
                                                                                                                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract—

 

Digital signal processing needs the conversion from 

time domain to frequency domain. For discrete sequences,

 

this conversion is done through

 

Discrete Fourier Transform 

but it is numerically inefficient. Thus an efficient algorithm is 

developed to compute DFT and it is known as

 

Fast Fourier 

transform (FFT). This

 

paper concentrates on

 

FPGA based 

design

 

synthesis

 

and simulation of the Fast Fourier 

Transform (FFT) through Decimation-In-

 

Time (DIT)

 

with 

Radix-2 algorithm. VHDL is used as design entity and

 

XST 

(VHDL) of

 

Xilinx Design Suite

 

ISE 14.7 is used for synthesis 

purpose.

 

Simulation is done with the help of ISim of Xilinx 

14.7. In this paper XC6VLX75T device is used with vertex6 

family and FF484 package.

 

Synthesis results show that the 

design is better in terms of area as well as speed.
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I.

 

INTRODUCTION

 

This paper represents a

 

FPGA based

 

design of 32-points 

FFT by using Decimation in time, radix-2 algorithm. The 

paper concentrates on the design of FFT for a FPGA kit. In 

this project coding is done by using VHDL and simulation 

is

 

done with the help of

 

ISim of

 

Xilinx Design Suite, ISE 

14.7.

 

This paper proposes design of 32 point FFT by using 

VHDL as a design entity and it is synthesized in

 

XST 

(VHDL)

 

of

 

Xilinx ISE Design Suite 14.7 version.

 

The 

project is focused on a design which is efficient in terms of 

area as well as speed for computing a 32 point FFT. In this 

project 16 bit numbers are provided as inputs in which 8 

bits are used to represent integer part and next 8 bits are 

used to represent decimal part. 

 

 

Transforms are

 

generally

 

used to convert a function 

from time domain to frequency

 

domain without any loss of 

information, similarly Fourier Transform also converts a 

function from the time domain to the frequency domain.

 

In 

this project the FFT is implemented for a 32-points 

sequence

 

with the help of Decimation In Time algorithm 

with radix-2.

 

The synthesis of 32-points FFT is divided 

into eight stages, first stage is used to supply inputs where 

second stage consists of a finite state machine (FSM), and 

 

 

 

 

 

 

 

 

 

 

 

 

 

next

 

five stages are

 

used for calculation of radix-2 DIT FFT 

through butterfly operations and last stage is used to store 

the outputs of 32 point FFT i.e. 32-point sequences which 

are now converted into frequency domain.

 

Before 

understanding the implementation

 

part one need to have in 

depth knowledge of

 

DFT and

 

FFT.

   

II.

 

DFT

 

The Discrete Fourier Transform is a very important 

mathematical tool which is used for

 

discrete-time signal-

 

processing. It is used to convert time domain sequence

 

to 

frequency domain.

 

DFT computes the Z-

 

transform for 

evenly spaced points around a unit circle for the given 

sequence. If the given sequence is of finite duration then 

the DFT is used as the transform. DFT finds its application 

in digital signal processing such as linear filtering,

 

spectrum analysis etc.

 

DFT is very important discrete 

transform to perform Fourier analysis

 

in several 

applications.

 

 

Let a finite duration sequence

 

x[n] of length N, its DFT can 

be given as:

 

 

 

𝑋(𝐾) = ∑ x[n]e−j2пnk/N𝑁−1

𝑛=0
       

 

  Where,      k = 0, 1, 2, 3, …………………N-1

 

Here WN   is known as Twiddle Factor and

 

it can be

 

expressed as the

 

complex value phase factor, which is 

equals to Nth

 

root of unity and

 

this twiddle factor is 

expressed as:                     

 

                                       

 

WN = e−j2п/N

 

 

Hence X (k)

 

can be written as:

 

 

          𝑋(𝐾) = ∑ x[n]
𝑁−1

𝑛=0

 

𝑊𝑁
𝑛𝑘    ;             

 

0 ≤

 

n ≤

 

N-1

 

  

DFT involves a lot of calculations and therefore

 

it requires 

a time efficient algorithm. It

 

can

 

be

 

observed

 

that for each 

value of k, direct computation of X(k) involves N

 

complex 

multiplications it means

 

4N

 

real multiplications and N-1 

complex additions i.e. 4N-2 real additions. Hence, for the 

calculations of all N

 

values of the DFT requires N

 

2

 

complex multiplications and N

 

2-N

 

complex additions.
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Instead of using DFT if we will use FFT algorithm such as 

Decimation in Time (DIT) FFT with radix-2 algorithm, 

then the number of complex multiplications and additions 

will be reduced to (N/2) log2N and Nlog2N respectively to 

compute the DFT of a given complex sequence x[n]. 

