regeneration (MCR), but the algorithm has been greatly
modified and simplified from the original particle filter and
MCR so that it can be implemented in smaller scale VLSI
hardware very efficiently. The algorithm has been proposed
and the performance has been verified by simulation. In order
to further enhance the robustness of the tracking ability, an
online learning technique has been introduced to the system.
When the target object changes its appearance beyond a
certain range, the system autonomously learns the altered
shape as one of its variations, and continues its tracking. As a
result, for a large variation in the shape and for partial
occlusion, the system has also shown a robust performance.

This paper is organized as follows. The directional edge
features and the tracking algorithm are explained in Section II.
The implementation of this tracking algorithm on hardware is
described in Section III. Finally, conclusions are drawn in
Section I'V.

II. ALGORITHM

The most essential part of the algorithm in [1] is a recursive
process called multiple candidate regeneration (MCR), which
is similar to the prediction and update in the particle filter.
Being a complex algorithm, we have simplified the concept
used in the MCR algorithm to obtain a tracking procedure that
determines the position of the object through direct
comparison with the candidate image locations.

At the very beginning, the target image is specified
manually, which acts as a template for the tracking process.
The similarity between the target image and the local image is
determined and a weight is assigned for each of the local
image. Depending on the value of the weight, the location of
the object is identified, if present in that particular image
frame.

The online learning process is incorporated by specifying a
template container that is updated during the tracking process.
In this paper, we have implemented the online learning as an
initial part of the tracking process. The similarity between the
object template and the local image is estimated in the online
learning section. This similarity gives an indication of the
presence of the object, and also if it has been deformed. If
there is considerable deformation, this local image is stored as
a new template.

A. Algorithm Structure

Fig. 1 shows the structure of the algorithm. The algorithm
starts with the calculation of the similarity between the object
template and the local image. If the local image is very similar
to the object, a larger weight is assigned and the tracking is
carried out. If the similarity is not much, a smaller weight is
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assigned and the object is not present. If the object template
already available in the container and the local image under
consideration are dissimilar to a certain extent, the feature
vector of the local image is stored as a new template into the
container.
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B. Object Representation

As explained in Section II-A, in order to calculate the weight
of each candidate, we need to evaluate the similarity between
the candidate image and the template image. This is done by
calculating the distance between the two feature vectors
representing the two images. Therefore, employing a suitable
feature representation algorithm is very important. We
employed the directional-edge-based image representation
algorithm [31]-[33] that was inspired by the biological
principle found in the animal visual system [26]. The edge
detection was done using the Sobel edge detection algorithm
as it was found to be more efficient than other edge detection
algorithms. This method needs only the grayscale information
of an image as input and the output is a 16-D feature vector. It
consists of two successive steps: local feature extraction
(LFE), and averaged principal-edge distribution (APED) [31].
Fig. 2 shows the function of each step.

1) Local Feature Extraction: The function of LFE is to extract
the edge and its orientation at each pixel location in an 8x8
portion of a 64x64 image. The outer two rows and columns of
pixel values of the image frame are discarded as they do not
generate accurate edge detection results. For every pixel
location, the convolutions of a 3 X3 pixel region with four
directional filtering kernels of the Sobel algorithm (horizontal,
+45°, vertical, —45°) are calculated as shown in Fig. 5. Then,
the absolute values of these four convolution results are
compared, and the maximum value is stored as the gradient at
this pixel location.
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2) Averaged Principal-Edge Distribution: Although the
information has been compressed by extracting edges in LFE,
the amount of information is still massive in quantity.
Therefore, a method called APED [31] is employed to reduce
the four edge maps into a 64-D vector. In the APED vector
representation, each edge map is divided into 4 square bins
consisting of 9 elements and the number of edge flags in each
bin is summed up, which constitutes an element of the vector.
The 16-D feature vector is the final output of the feature
extraction
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C. Weight Computation and Candidate Regeneration

Since the basic principle has already been explained, how to
implement it is described here. In order to make all
computations easily and efficiently implementable in the VLSI
hardware, each mathematical operation was replaced by a
hardware-implementation friendly analogue, which are
different from that in the regular particle filter algorithm. The
local image taken from each candidate location is converted to
a feature vector and the Manhattan distances are calculated
with template vectors. In this algorithm, there are more than
one templates in the template container to represent the target.
The first template is generated at the initialization step, while
others are generated during the online learning process.
Therefore, the minimum Manhattan distance is utilized to
determine the weight of this candidate described as follows:

