

Abstract—

Digital signal processing needs the conversion from

time domain to frequency domain. For discrete sequences,

this conversion is done through

Discrete Fourier Transform

but it is numerically inefficient. Thus an efficient algorithm is

developed to compute DFT and it is known as

Fast Fourier

transform (FFT). This

paper concentrates on

FPGA based

design

synthesis

and simulation of the Fast Fourier

Transform (FFT) through Decimation-In-

Time (DIT)

with

Radix-2 algorithm. VHDL is used as design entity and

XST

(VHDL) of

Xilinx Design Suite

ISE 14.7 is used for synthesis

purpose.

Simulation is done with the help of ISim of Xilinx

14.7. In this paper XC6VLX75T device is used with vertex6

family and FF484 package.

Synthesis results show that the

design is better in terms of area as well as speed.

Keywords—

Fast Fourier Transform, Discrete

Fourier

Transform,

VHDL, FPGA, Radix, Butterfly,

DIT.

I.

INTRODUCTION

This paper represents a

FPGA based

design of 32-points

FFT by using Decimation in time, radix-2 algorithm. The

paper concentrates on the design of FFT for a FPGA kit. In

this project coding is done by using VHDL and simulation

is

done with the help of

ISim of

Xilinx Design Suite, ISE

14.7.

This paper proposes design of 32 point FFT by using

VHDL as a design entity and it is synthesized in

XST

(VHDL)

of

Xilinx ISE Design Suite 14.7 version.

The

project is focused on a design which is efficient in terms of

area as well as speed for computing a 32 point FFT. In this

project 16 bit numbers are provided as inputs in which 8

bits are used to represent integer part and next 8 bits are

used to represent decimal part.

Transforms are

generally

used to convert a function

from time domain to frequency

domain without any loss of

information, similarly Fourier Transform also converts a

function from the time domain to the frequency domain.

In

this project the FFT is implemented for a 32-points

sequence

with the help of Decimation In Time algorithm

with radix-2.

The synthesis of 32-points FFT is divided

into eight stages, first stage is used to supply inputs where

second stage consists of a finite state machine (FSM), and

next

five stages are

used for calculation of radix-2 DIT FFT

through butterfly operations and last stage is used to store

the outputs of 32 point FFT i.e. 32-point sequences which

are now converted into frequency domain.

Before

understanding the implementation

part one need to have in

depth knowledge of

DFT and

FFT.

II.

DFT

The Discrete Fourier Transform is a very important

mathematical tool which is used for

discrete-time signal-

processing. It is used to convert time domain sequence

to

frequency domain.

DFT computes the Z-

transform for

evenly spaced points around a unit circle for the given

sequence. If the given sequence is of finite duration then

the DFT is used as the transform. DFT finds its application

in digital signal processing such as linear filtering,

spectrum analysis etc.

DFT is very important discrete

transform to perform Fourier analysis

in several

applications.

Let a finite duration sequence

x[n] of length N, its DFT can

be given as:

𝑋(𝐾) = ∑ x[n]e−j2пnk/N𝑁−1

𝑛=0

 Where, k = 0, 1, 2, 3, …………………N-1

Here WN is known as Twiddle Factor and

it can be

expressed as the

complex value phase factor, which is

equals to Nth

root of unity and

this twiddle factor is

expressed as:

WN = e−j2п/N

Hence X (k)

can be written as:

 𝑋(𝐾) = ∑ x[n]
𝑁−1

𝑛=0

𝑊𝑁
𝑛𝑘 ;

0 ≤

n ≤

N-1

DFT involves a lot of calculations and therefore

it requires

a time efficient algorithm. It

can

be

observed

that for each

value of k, direct computation of X(k) involves N

complex

multiplications it means

4N

real multiplications and N-1

complex additions i.e. 4N-2 real additions. Hence, for the

calculations of all N

values of the DFT requires N

2

complex multiplications and N

2-N

complex additions.

FPGA Based Design and Simulation of 32- Point

FFT Through Radix-2 DIT Algorith

Sudhanshu Mohan Khare
M.Tech (perusing), Dept. of ECE

Laxmi Naraian College of Technology,

Bhopal, India

M. Zahid Alam
Associate Professor, Dept. of ECE,

Laxmi Naraian College of Technology,

Bhopal, India

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS020484

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 02, February-2016

540

Instead of using DFT if we will use FFT algorithm such as

Decimation in Time (DIT) FFT with radix-2 algorithm,

then the number of complex multiplications and additions

will be reduced to (N/2) log2N and Nlog2N respectively to

compute the DFT of a given complex sequence x[n].

Therefore we can say that the Fast Fourier Transform is a

computationally and numerically efficient way to compute

the Discrete Fourier Transform.