Therefore we can say that the Fast Fourier Transform is a 

computationally and numerically efficient way to compute 

the Discrete Fourier Transform.  

III. FFT 

The Fast Fourier transforms (FFT) are the numerically 

efficient algorithms to compute the Discrete Fourier 

Transform (DFT).  FFT algorithms are based on the 

concept of divide and conquer approach and it is done by 

decomposing the computation of DFT into smaller 

sequences of DFTs. This approach is useful in many areas 

but calculating it directly from the definition is often very 

slow to be practical. The FFT is used in so many 

applications where the frequency-domain representation of 

a signal has to be processed. In the field of communications 

the FFT is important because of its use in orthogonal 

frequency division multiplexing (OFDM) systems. Also 

FFT is the most popular technique of digital spectrum 

analysis. Cooley and Tukey have first introduced the 

concept of FFT to describe a significant computational 

reduction by making effective use of symmetry and 

periodicity properties of the twiddle factors. These 

properties can be given as: 

Symmetry property:        𝑊𝑁
𝑘+𝑁/2

  =  −𝑊𝑁
𝑘 

 

Periodicity property:       𝑊𝑁
𝑘+𝑁  =  𝑊𝑁

𝑘 

 
The FFT is an algorithms used for the efficient computation of 

the DFT. DFT and FFT are the most popular signal processing 

tools. FFT computes the DFT in an efficient manner and 

provides exactly the same result as obtained by evaluating the 

DFT definition.  

 

Mathematically FFT can be calculated through DFT: 

 

         𝑋(𝐾) = ∑ x[n]
𝑁−1

𝑛=0
 𝑊𝑁

𝑛𝑘    ;  0 ≤ n ≤ N-1 

 

Here  WN
nk  is called twiddle factor and it is given by:    

WN
nk  = e−j(

2п

N
)nk

 

Fast Fourier Transform (FFT) is based on decomposition 

and breaking it into smaller sequences and at the end again 

combining into one transform. The FFT algorithms can be 

classified as Decimation In Time (DIT) and Decimation In 

Frequency (DIF) algorithms. In decimation in time the 

sequence in time domain is divided into smaller sequences 

and the DFT of these sequences are combined in a certain 

pattern to obtain the required DFT. In the decimation in 

frequency approach, the frequency samples of the DFT are 

decomposed into smaller and smaller subsequences in a 

certain manner. DIT and DIF algorithms are further divided 

into Radix-2, Radix-4,   Radix-8, Split-Radix etc. All these 

algorithms are based on the single method, that is, Divide 

and Conquer method.  

IV. DIT RADIX – 2 FFT 

FFT can be implemented based on Decimation-In-Time 

(DIT-FFT) and Decimation-In-Frequency (DIF-FFT) 

algorithm. Both the algorithms are having same 

computational complexity but they are different in input 

and output computational arrangement. The name Radix-2 

is called due to its base is equals to 2 and the representation 

is 2M, here M represents the index/stage and its value is 

always equals to a positive integer. For example 32 point 

FFT is divided into 5 stages and can be written as 25, where 

2 represents its Radix and therefore this algorithm is called 

as “Radix-2 DIT-FFT algorithm”. In Radix-2 DIT 

algorithm the sequence  splits  into two sequences 

consisting of even numbered values and odd numbered 

values of the input sequence x(n). The Radix-2 DIT-FFT 

can be expressed mathematically as: 

 

 

In this way an N-point FFT can be divided into two N/2 -

point DFTs, for example 32 point DFT can be divided into 

two 16 points DFT. Now this N/2 point DFT can also be 

divided into two N/4 point DFTs and so on. In our case 16-

points DFT can be divided into two 8-points DTFs, then 

these 8-point DFTs can be divided into two 4-points DFTs 

and at last these 4-points DFTs can be finally divided into 

two 2-points DFTs. Therefore a 32-points FFT can be 

computed in 5 stages where each stage consists of 16 

butterfly operations. Butterfly operation in a Radix-2 

algorithm is a portion of the computation of FFT that 

provides the Fourier transform of two point sequence in a 

simplified manner. The name "butterfly" arises from the 

shape of the signal-flow diagram in the radix-2 case. 

