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Abstract:- Fast Fourier transform (FFT) coprocessor, having a 

significant impact on the performance of communication 

systems, has been a hot topic of research for many years.  The 

FFT function consists  of consecutive multiply add operations 

over complex  numbers, dubbed as butterfly units. Applying 

floating-point (FP) arithmetic to FFT archi- tectures, 

specifically butterfly units, has become more popular  

recently. It offloads compute-intensive tasks from general-

purpose processors by dismissing FP concerns (e.g., scaling 

and overflow/underflow). However, the major downside of FP 

butterfly is its slowness  in comparison  with  its fixed-point 

counterpart. This reveals the incentive to develop a high-speed 

FP butterfly architecture to mitigate  FP  slowness.  This  

brief proposes a fast FP butterfly unit using a devised FP 

fused-dot- product-add (FDPA) unit, to compute AB CD E, 

based on binary- signed-digit (BSD) representation. The FP 

three-operand BSD adder and the FP BSD constant multiplier 

are the constituents of the proposed FDPA unit. A carry-

limited BSD adder is proposed and used in the three-operand 

adder and the parallel BSD multiplier so as to improve  the 

speed of the FDPA unit.  Moreover,  modified  Booth  encoding  

is used to accelerate the BSD multiplier. The synthesis results  

show  that the proposed FP butterfly architecture is much 

faster than previous counterparts but at the cost of more area. 

 

I.INTRODUCTION 

Fast Fourier transform (FFT) circuitry consists of several 

consecutive multipliers and adders over  complex  numbers;  

hence an appropriate number representation must be chosen 

wisely. Most  of the FFT architectures have been using 

fixed-point  arithmetic, until recently that FFTs based on 

floating-point (FP) operations  grow [1], [2]. The main 

advantage of FP over fixed-point arithmetic is the wide 

dynamic range it introduces; but at the expense of higher 

cost. Moreover, use of IEEE-754-2008 standard [3] for FP 

arithmetic allows for an FFT coprocessor in collaboration 

with general purpose processors. This offloads compute-

intensive tasks from the processors and leads to higher 

performance.The main drawback of the FP operations is 

their slowness in comparison with the fixed-point 

counterparts. A way to speed  up  the FP arithmetic is to 

merge several operations in a single FP unit, and hence 

save delay, area, and power consumption [2]. Using 

redundant number systems is another well-known way of 

overcoming FP slowness, where there is no word-wide 

carry propagation within the intermediate operations.A 

number  system, defined  by a radix r  and  a digit-set [α, 

β],   is redundant iff β − α + 1 > r [4]. 

II. LITERATURE REVIEW 

Literature review reveals that many leading libraries all 

books can be requested online, An important problem in 

the realization of floating-point subtraction is the 

identification of the position of the first nonzero digit in a 

radix-represented number.This paper describes two fused 

floating-point operations and applies them to the 

implementation of fast Fourier transform (FFT) processors. 

The fused operations are a two-term dot product and an 

add-subtract unit. The FFT processors use “butterfly” 

operations that consist of multiplications, additions, and 

subtractions of complex valued data. Both radix-2 and 

radix-4 butterflies are implemented efficiently with the two 

fused floating-point operations. When placed and routed 

using a high performance standard cell technology, the 

fused FFT butterflies are about 15 percent faster and 30 

percent smaller than a conventional implementation. Also 

the numerical results of the fused implementations are 

slightly more accurate, since they use fewer rounding 

operations. 

III . FFT  BUTTERFLY ARCHITECTURE 

 

 
 

Fig. 1. FFT butterfly architecture with expanded complex numbers 

The conversion, from nonredundant, to a redundant format 

is a carry-free operation, however, the reverse conversion 

requires carry- propagation [4]. This makes redundant 

representation more useful where many consecutive 

arithmetic operations are performed prior to the final result. 

This  brief  proposes  a  butterfly  architecture  using  

redundant  FP arithmetic, which is useful for FP FFT 

coprocessors and contributes to digital  signal  processing  

applications.  Although there are other works on  the  use  

of  redundant  FP  number systems, they are  not  optimized  

for  butterfly  architecture  in which both redundant FP 

multiplier and adder are required. The novelties and 

techniques used in the proposed design include the 
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following. 

1) All  the  significands  are  represented  in  binary  

signed-   digit (BSD) format and the corresponding carry-

limited adder is designed. 

2) Design  of  FP  constant  multipliers   for   operands   

with  BSD significands. 

3) Design  of  FP  three-operand  adders  for  operands  

with   BSD significands. 

4) Design   of    FP    fused-dot-product-add    (FDPA)    

units (i.e., AB ± CD ± E) for operands with BSD 

significands. 

The rest of this brief is organized as follows. Section II is 

devoted    to the proposed  FP  butterfly  architecture  while  

the  evaluations  are  discussed  in  Section  III.  Finally,  

the  conclusion   is  drawn   in Section IV. 