MD;; =Y [Veslk] = VaslK]| (1)
k=l
D; = min(MDy, MDa, ... MDyy) @)
1o, c)
s {JNT[wG < (1= D.JO), (D:<0). @)

Here, MD; ; stands for the Manhattan distance between the
candidate i and the template j, and VCi[k] and VT;[k] denote
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the k™ element of the candidate vector VC; and the template
vector VTj, respectively. D; is the minimum distance of
candidate i with all the templates and W; represents the weight
for the candidate i. N is a constant value determining the scale
of the weight. In (3), C is a threshold defining the scale of
weight values, which is determined by experiments. INT means
taking the integer component of the value. In this manner,
those candidates that have at least one Manhattan distance
value smaller than the threshold C are all preserved to
regenerate new candidates in the next frame. At the same time,
larger weight values are assigned to candidates with smaller
distances.

D. Online Learning

In many practical applications, the target we are concerned
about is a non-rigid object, which may change its appearance
and size. In addition, sufficient knowledge about the target is,
in general, not available before tracking. This problem causes
tracking failure if the algorithm does not flexibly learn the
appearance change in the target. An online learning method is
introduced to solve this problem in this paper. The learning
process begins after the estimation of the target location. One
feature vector is generated from the image at the target location
in the present frame. Then the Manhattan distances between
this feature vector and all the templates are calculated and the
minimum distance is found. If the minimum distance is larger
than a certain threshold, it is interpreted as the target that has
changed its appearance substantially, and the feature vector is
stored as a new template in the template container.

III. IMPLEMENTATION

A. Feature Extraction

The feature extraction stage is implemented in three serially
connected functional blocks: LFE, GFE, and vectorisation.

The structure of LFE block is shown in Fig. 3.This block input
8x8 image portion of 64x64 scale image. There are two 8-bit
shift registers, serially connected, and the output of each
register is inputted to the respective row of a 3x3 register
array. It shifts pixel data of 8 bits. The shift register stores the
size of image data necessary for computation. The 3x3 register
array works as a buffer between the shift register and the logic
block. The combinational logic block deals with all the logic
processing needed to calculate the gradient, including doing
convolution with four directional 3x3 kernels, taking their
absolute values. The intensity values of an image are sent into
the first row of the shift register and, at the same time, into the
top row of the register array pixel by pixel. The two rows of
data in the shift register are shifted-in to the corresponding
lines of the 3x3 register array. The 3x3 register array finds the
gradient value of centre pixel in register array in all four
directions. In this manner, the 3x3-pixel filtering kernel block
scans the entire image pixel by pixel and generates a
directional gradient map.

The GFE block stores the LFE values for all original image
pixels excluding the outer two rows and columns in a memory
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block of size 36 elements. The memory block 1x36 size with
elements of size 8§ bits. Four such memory blocks are created
for storing four directional gradient map reduces the 8x8
image size to 36 element vector. The output of GFE is a binary
map that contains the edge information in four directions. In
the following step, this edge information is compressed
effectively into a feature vector representation in APED.

APED block divides the each of the four GFE memory
blocks to four square bins with 9 elements each and the largest
of the 9 elements in each square bin is found out by
comparing. Thus from each memory block in GFE four
dominant pixel values are extracted forming a total of 16- D
values from the four different memory blocks.This is the
dimensionally reduced image representation.For an 8x8 image
portion to be reduced to a 16-D feature vector requires 64
clock cycles. Thus for a 64x64 full image requires 4096 clock
cycles.

B. Object Tracking

The input to the algorithm is a 16D vector. This is the feature
vector of the part of the image frame. The feature vector of the
object (8*8) is stored in a template container. The first part of
the algorithm is calculation of Manhattan distance between the
image feature vector and template feature vector. The next
part of algorithm is assigning weights based on the Manhattan
distance. Larger weights are assigned when the Manhattan
distance is smaller and vice versa. The next part of the
algorithm is for calculation of maximum weight. The next part
is to decide whether the portion of the image has the target
object or not. If the target object is present then the location of
that portion of the image is displayed. This algorithm is
repeated continuously over the entire image.