III. FFT

The Fast Fourier transforms (FFT) are the numerically

efficient algorithms to compute the Discrete Fourier

Transform (DFT). FFT algorithms are based on the

concept of divide and conquer approach and it is done by

decomposing the computation of DFT into smaller

sequences of DFTs. This approach is useful in many areas

but calculating it directly from the definition is often very

slow to be practical. The FFT is used in so many

applications where the frequency-domain representation of

a signal has to be processed. In the field of communications

the FFT is important because of its use in orthogonal

frequency division multiplexing (OFDM) systems. Also

FFT is the most popular technique of digital spectrum

analysis. Cooley and Tukey have first introduced the

concept of FFT to describe a significant computational

reduction by making effective use of symmetry and

periodicity properties of the twiddle factors. These

properties can be given as:

Symmetry property: 𝑊𝑁
𝑘+𝑁/2

 = −𝑊𝑁
𝑘

Periodicity property: 𝑊𝑁
𝑘+𝑁 = 𝑊𝑁

𝑘

The FFT is an algorithms used for the efficient computation of

the DFT. DFT and FFT are the most popular signal processing

tools. FFT computes the DFT in an efficient manner and

provides exactly the same result as obtained by evaluating the

DFT definition.

Mathematically FFT can be calculated through DFT:

 𝑋(𝐾) = ∑ x[n]
𝑁−1

𝑛=0
 𝑊𝑁

𝑛𝑘 ; 0 ≤ n ≤ N-1

Here WN
nk is called twiddle factor and it is given by:

WN
nk = e−j(

2п

N
)nk

Fast Fourier Transform (FFT) is based on decomposition

and breaking it into smaller sequences and at the end again

combining into one transform. The FFT algorithms can be

classified as Decimation In Time (DIT) and Decimation In

Frequency (DIF) algorithms. In decimation in time the

sequence in time domain is divided into smaller sequences

and the DFT of these sequences are combined in a certain

pattern to obtain the required DFT. In the decimation in

frequency approach, the frequency samples of the DFT are

decomposed into smaller and smaller subsequences in a

certain manner. DIT and DIF algorithms are further divided

into Radix-2, Radix-4, Radix-8, Split-Radix etc. All these

algorithms are based on the single method, that is, Divide

and Conquer method.

IV. DIT RADIX – 2 FFT

FFT can be implemented based on Decimation-In-Time

(DIT-FFT) and Decimation-In-Frequency (DIF-FFT)

algorithm. Both the algorithms are having same

computational complexity but they are different in input

and output computational arrangement. The name Radix-2

is called due to its base is equals to 2 and the representation

is 2M, here M represents the index/stage and its value is

always equals to a positive integer. For example 32 point

FFT is divided into 5 stages and can be written as 25, where

2 represents its Radix and therefore this algorithm is called

as “Radix-2 DIT-FFT algorithm”. In Radix-2 DIT

algorithm the sequence splits into two sequences

consisting of even numbered values and odd numbered

values of the input sequence x(n). The Radix-2 DIT-FFT

can be expressed mathematically as:

In this way an N-point FFT can be divided into two N/2 -

point DFTs, for example 32 point DFT can be divided into

two 16 points DFT. Now this N/2 point DFT can also be

divided into two N/4 point DFTs and so on. In our case 16-

points DFT can be divided into two 8-points DTFs, then

these 8-point DFTs can be divided into two 4-points DFTs

and at last these 4-points DFTs can be finally divided into

two 2-points DFTs. Therefore a 32-points FFT can be

computed in 5 stages where each stage consists of 16

butterfly operations. Butterfly operation in a Radix-2

algorithm is a portion of the computation of FFT that

provides the Fourier transform of two point sequence in a

simplified manner. The name "butterfly" arises from the

shape of the signal-flow diagram in the radix-2 case.

Generally the term "butterfly" appears in the context of the

Cooley–Tukey DIT-FFT algorithms. In these algorithms it

recursively breaks down a DFT of composite size n = rm

into r smaller transforms of size m where r is called as the

"radix" of the transform. These smaller DFTs are then

combined with the help of size-r butterflies, which in our

case are size-2 butterflies and these themselves are DFTs of

size r and it is performed m times on corresponding outputs

of the sub-transforms and it is pre-multiplied by roots of

unity which is also known as twiddle factors. This is the

procedure of "decimation in time (DIT) FFT" algorithms.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS020484

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 02, February-2016

541

Fig.1:- Block Diagram of a 32 Point DIT FFT with Radix-2

Butterfly is a DFT of size-2 that takes two inputs (A, B);

where A and B are corresponding outputs of the two sub-

transforms and it provides two outputs (C, D). Here W

represents respective twiddle factor. When successively

applied in DIT-FFT algorithms until the shorter and shorter

DFTs reach length-2, the result is the radix-2 DIT FFT

algorithm.

