
FP Fused –Dot Product Add Unit based on

Binary Signed Digit Representation

V.

Kalaiselvi

R.

Lakshmi

Applied Electronics/ECE

AP/ECE

Abstract:- Fast Fourier transform (FFT) coprocessor, having a

significant impact on the performance of communication

systems, has been a hot topic of research for many years. The

FFT function consists of consecutive multiply add operations

over complex numbers, dubbed as butterfly units. Applying

floating-point (FP) arithmetic to FFT archi- tectures,

specifically butterfly units, has become more popular

recently. It offloads compute-intensive tasks from general-

purpose processors by dismissing FP concerns (e.g., scaling

and overflow/underflow). However, the major downside of FP

butterfly is its slowness in comparison with its fixed-point

counterpart. This reveals the incentive to develop a high-speed

FP butterfly architecture to mitigate FP slowness. This

brief proposes a fast FP butterfly unit using a devised FP

fused-dot- product-add (FDPA) unit, to compute AB CD E,

based on binary- signed-digit (BSD) representation. The FP

three-operand BSD adder and the FP BSD constant multiplier

are the constituents of the proposed FDPA unit. A carry-

limited BSD adder is proposed and used in the three-operand

adder and the parallel BSD multiplier so as to improve the

speed of the FDPA unit. Moreover, modified Booth encoding

is used to accelerate the BSD multiplier. The synthesis results

show that the proposed FP butterfly architecture is much

faster than previous counterparts but at the cost of more area.

I.INTRODUCTION

Fast Fourier transform (FFT) circuitry consists of several

consecutive multipliers and adders over complex numbers;

hence an appropriate number representation must be chosen

wisely. Most of the FFT architectures have been using

fixed-point arithmetic, until recently that FFTs based on

floating-point (FP) operations grow [1], [2]. The main

advantage of FP over fixed-point arithmetic is the wide

dynamic range it introduces; but at the expense of higher

cost. Moreover, use of IEEE-754-2008 standard [3] for FP

arithmetic allows for an FFT coprocessor in collaboration

with general purpose processors. This offloads compute-

intensive tasks from the processors and leads to higher

performance.The main drawback of the FP operations is

their slowness in comparison with the fixed-point

counterparts. A way to speed up the FP arithmetic is to

merge several operations in a single FP unit, and hence

save delay, area, and power consumption [2]. Using

redundant number systems is another well-known way of

overcoming FP slowness, where there is no word-wide

carry propagation within the intermediate operations.A

number system, defined by a radix r and a digit-set [α,

β], is redundant iff β − α + 1 > r [4].

II. LITERATURE REVIEW

Literature review reveals that many leading libraries all

books can be requested online, An important problem in

the realization of floating-point subtraction is the

identification of the position of the first nonzero digit in a

radix-represented number.This paper describes two fused

floating-point operations and applies them to the

implementation of fast Fourier transform (FFT) processors.

The fused operations are a two-term dot product and an

add-subtract unit. The FFT processors use “butterfly”

operations that consist of multiplications, additions, and

subtractions of complex valued data. Both radix-2 and

radix-4 butterflies are implemented efficiently with the two

fused floating-point operations. When placed and routed

using a high performance standard cell technology, the

fused FFT butterflies are about 15 percent faster and 30

percent smaller than a conventional implementation. Also

the numerical results of the fused implementations are

slightly more accurate, since they use fewer rounding

operations.

III . FFT BUTTERFLY ARCHITECTURE

Fig. 1. FFT butterfly architecture with expanded complex numbers

The conversion, from nonredundant, to a redundant format

is a carry-free operation, however, the reverse conversion

requires carry- propagation [4]. This makes redundant

representation more useful where many consecutive

arithmetic operations are performed prior to the final result.

This brief proposes a butterfly architecture using

redundant FP arithmetic, which is useful for FP FFT

coprocessors and contributes to digital signal processing

applications. Although there are other works on the use

of redundant FP number systems, they are not optimized

for butterfly architecture in which both redundant FP

multiplier and adder are required. The novelties and

techniques used in the proposed design include the

Gnanamani College of technology Gnanamani College of Technology

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ETCAN - 2018 Conference Proceedings

Volume 6, Issue 05

Special Issue - 2018

1

+

+ +

{− }

+

following.

