Formulation of Model to Execute the Comfortability Factor for Office Workstation

Mangesh Phate1, Sunil Dambhare1, Kiran Jathar3, Nitin Kendre4, Meghna Nehete5, J. Patil6
1,2 Faculty, Department of Mechanical Engg, TSSM’S, PVPIT, Bavdhan, Pune University, Pune, MH, India
3-5 Student, Department of Mechanical Engg, TSSM’S, PVPIT, Bavdhan, Pune University, Pune, MH, India

Abstract: Nowadays use of computer workstations are increasing as computer technology advances, as a result occupational health and safety problems are continuously increasing. The objective of research is to study and identify ergonomic deficiencies in the office chair design in the typical educational offices. Physical measurement and questionnaires were used to study 100 workstations. Major ergonomic deficiencies were in physical design and layout of workstations, postures, work practices and training. The consequences in terms of user health and other problems were significant.

INTRODUCTION

Ergonomics is the science and technology of fitting the activities and environment to the abilities, dimensions, and needs of people to improve while enhancing comfort, health and safety. Companies have realized the importance of ergonomics because ergonomically designed products have a competitive advantage in the marketplace. A product may be simple or complex; however, its development process involves a series of events of identifying the user’s needs, defining design concepts, making a prototype, testing usability, and releasing a product to the market. Iterative application of the most relevant knowledge and experience throughout this process will yield an ergonomically sound product. Ergonomists aim to provide working conditions which were well above the minimum required to ensure health and safety of the workforce. Thus, in achieving a comfortable, productive and satisfying office environment, any musculoskeletal complaints would also be minimized. To design such an environment, it was necessary to consider not only furniture and equipment, but also the job designs, lighting, noise, air quality, office landscaping and personal space. This work concentrates on furniture and equipment which both had a strong influence on postures.

HISTORY: As early as 18th century doctors noted that workers who required to maintain body positions for long periods of time developed musculoskeletal problems. Within last 20 years research has clearly established connections between certain job tasks and RSI or MSD. Ergonomy caused various types of problems like Thoracic Outlet Syndrome.

Experimentation:

PARAMETERS UNDER INVESTIGATION

Anthropometric parameters:
1. Eye height
2. Eye height sitting
3. Sitting height
4. Shoulder breadth
5. Chest depth
6. Heap breadth
7. Heap breadth sitting
8. Acrimony height sitting
9. Shoulder elbow length
10. Elbow Hand length
11. Maximum horizontal reach
12. Elbow rest height
13. Buttock knee length
14. Buttock popliteal length
15. Direct thigh length
16. Knee height
17. Popliteal height
18. Elbow center to hand length
19. Elbow elbow breadth
20. Thigh clearance height
21. Knee knee breadth
22. Leg length

Chair Design Parameter:

a. Seat height
b. Seat depth
c. Seat width
d. Backrest height
e. Backrest width
f. Backrest lumbar
g. Arm rest height
h. Arm rest length
i. Distance between arm rests

Workstation Parameters:

1. Horizontal eye-to-monitor distance
2. Eye to monitor centre distance
3. Angle of elbow
4. Angle of knees
5. Shoulder to mouse distance
6. Workstation height
7. Leg minimum height clearance
8. Chair seat height
9. Seat depth

Output parameters: Comfortable level (Survey Base):

1. Backrests
2. Visibility
3. Neck
4. Shoulders
5. Eye height
6. Numbness
7. Hands
8. Lower back
9. Upper back
10. Legs
Observation Table:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Staff 1</th>
<th>Staff2</th>
<th>Staff3</th>
<th>Staff100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Experience</td>
<td>1</td>
<td>6months</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>68</td>
<td>64</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Eye height</td>
<td>157</td>
<td>150</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Eye height sitting</td>
<td>115</td>
<td>106</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Sitting Height</td>
<td>126</td>
<td>125</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Shoulder Breadth</td>
<td>46</td>
<td>45</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Chest depth</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Hip breadth</td>
<td>38</td>
<td>40</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Hip breadth sitting</td>
<td>43</td>
<td>45</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Acrimony height sitting</td>
<td>43</td>
<td>45</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Shoulder elbow length</td>
<td>30</td>
<td>32</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Elbow hand length</td>
<td>29</td>
<td>28</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Maximum horizontal reach</td>
<td>76</td>
<td>75</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Elbow rest height</td>
<td>60</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Buttock knee length</td>
<td>54</td>
<td>57</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Buttock popliteal length</td>
<td>43</td>
<td>45</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Leg length</td>
<td>86</td>
<td>89</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Direct thigh length</td>
<td>48</td>
<td>50</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Knee height</td>
<td>55</td>
<td>53</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Popliteal height</td>
<td>46</td>
<td>48</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Elbow centre to hand length</td>
<td>50</td>
<td>49</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Elbow elbow breadth</td>
<td>43</td>
<td>43</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Thigh clearance height</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Knee to knee bre-adth</td>
<td>46</td>
<td>48</td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>