Fig.2:- Basic Butterfly Operation

The radix-2 algorithm is the simplest FFT algorithm with

decimation in time. The decimation-in-time (DIT) radix-2

FFT recursively divides a DFT into two half-length DFTs

of the even-sequences and odd-sequences of time samples.

The outputs of the shorter FFTs are reused to compute

many outputs; therefore it is reducing the total

computational cost and the delay time.

Fig.3:- Signal Flow Graph of a 32 Point DIT FFT with Radix-2

On the basis of above discussion we can say that a 32 point

FFT can be implemented via DIT-FFT with Radix-2

algorithm by using 16 butterflies per stage and 5 such

stages are required to implement a sequence of 32 points.

Hence we must use 80 butterfly operations to design a 32

point FFT.

V. ARCHITECTURE & SYNTHESIS

The architecture of the Fast Fourier Transform is based on

its working principle. The hardware architecture may be

divided into two categories, one is memory based

architecture and the other is pipelined based architecture.

Memory based architecture is further divided into four

types: single memory architecture, dual memory

architecture, array – architecture, and cached memory

architecture.

In this project the dual memory based architecture is used

in which the sequence is divided into groups and it is stored

separately in two different RAMs. The 32-points FFT is

performed on a sequence which consist 32 values and the

position of each value is represented by ‘k’. The binary

representation of the factor ‘k’ needs 5 bits as it needs to

represent 32 numbers. For example the position of 1st

sequence is represented by 00001 and the position of 16th

sequence is represented by 10000.

If we will observe the respective positions of sequences in

a butterfly operation then it can be concluded that every

butterfly operation consists two sequences and the position

of these two sequences have a common pattern. In each

butterfly operation the position of 1st sequence is of lower

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS020484

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 02, February-2016

542

MSB (most significant bit) and the position of 2nd sequence

is of higher MSB. The position of these sequences can be

obtained by simply dividing the 32 sequences into two

parts in which 1st part will consists all the sequences having

positions of lower MSB and 2nd part will consists all the

sequences having positions of higher MSB. Therefore

RAM-1 will consists all the sequences with their respective

positions of lower MSB i.e. positions

0,1,2,3,………….13,14,15 and RAM-2 consists

all the sequences with their respective positions of higher

MSB i.e. 16,17,18,…………29,30,31.

The FFT is based on division of odd and even numbered

sequences and therefore we need to divide our time domain

sequence into two parts one must contains all the even

numbered sequences and the other one should consists of

all the odd numbered sequences. This division of even and

odd numbered sequences must be continued till we get the

pairs of sequences. To simplify this we can use “Bit

Reversal” method in which all the bits of the position term

‘K’ are reversed to get the correct order of the sequences.

Generally bit reversal is used in a FFT processor to get the

input sequence in correct manner, but it is not a good idea

to implement bit reversal on FPGA if we have to achieve

minimum delay and hardware. Therefore in my project I

have avoided bit reversal and the correct sequence of FFT

is achieved with the help of two RAMs in which sequences

of lower MSB and higher MSB positions are stored. These

RAMs will serially supply the input sequences and the

correct sequence will be achieved with the help of a unique

pattern. This concept is shown below in table number 1.

Table.1:- Unique pattern to get the sequence for a 32 Point FFT

For a 32 point FFT we have to use 16 different twiddle

factors which are complex in nature and must be calculated

before applying to the FFT. The table number 2 given

below shows the calculated values of twiddle factors 𝑾𝟑𝟐
𝒌

for a 32 point FFT.

Table.2:- Twiddle factors for a 32 Point FFT

RTL schematics of the synthesized FFT are shown in fig.4 and

internal view of the RTL schematic is shown in fig.5 which

represents different stages of 32-point FFT. Fig .6 and fig.7 shows

respectively the RTL and its internal view of a butterfly operation

which uses twiddle factors to compute FFT.

Fig.4:- RTL schematic of a 32 Point DIT FFT

Fig.5:-Internal view of the RTL schematic of a 32 Point DIT FFT

K COS(пk/16) sin(пk/16) Twiddle Factor (Wk
32)