1) All the significands are represented in binary

signed- digit (BSD) format and the corresponding carry-

limited adder is designed.

2) Design of FP constant multipliers for operands

with BSD significands.

3) Design of FP three-operand adders for operands

with BSD significands.

4) Design of FP fused-dot-product-add (FDPA)

units (i.e., AB ± CD ± E) for operands with BSD

significands.

The rest of this brief is organized as follows. Section II is

devoted to the proposed FP butterfly architecture while

the evaluations are discussed in Section III. Finally,

the conclusion is drawn in Section IV.

A. PROPOSED BUTTERFLY ARCHITECTURE

 The FFT could be implemented in hardware based

on an efficient algorithm [5] in which the N -input FFT

computation is simplified to the computation of two (N /2)-

input FFT. Continuing this decomposition leads to 2-input

FFT block, also known as butterfly unit.The proposed

butterfly unit is actually a complex fused-multiply– add

with FP operands. Expanding the complex numbers, Fig. 1

shows the required modules.According to Fig. 1, the

constituent operations for butterfly unit are a dot-

product (e.g., Bre Wim Bim Wre) followed by an

addition/subtraction which leads to the proposed FDPA

oper- ation (e.g., Bre Wim Bim Wre Aim).

Implementation details of FDPA, over FP operands, are

discussed below.

Fig. 2. BSD adder (two-digit slice).

The exponents of all the inputs are assumed and

represented in two’s complement (after subtracting the

bias), while the significands of Are, Aim, Bre, and Bim are

represented in BSD. Within this repre-sentation every

binary position takes values of 1, 0, 1 representedby

one negative-weighted bit (negabit) and one positive-

weighted bit (posibit).The carry-limited addition circuitry

for BSD numbers is shown in Fig. 2, where capital

(small) letters symbolizes negabits (posibits). The critical

path delay of this adder consists of three full-adders.The

proposed FDPA consists of a redundant FP multiplier

followed by a redundant FP three-operand adder.

B. PROPOSED REDUNDANT FLOATING-POINT

MULTIPLIER

The proposed multiplier, likewise other parallel multipliers,

consists of two major steps, namely, partial product

generation (PPG) and PP reduction (PPR). However,

contrary to the conventional multipliers, our multiplier

keeps the product in redundant format and hence there is no

need for the final carry-propagating adder.The exponents of

the input operands are taken care of in the same way as is

done in the conventional FP multipliers; however,

normalization and rounding are left to be done in the next

block of the butterfly architecture (i.e., three-operand

adder).

1) Partial Product Generation: The PPG step of the

proposed multiplier is completely different from that of the

conventional one because of the representation of the input

operands (B, W , Bj, W j).

Moreover, given that Wre and Wim are constants [5], the

multiplica- tions in Fig. 1 (over significands) can be

computed through a series of shifters and adders.With the

intention of reducing the number of adders, we store the

significand of W in modified Booth encoding [4].Given the

modified Booth representation of Wre and Wim , one PP,

selected from multiplicand B, is generated per two binary

positions of the multiplier W , Fig. 3. Generation of

the ith PP

Fig. 4. Digits to three-operand adder.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ETCAN - 2018 Conference Proceedings

Volume 6, Issue 05

Special Issue - 2018

2

Fig. 5. Proposed redundant FP multiplier.

Assuming that the sign-embedded significands of inputs

A and B (24 bits) are represented in BSD; while that of W

is represented in modified Booth encoding (25 bits),

the last PP has 24-(binary position) width (instead of 25),

given that the most significant bit of W is always

1.The

reduction of the PPs is done in four levels using

12 BSD

adders.Given that B is in [1, 2) and W in [1, 2),

the final product is [1, 4) and would fit into 48 binary

position (47…0).