Generally the term "butterfly" appears in the context of the 

Cooley–Tukey DIT-FFT algorithms. In these algorithms it 

recursively breaks down a DFT of composite size n = rm  

into r smaller transforms of size m where r is called as the 

"radix" of the transform. These smaller DFTs are then 

combined with the help of size-r butterflies, which in our 

case are size-2 butterflies and these themselves are DFTs of 

size r and it is performed m times on corresponding outputs 

of the sub-transforms and it is  pre-multiplied by roots of 

unity which is also known as twiddle factors. This is the 

procedure of "decimation in time (DIT) FFT" algorithms. 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS020484

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 02, February-2016

541



 
 

Fig.1:- Block Diagram of a 32 Point DIT FFT with Radix-2 

 
 

Butterfly is a DFT of size-2 that takes two inputs (A, B); 

where A and B are corresponding outputs of the two sub-

transforms and it provides two outputs (C, D). Here W 

represents respective twiddle factor. When successively 

applied in DIT-FFT algorithms until the shorter and shorter 

DFTs reach length-2, the result is the radix-2 DIT FFT 

algorithm. 

 
Fig.2:- Basic Butterfly Operation 

 

The radix-2 algorithm is the simplest FFT algorithm with 

decimation in time. The decimation-in-time (DIT) radix-2 

FFT recursively divides a DFT into two half-length DFTs 

of the even-sequences and odd-sequences of time samples. 

The outputs of the shorter FFTs are reused to compute 

many outputs; therefore it is reducing the total 

computational cost and the delay time.  

 
 

Fig.3:- Signal Flow Graph of a 32 Point DIT FFT with Radix-2 

 

On the basis of above discussion we can say that a 32 point 

FFT can be implemented via DIT-FFT with Radix-2 

algorithm by using 16 butterflies per stage and 5 such 

stages are required to implement a sequence of 32 points. 

Hence we must use 80 butterfly operations to design a 32 

point FFT. 

 

V. ARCHITECTURE & SYNTHESIS 

 

The architecture of the Fast Fourier Transform is based on 

its working principle. The hardware architecture may be 

divided into two categories, one is memory based 

architecture and the other is pipelined based architecture. 

Memory based architecture is further divided into four 

types: single memory architecture, dual memory 

architecture, array – architecture, and cached memory 

architecture.  

 

In this project the dual memory based architecture is used 

in which the sequence is divided into groups and it is stored 

separately in two different RAMs. The 32-points FFT is 

performed on a sequence which consist 32 values and the 

position of each value is represented by ‘k’. The binary 

representation of the factor ‘k’ needs 5 bits as it needs to 

represent 32 numbers. For example the position of 1st 

sequence is represented by 00001 and the position of 16th   

sequence is represented by 10000.  

If we will observe the respective positions of sequences in 

a butterfly operation then it can be concluded that every 

butterfly operation consists two sequences and the position 

of these two sequences have a common pattern.  In each 

butterfly operation the position of 1st sequence is of lower 
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MSB (most significant bit) and the position of 2nd sequence 

is of higher MSB. The position of these sequences can be 

obtained by simply dividing the 32 sequences into two 

parts in which 1st part will consists all the sequences having 

positions of  lower MSB and 2nd part will consists all the 

sequences having positions of higher MSB. Therefore 

RAM-1 will consists all the sequences with their respective 

positions of lower MSB i.e. positions 

0,1,2,3,………….13,14,15               and RAM-2 consists 

all the sequences with their respective positions of higher 

MSB i.e. 16,17,18,…………29,30,31. 

 

The FFT is based on division of odd and even numbered 

sequences and therefore we need to divide our time domain 

sequence into two parts one must contains all the even 

numbered sequences and the other one should consists of 

all the odd numbered sequences. This division of even and 

odd numbered sequences must be continued till we get the 

pairs of sequences. To simplify this we can use “Bit 

Reversal” method in which all the bits of the position term 

‘K’ are reversed to get the correct order of the sequences.  