 

A. PROPOSED BUTTERFLY ARCHITECTURE 

         The FFT could be implemented in  hardware  based  

on  an efficient algorithm [5] in which the N -input FFT 

computation is simplified to the computation of two (N /2)-

input FFT. Continuing this decomposition leads to 2-input 

FFT block, also known as butterfly unit.The proposed 

butterfly unit is actually a complex fused-multiply– add 

with FP operands. Expanding the complex numbers, Fig. 1 

shows the required modules.According to Fig. 1,  the  

constituent  operations  for  butterfly  unit   are   a   dot-

product    (e.g.,    Bre Wim    Bim Wre)  followed by an 

addition/subtraction which leads to the proposed FDPA 

oper- ation   (e.g.,   Bre Wim    Bim Wre    Aim).  

Implementation   details of FDPA, over FP operands, are 

discussed below. 

 

Fig. 2. BSD adder (two-digit slice). 

The exponents of all the inputs are assumed and 

represented in two’s complement (after subtracting the 

bias), while the significands of Are, Aim, Bre, and Bim are 

represented in BSD. Within this repre-sentation every 

binary position takes values of 1, 0, 1  representedby 

one negative-weighted bit (negabit) and one positive-

weighted   bit (posibit).The carry-limited addition circuitry 

for BSD numbers  is shown   in Fig. 2, where capital 

(small) letters symbolizes negabits (posibits). The critical 

path delay of this adder consists of three full-adders.The 

proposed FDPA consists of a redundant FP multiplier 

followed by a redundant FP three-operand adder. 

 

 

 

B. PROPOSED REDUNDANT FLOATING-POINT 

MULTIPLIER 

The proposed multiplier, likewise other parallel multipliers, 

consists of two major steps, namely, partial product 

generation (PPG) and PP reduction (PPR). However, 

contrary to the conventional multipliers, our multiplier 

keeps the product in redundant format and hence there is no 

need for the final carry-propagating adder.The exponents of 

the input operands are taken care  of  in  the same way as is 

done in the conventional FP multipliers; however, 

normalization and rounding are left to be done in the next 

block of the butterfly architecture (i.e., three-operand 

adder). 

1) Partial Product Generation: The PPG step of the 

proposed multiplier is completely different from that of the 

conventional one because of the representation of the input 

operands (B, W , Bj, W j). 

Moreover, given that Wre and Wim are constants [5], the 

multiplica- tions in Fig. 1 (over significands) can be 

computed through a series of shifters and adders.With the 

intention of reducing the number of adders, we store the 

significand of W in modified Booth encoding [4].Given the 

modified Booth representation of Wre and Wim , one PP, 

selected from multiplicand B, is generated per two binary 

positions of the multiplier W ,         Fig. 3. Generation of 

the ith PP  

 

  

Fig. 4. Digits to three-operand adder. 
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Fig. 5. Proposed redundant FP multiplier.

 

 

Assuming that the sign-embedded  significands  of inputs  

A  and  B (24 bits) are represented in BSD; while that of  W  

is represented  in  modified  Booth  encoding  (25  bits),  

the  last  PP  has  24-(binary position) width (instead of 25), 

given that the most significant bit of W is always

 

1.The  

reduction  of  the   PPs   is   done   in   four   levels   using   

12 BSD

 

adders.Given that B is in  [1, 2) and  W  in [1, 2), 

the final product  is [1, 4) and would fit into 48 binary 

position (47…0).

 

Consequently,positions 45 down to 0 are 

fractions.Similar

 

to

 

standard

 

binary

 

representation,

 

Guard

 

(G)

 

and

 

Round

 

(R) positions are sufficient for correct 

rounding. Therefore, only 23 2 fractional binary positions 

of the final product are required to guarantee

 

the

 

final

 

error

 

<2−23.

 

Selecting

 

25

 

binary

 

positionsout of 46 

fractional positions of the final product  dismisses  

positions

 

0

 

to

 

20.

 

However, the

 

next

 

step

 

addition

 

may

 

produce

 

carries to G and R positions. Nevertheless, because 

of the  carry-limited BSD addition, contrary to standard 

binary addition, only positions  20 and 19 may produce 

such

 

carries.In overall, positions 0 to 18 of the final 

product are not

 

useful and hence a simpler PPR tree is 

possible. Fig. 4 shows the required digits passed to the 

three-operand adder.Fig. 5 shows the proposed redundant 

FP multiplier.

 

 

C.PROPOSED REDUNDANT FLOATING-POINT 

THREE-OPERAND

 

ADDER

 

The  straightforward   approach   to   perform   a   three-

operand fp

 

addition

 

is

 

to

 

concatenate

 

two

 

fp

 

adders

 

which

 

leads

 

to ieee transactions on very  large scale 

integration 

 

(vlsi)

 

systems.