Consequently,positions 45 down to 0 are

fractions.Similar

to

standard

binary

representation,

Guard

(G)

and

Round

(R) positions are sufficient for correct

rounding. Therefore, only 23 2 fractional binary positions

of the final product are required to guarantee

the

final

error

<2−23.

Selecting

25

binary

positionsout of 46

fractional positions of the final product dismisses

positions

0

to

20.

However, the

next

step

addition

may

produce

carries to G and R positions. Nevertheless, because

of the carry-limited BSD addition, contrary to standard

binary addition, only positions 20 and 19 may produce

such

carries.In overall, positions 0 to 18 of the final

product are not

useful and hence a simpler PPR tree is

possible. Fig. 4 shows the required digits passed to the

three-operand adder.Fig. 5 shows the proposed redundant

FP multiplier.

C.PROPOSED REDUNDANT FLOATING-POINT

THREE-OPERAND

ADDER

The straightforward approach to perform a three-

operand fp

addition

is

to

concatenate

two

fp

adders

which

leads

to ieee transactions on very large scale

integration

(vlsi)

systems.

 high latency, power, and area consumption. A better way

is to use fused three-operand FP adders [6], [7].In the

proposed three-operand FP adder, a new alignment block is

implemented and CSA–CPA are replaced by the BSD

adders (Fig. 2). Moreover, sign logic is eliminated.The

bigger exponent between EX and EY (called EBig) is deter-

mined using a binary subtractor (O EX EY); and the

significand of the operand with smaller exponent (X or Y)

is shifted O -bitto the right. Next, a BSD adder computes

the addition result (SUM X Y), using the aligned X

and Y .Adding third operand (i.e., SUM A) requires another

alignment. This second alignment is done in a different

way so as to reduce the critical path delay of the three-

operand adder. First, the value ofOA EBig EA 30 is

computed which shows the amount of right shifts

required to be performed on extended A (with the initial

position of 30 digits shifted to left). Fig. 6 shows the

alignmentsimplemented in the proposed three-operand FP

adder.Next, a BSD adder adds the aligned third significand

(58-digit) to SUM (33-digit) generated from the first BSD

adder. Since the input operands have different number of

digits, this adder is a simplified 58-digit BSD adder.Next

steps are normalization and rounding, which are done using

conventional methods for BSD representation [8], [9]. It

should be noted that the leading zero detection (LZD) block

could be replaced by a four-input leading-zero-anticipation

[2] for speed up but at the cost of more area

consumption. The other modification would replace our

single path architecture with the dual path to sacrifice area

for speed.The proposed FP three-operand adder is

implemented as shown in Fig. 7 in which new alignment

and addition blocks are introduced. Moreover, due to the

sign-embedded representation of the significands (i.e.,

BSD), a sign logic is not required.

A comparison of the proposed design with the conventional

one is shown in Table II.The critical path of the three-

operand adder, according to Fig. 7, consists of two 8-bit

carry-propagating subtractors (0.25 ns each), a MUX

(0.07 ns), a 30 block (0.17 ns), a barrel shifter (0.29 ns),

and the final BSD adder (0.16 ns); plus normalization

and rounding (0.75 ns) and registers (0.22 ns).The

conversion, from nonredundant, to any redundant

format is a carry-free operation, however, the reverse

conversion requires carry-propagation.Given that the

proposed butterfly architecture is meant to be used in an

FFT unit, the reverse conversion is done in the very last

iteration of the FFT unit. Therefore, the latency of each

stage is equal to that of a butterfly unit plus those of

registers. Moreover, a lookup table is required to store the

constant values of 256 twiddle factors.There might be a

need for one more step in the end to con- vert BSD

result to nonredundant representation.

±

±

+

 Fig.6.Proposedthree-operand alignment scheme

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ETCAN - 2018 Conference Proceedings

Volume 6, Issue 05

Special Issue - 2018

3

 Fig. 7. Proposed FP three-operand addition.