0 1.000 0.000 1

1 0.981 0.195 0.980785312758822-0.195090159353512i

2 0.924 0.383 0.923879659446842-0.382683125915406i

3 0.831 0.556 0.831469888725349-0.555569819323419i

4 0.707 0.707 0.707107250279226-0.707106312093558i

5 0.556 0.831 0.555570922512935-0.831469151597416i

6 0.383 0.924 0.382684351713887-0.92387915170401i

7 0.195 0.981 0.195091460654289-0.980785053913331i

8 0.000 1.000 1.3267948966775-06-0.99999999912i

9 -0.195 0.981 -0.195088858052393-0.980785571602587i

10 -0.383 0.924 -0.382681900116252-0.923880167188047i

11 -0.556 0.831 -0.555568716132925-0.831470625851818i

12 -0.707 0.707 -0.707105373906644-0.70710818846365i

13 -0.831 0.556 -0.831468414468019-0.555572025701473i

14 -0.924 0.383 -0.923878643959552-0.382685577511694i

15 -0.981 0.195 -0.980784795066114-0.195092761954721i

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS020484

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 02, February-2016

543

Fig.6:- RTL of a Butterfly operation with twiddle factors

Fig.7:- Internal view of RTL of Butterfly operations

V. SIMULATION & RESULTS

The simulation of this project is done with the help of

ISim of Xilinx ISE 14.7 in which 32-point input sequence

is provided with the help of an input block and twiddle

factors are also provided by calculating and converting

them into their 16-bit binary equivalents. The following

figures shows the waveforms obtained after simulation.

Fig.8:- Simulation waveforms for a 32-point FFT

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS020484

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 02, February-2016

544

VI. CONCLUSION

Simulation of the FFT and results obtained from its

detailed synthesis report shows that the proposed design of

32-point DIT FFT with radix-2 is very efficient in terms of

area as well as it is also efficient in terms of speed. The

minimum delay time it required is 2.330 ns per stage. The

table-4 given below shows the device utilization summary

and the fig.9 shows the timing summary of the top module

implementation.

Table.3:- Device Utilization Summary

Logic Utilization Used Available Utilization

Numbers of fully used

LUT-FF pairs

5865 24092 24%

Number of bonded

IOBs

 50 240 20%

Number of slice registers 8042 93120 8%

Number of Slice
LUTs

21915 46560 47%

Number used as logics 21915 46560 47%

Fig.9:- Timing Summary of the implementation of a 32-point FFT

REFERENCES

[1] Asmita Haveliya, ‟Design and simulation of 32 point FFT using

Radix 2 Algorithm For FPGA Implementation”, 2012 Second

International Conference on Advanced Computing &

Communication Technologies.
[2] K. Sowjanya and Leela Kumari , “Design and performance analysis

of 32 and 64 point fft using radix-2 algorithm”, 1K. SOWJANYA,

2B. Proceedings of AECE-IRAJ International Conference, 14th July
2013, Tirupati, India, ISBN: 978-81-927147-9-0

[3] Manoj Verma and Ravi Sindal, “Simulation and Analysis of DIT

FFT Algorithm for Spartan 3 FPGA”, 2013 International Conference
on Communication Systems and Network Technologies

[4] Shaik qadeer, Md. Zafar Ali Khan, Syed Abdul Sattar and Ahmed,

“A radix-2 DIT FFT with reduced arithmetic complexity”, 2014
International Conference on Advances in Computing,

Communications and Informatics (ICACCI).

[5] Z. Lukac and M. Temerinac , "Analysis of some
methods For maintaining accuracy in implementation of

FFT on fixed point DSP", Proc. EEE Conference,

Montenegro, 2005 September pp. 28 -30.
[6] R. Roa, D. N. Kim, "Fast Fourier Transform: Algorithms

And Applications," Springer Publications, UK, 20IO

[7] Truong Nguyen, and Wei-Hsin Chang , "integer FFT with
optimized coincident sets," EEE Inter. Confe. on,

Acoustics, Speech and Signal Processing, 2007, ICASSP

2007.
[8] Johnson, S.G. ; Frigo, M, " A modified split radix FFT

with fewer arithmetic operations," Signal Processing, EEE
Transactions, year 2007, volume 55, issue I.

[9] Remya Ramachandran Department of EEE Hindustan College of

Engineering and Technology, “Simulation of radix-2 fast fourier
transform using xilinx”, Remya Ramachandran et al. / International

Journal of Computer Science Engineering (IJCSE)

[10] T.S. Ghouse basha1, Peerla Sabeena sulthana, “Design And
Simulation Of Pipelined Radix-2k Feed-Forward FFT

Architectures”, International journal of innovative research in

electrical, electronics, instrumentation and control engineering, Vol.
2, Issue 9, September 2014.

[11] Afreen Fatima, “Designing and Simulation of 32 Point Fft Using

Radix-2 Algorithm for Fpga”, IOSR Journal of Electrical and
Electronics Engineering (IOSR-JEEE) e-ISSN: 2278-1676,p-ISSN:

2320-3331, Volume 9, Issue 1 Ver. III (Jan. 2014), PP 42-50

www.iosrjournals.org
[12] Alan V. Oppenheim, Ronald W. Schafer with John R. Buck,

Discrete Time Signal Processing, Second Edition.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS020484

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 02, February-2016

545