 
                            

 

                                         

 

 

 

  

 

 

 high latency, power, and area consumption. A better way 

is to use fused three-operand FP adders [6], [7].In the 

proposed three-operand FP adder, a new alignment block is 

implemented and CSA–CPA are replaced by the BSD 

adders (Fig. 2). Moreover, sign logic is eliminated.The 

bigger exponent between EX and EY (called EBig) is deter- 

mined using a binary subtractor (O   EX   EY ); and the 

significand of the operand with smaller exponent (X or Y) 

is shifted O -bitto the right. Next, a BSD adder  computes  

the  addition  result  (SUM X Y), using the aligned X 

and Y .Adding third operand (i.e., SUM A) requires another 

alignment. This second alignment  is done  in a different  

way so as to reduce  the critical path delay of the three-

operand adder. First, the value ofOA  EBig   EA    30  is  

computed  which  shows  the  amount  of right shifts 

required to be performed on extended A (with the initial 

position of 30 digits shifted to left). Fig. 6 shows the 

alignmentsimplemented in the proposed three-operand FP 

adder.Next, a BSD adder adds the aligned third significand 

(58-digit) to SUM (33-digit) generated from the first BSD 

adder. Since the input operands have different number of 

digits, this adder is a simplified 58-digit BSD adder.Next 

steps are normalization and rounding, which are done using 

conventional methods for BSD representation [8], [9]. It 

should be noted that the leading zero detection (LZD) block 

could be replaced by a four-input leading-zero-anticipation 

[2]  for  speed  up  but  at the cost of more area 

consumption. The other modification would replace our 

single path architecture with the dual path to sacrifice area 

for speed.The proposed FP three-operand adder is  

implemented as  shown in Fig. 7 in which new alignment 

and addition  blocks  are introduced. Moreover, due to the 

sign-embedded representation of the significands (i.e., 

BSD), a sign logic is not required. 

A comparison of the proposed design with the conventional 

one is shown in Table II.The critical path of the three-

operand adder, according to Fig. 7, consists of two 8-bit 

carry-propagating  subtractors  (0.25 ns each),   a MUX 

(0.07 ns), a 30 block  (0.17 ns), a barrel  shifter (0.29 ns),  

and the final BSD adder (0.16  ns);  plus  normalization  

and rounding (0.75 ns) and registers (0.22 ns).The 

conversion, from  nonredundant,  to  any  redundant  

format  is a carry-free operation, however, the reverse 

conversion requires carry-propagation.Given that the 

proposed butterfly architecture is meant to be used in an 

FFT unit, the reverse conversion is done in the very last 

iteration of the FFT unit. Therefore, the latency of each 

stage is equal to that of a butterfly unit plus those of 

registers. Moreover,  a lookup  table  is required to store the 

constant values of 256 twiddle factors.There might be a 

need for one  more  step  in  the  end  to  con- vert BSD 

result to nonredundant representation.  

 

 

 

 

 

±

±

+

                            

                                         

   Fig.6.Proposedthree-operand alignment scheme
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 Fig. 7. Proposed FP three-operand addition. 

D.EVALUATIONS AND COMPARISON 

The proposed design is synthesized by Synopsys design 

compiler using the STM 90-nm CMOS standard library 

[10] for 1.00 VDD  and 25 °C temperature in which an 

FO4 latency is 45 ps and the   area of a NAND2 is 4.4 

μm2.The critical path delay of the proposed butterfly 

architecture, equal to that of FDPA, consists of a constant  

multiplier, a three-operand  FP adder plus registers.The 

total consumed area of the proposed  butterfly unit is 

evaluated as 375 347 μm2 of which 8337 μm2 is for 

registers.The major works on FP butterfly architecture are 

[1] and [11]. However, Sohn and Swartzlander, Jr.,  [2]  

have  proposed  a  very fast FP dot-product unit which can 

be used in the design of a high-performance butterfly unit. 

Replacing the dot-product unit of [1] with this faster one, 

leads to a high-speed butterfly architecture.Table IV shows 

the comparison of the proposed butterfly archi- tecture with 

those of the fastest previous works. As a result, the 

proposed design, simulated in 90 nm (versus 45 nm), is yet 

much faster than those of previous works. Moreover, 

scaling the area of the proposed  design  to 45-nm  

technology  results in the value of  about 

(
√

375 347/2)2  = 93 836 μm2  which is almost equal to that 

of [11]. 

 

E. MODEL OUTPUT 

 

 

F .CONCLUSION 

A high-speed FP butterfly architecture, which is faster than 

previous works but at the cost of higher area. The reason 

for this speed improvement is twofold: 1) BSD 

representation of the significands which eliminates carry-

propagation and 2) the new FDPA unit proposed in this 

brief. This unit combines multiplications and additions 

required in FP butterfly; thus higher speed is achieved by 

eliminating extra LZD, normalization, and rounding units. 

Further research may be envisaged on applying dual-path 

FP architecture to the three-operand FP adder and using 

other redundant FP representations. Moreover, use of 

improved techniques in the termination phase of the design 

(i.e., redundant LZD, normalization, and rounding) would 

lead to faster architectures,though highera reacosts are 

expected. 
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