1) Address Block: The address block contains the address of
the incoming image feature vector. The address is represented
using four corner locations (w,X,y,z) of the image. When the
next part of the image enters the block the address
automatically updates. This is done using an address enable
signal. The address block is coded considering the image size
to be 64*64 pixels. The four corner address locations are sent
as output based on the signal from the enable block.

2) Manhattan Distance and weight calculation: The local
image taken from each candidate location is converted to a
feature vector and the Manhattan distances are calculated with
template vectors [1]. The Manhattan distance is calculated as
the difference between the image feature vector and the
template feature vector. Manhattan distance is utilized to
determine the weight of this candidate.

3) Maximum Weight Calculation and Enable Block:
Maximum weight is calculated after 64 weights are assigned
to different parts of the image [1]. The Maximum weight will
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be the input to the next part of the algorithm. The maximum
weight is calculated using comparators. The maximum weight
is given to the enable block. If the weight is greater than a
threshold then enable signal is made high else the enable
signal is made low. The threshold value is determined by
experiments.

4) MCR Block: This block is the top module.It combines all
the sub blocks involved.A common clock signal and reset is
used for synchronisation of all the blocks.When the enable
signal becomes high the four corner locations or address of the
part of the image is sent as the output.This indicates that the
object is present in that part of the image.If the target is not
present,then the output will be zero.

C. Online Learning

The input to the algorithm is a 16D vector. This is the feature
vector of the candidate object of the image frame. The feature
vector of the object (16*8) is stored temporarily in the
template container. The first part of the algorithm is the
calculation of Manhattan distances between this image feature
vector and already available template feature vectors in the
container. The next part of the algorithm is the estimation of
the minimum among these distances. The next part is to decide
whether the portion of the image has the target object or not,
and if it has, whether the appearance of the object has
transformed. If there is considerable deviation, as can be
understood from the Manhattan distance, the feature vector
that had been stored initially is written into the template
container as a new template of the object. This algorithm is
repeated continuously over the entire image and for every
image frame.

1) Template Container: The template container is a memory
block with five slots for storing templates of object in the form
of 16-D feature vectors. The original template is stored in the
first slot and the remaining slots are filled as newer versions of
the object is detected. An enable signal is used to determine
whether the writing process is to be initiated. This signal is
generated in the decision block. The templates stored in the
container are serially output from the container to the next
block, i.e., the Manhattan distance calculator.

2) Manhattan Distance Calculator: The image feature vector
and all the five template feature vectors are compared using
Manhattan distance. The Manhattan distance module is
instantiated five times for the distance calculation between
each template and the image vectors.

3) Minimum Manhattan Distance Estimator: The

Manhattan distance between all the templates and image
vector are input into this block and the minimum from these
values is estimated. The minimum value is taken as it implies
the case when the image vector is most correlated with the
available templates. This minimum value is then routed to the
decision block.

4) Decision block: The minimum Manhattan distance is
compared with a threshold as determined from previous
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experimental results. If the distance lies between a prescribed  range, the enable signal to the template container is made high,

so that the image feature vector is stored in the container as a ~ An 8x8 image pixel values are given as input and 16-D vector
new vector. If the threshold is not satisfied, the enable signal is obtained as output. For 64x64 image size, total of 4096 cycles
not set and the container is not modified. are required. Fig. shows the feature vector generation in 64

IV. SIMULATION RESULTS clock cycles of an 8x8 image.

Feature extraction coding was done using verilog ISE Design
Suite 14.2 for direct implementation in Spartan E FPGA kit.
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Figure below is the simulation result of the tracking algorithm. The output of the multiple candidate regeneration block is the
address location (w,x,y,z) if the object is present in the image frame. If the object is not present then the output of this block is
Zero.

The following figure is the simulation result of the online learning algorithm. When the Manhattan distance of the oncoming
feature vector lies between a certain range of values, the next vacant template in the template container is updated with this
feature vector. If the object is detected, but there is no considerable deformation to the object, then the template container is not
updated.
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V. CONCLUSION

In this paper, an object prediction system with an
onlinelearning module has been proposed. The system has
been designed for an image frame of 64*64 pixels and
objecttemplate of size 8*8 pixels. With the online learning
algorithm,the efficiency of tracking has been improved. The
design wascoded in verilog and simulated successfully.
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