 

Generally bit reversal is used in a FFT processor to get the 

input sequence in correct manner, but it is not a good idea 

to implement bit reversal on FPGA if we have to achieve 

minimum delay and hardware. Therefore in my project I 

have avoided bit reversal and the correct sequence of FFT 

is achieved with the help of two RAMs in which sequences 

of lower MSB and higher MSB positions are stored. These 

RAMs will serially supply the input sequences and the 

correct sequence will be achieved with the help of a unique 

pattern. This concept is shown below in table number 1. 

 
Table.1:- Unique pattern to get the sequence for a 32 Point FFT  

 

 
 

For a 32 point FFT we have to use 16 different twiddle 

factors which are complex in nature and must be calculated 

before applying to the FFT. The table number 2 given 

below shows the calculated values of twiddle factors 𝑾𝟑𝟐
𝒌  

for a 32 point FFT. 
 

 
 

 

 
 

 

 
 

 

Table.2:- Twiddle factors for a 32 Point FFT  

 

RTL schematics of the synthesized FFT are shown in fig.4 and 

internal view of the RTL schematic is shown in fig.5 which 

represents different stages of 32-point FFT. Fig .6 and fig.7 shows 

respectively the RTL and its internal view of a butterfly operation 

which uses twiddle factors to compute FFT. 

 

 
Fig.4:- RTL schematic of a 32 Point DIT FFT  

 

 

 
Fig.5:-Internal view of the RTL schematic of a 32 Point DIT FFT  

 

 

 

 

K COS(пk/16) sin(пk/16) Twiddle Factor (Wk
32 ) 

0 1.000 0.000 1 

1 0.981 0.195 0.980785312758822-0.195090159353512i 

2 0.924 0.383 0.923879659446842-0.382683125915406i 

3 0.831 0.556 0.831469888725349-0.555569819323419i 

4 0.707 0.707 0.707107250279226-0.707106312093558i 

5 0.556 0.831 0.555570922512935-0.831469151597416i 

6 0.383 0.924 0.382684351713887-0.92387915170401i 

7 0.195 0.981 0.195091460654289-0.980785053913331i 

8 0.000 1.000 1.3267948966775-06-0.99999999912i 

9 -0.195 0.981 -0.195088858052393-0.980785571602587i 

10 -0.383 0.924 -0.382681900116252-0.923880167188047i 

11 -0.556 0.831 -0.555568716132925-0.831470625851818i 

12 -0.707 0.707 -0.707105373906644-0.70710818846365i 

13 -0.831 0.556 -0.831468414468019-0.555572025701473i 

14 -0.924 0.383 -0.923878643959552-0.382685577511694i 

15 -0.981 0.195 -0.980784795066114-0.195092761954721i 
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Fig.6:- RTL of a Butterfly operation with twiddle factors 

 

 
Fig.7:- Internal view of RTL of Butterfly operations 

 

 

V. SIMULATION & RESULTS 

 

The simulation of this project is done with the help of 

ISim of Xilinx ISE 14.7 in which 32-point input sequence 

is provided with the help of an input block and twiddle 

factors are also provided by calculating and converting 

them into their 16-bit binary equivalents. The following 

figures shows the waveforms obtained after simulation.  

 
 

 
 

 
 

 
 

 
 

 
 

Fig.8:- Simulation waveforms for a 32-point FFT 
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VI. CONCLUSION 

 

Simulation of the FFT and results obtained from its 

detailed synthesis report shows that the proposed design of 

32-point DIT FFT with radix-2 is very efficient in terms of 

area as well as it is also efficient in terms of speed. The 

minimum delay time it required is 2.330 ns per stage. The 

table-4 given below shows the device utilization summary 

and the fig.9 shows the timing summary of the top module 

implementation. 

 
Table.3:- Device Utilization Summary 

 
Logic Utilization Used Available Utilization 

Numbers of fully used 

LUT-FF pairs 

5865 24092 24% 

Number of bonded 

IOBs 

  50   240 20% 

Number of slice registers   8042    93120 8% 

Number  of  Slice 
LUTs 

21915 46560 47% 

Number used as logics 21915 46560 47% 

 

 
 

Fig.9:- Timing Summary of the implementation of a 32-point FFT 
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