D.EVALUATIONS AND COMPARISON

The proposed design is synthesized by Synopsys design

compiler using the STM 90-nm CMOS standard library

[10] for 1.00 VDD and 25 °C temperature in which an

FO4 latency is 45 ps and the area of a NAND2 is 4.4

μm2.The critical path delay of the proposed butterfly

architecture, equal to that of FDPA, consists of a constant

multiplier, a three-operand FP adder plus registers.The

total consumed area of the proposed butterfly unit is

evaluated as 375 347 μm2 of which 8337 μm2 is for

registers.The major works on FP butterfly architecture are

[1] and [11]. However, Sohn and Swartzlander, Jr., [2]

have proposed a very fast FP dot-product unit which can

be used in the design of a high-performance butterfly unit.

Replacing the dot-product unit of [1] with this faster one,

leads to a high-speed butterfly architecture.Table IV shows

the comparison of the proposed butterfly archi- tecture with

those of the fastest previous works. As a result, the

proposed design, simulated in 90 nm (versus 45 nm), is yet

much faster than those of previous works. Moreover,

scaling the area of the proposed design to 45-nm

technology results in the value of about

(
√

375 347/2)2 = 93 836 μm2 which is almost equal to that

of [11].

E. MODEL OUTPUT

F .CONCLUSION

A high-speed FP butterfly architecture, which is faster than

previous works but at the cost of higher area. The reason

for this speed improvement is twofold: 1) BSD

representation of the significands which eliminates carry-

propagation and 2) the new FDPA unit proposed in this

brief. This unit combines multiplications and additions

required in FP butterfly; thus higher speed is achieved by

eliminating extra LZD, normalization, and rounding units.

Further research may be envisaged on applying dual-path

FP architecture to the three-operand FP adder and using

other redundant FP representations. Moreover, use of

improved techniques in the termination phase of the design

(i.e., redundant LZD, normalization, and rounding) would

lead to faster architectures,though highera reacosts are

expected.

G .REFERENCES

[1] E. E. Swartzlander, Jr., and H. H. Saleh, “FFT implementation
with fused floating-point operations,” IEEE Trans. Comput., vol.

61, no. 2, pp. 284–288, Feb. 2012.

[2] J. Sohn and E. E. Swartzlander, Jr., “Improved architectures for a
floating-point fused dot product unit,” in Proc. IEEE 21st Symp.
Comput. Arithmetic, Apr. 2013, pp. 41–48.

[3] IEEE Standard for Floating-Point Arithmetic, IEEE Standard

754-2008, Aug. 2008, pp. 1–58.

[4] B. Parhami, Computer Arithmetic: Algorithms and Hardware

Designs, 2nd ed. New York, NY, USA: Oxford Univ. Press, 2010.

[5] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex Fourier series,” Math. Comput., vol. 19,

no. 90, pp. 297–301, Apr. 1965.

[6] A. F. Tenca, “Multi-operand floating-point addition,” in Proc.
19th IEEE Symp. Comput. Arithmetic, Jun. 2009, pp. 161–168.

[7] Y. Tao, G. Deyuan, F. Xiaoya, and R. Xianglong, “Three-operand

floating-point adder,” in Proc. 12th IEEE Int. Conf. Comput. Inf.
Tech- nol., Oct. 2012, pp. 192–196.

[8] A. M. Nielsen, D. W. Matula, C. N. Lyu, and G. Even, “An IEEE

compliant floating-point adder that conforms with the pipeline

packet- forwarding paradigm,” IEEE Trans. Comput., vol. 49, no.
1, pp. 33–47, Jan. 2000.

[9] P. Kornerup, “Correcting the normalization shift of redundant
binary representations,” IEEE Trans. Comput., vol. 58, no. 10, pp.

1435–1439, Oct. 2009.
[10] 90 nm CMOS090 Design Platform, STMicroelectronics, Geneva,

Switzerland, 2007.

[11] J. H. Min, S.-W. Kim, and E. E. Swartzlander, Jr., “A floating-
point fused FFT butterfly arithmetic unit with merged multiple-

constant mul- tipliers,” in Proc. 45th Asilomar Conf. Signals, Syst.

Comput., Nov. 2011, pp. 520–524.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ETCAN - 2018 Conference Proceedings

Volume 6, Issue 05

Special Issue - 2018

4