Chair datasheet

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Chair 1</th>
<th>Chair2</th>
<th>Chair3</th>
<th>Chair100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat height (Popliteal height + Shoe Allowance)</td>
<td>46</td>
<td>45</td>
<td>47</td>
<td>50</td>
</tr>
<tr>
<td>Seat depth (Buttock – Popliteal length –clearance allowance)</td>
<td>40</td>
<td>43</td>
<td>43</td>
<td>49</td>
</tr>
<tr>
<td>Seat width (Hip Breadth, sitting + Clothing allowance)</td>
<td>50</td>
<td>51</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Back rest height (none)</td>
<td>41</td>
<td>40</td>
<td>45</td>
<td>49</td>
</tr>
<tr>
<td>Backrest width (Waist breadth)</td>
<td>50</td>
<td>55</td>
<td>39</td>
<td>31</td>
</tr>
<tr>
<td>Backrest Lambar (none)</td>
<td>55</td>
<td>72</td>
<td>75</td>
<td>85</td>
</tr>
<tr>
<td>Armrest height (Elbow rest height)</td>
<td>50</td>
<td>43</td>
<td>43</td>
<td>64</td>
</tr>
<tr>
<td>Armrest length (none)</td>
<td>69</td>
<td>65</td>
<td>63</td>
<td>68</td>
</tr>
<tr>
<td>Distance between armrest (Hip breadth, sitting + Clothing allowance)</td>
<td>49</td>
<td>49</td>
<td>51</td>
<td>47</td>
</tr>
</tbody>
</table>

Workstation datasheet
Procedure-

Firstly we selected the model for our project. We selected the project related to our project and then we tried to gather information on our related topic. We gathered information from various research papers searched and also from the books related to the topic.

Then we analyzed all the parameters which affect the ergonomic comfort of humans. We divided them into anthropometric parameters, chair parameters and workstation parameters. We considered them and divide them into various positions. We defined various parameters of anthropometric parameters, chair parameters and workstation parameters.

We defined workstation in our college institution. Then took the readings of various parameters with 100 different workstations. We also divided comfort zone in various parameters between rating 1 to 5, where 1 is worst condition and 5 is best condition. Then analyzed the data by plotting graph. We came on conclusion that there is vast difference in readings depending upon gender, age and size. So we needed to develop mathematical model to come on specific conclusion. Response curve was plotted depending upon the readings. Then we gave various parameters to the specific readings. By Mapping Buckingham’s pi theorem to regression situation. We prepared the equation so that we can find out the parameters. Final result was drawn from the mathematical model.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Workstation 1</th>
<th>Workstation 2</th>
<th>Workstation 3</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>Workstation 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal eye-to-monitor distance.</td>
<td>55</td>
<td>72</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>78</td>
</tr>
<tr>
<td>Eye-to-monitor center distance.</td>
<td>52</td>
<td>70</td>
<td>72</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>75</td>
</tr>
<tr>
<td>Angle of Elbow</td>
<td>60</td>
<td>75</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>79</td>
</tr>
<tr>
<td>Angle of knees</td>
<td>120</td>
<td>115</td>
<td>118</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>120</td>
</tr>
<tr>
<td>Shoulder to mouse distance</td>
<td>80</td>
<td>118</td>
<td>95</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>80</td>
</tr>
<tr>
<td>Workstation height.</td>
<td>56</td>
<td>85</td>
<td>70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>56</td>
</tr>
<tr>
<td>Leg minimum height clearance.</td>
<td>76</td>
<td>60</td>
<td>76</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>76</td>
</tr>
<tr>
<td>Chair seat height</td>
<td>30</td>
<td>28</td>
<td>29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Seat depth</td>
<td>33</td>
<td>28</td>
<td>43</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>39</td>
</tr>
</tbody>
</table>

FLOWCHART (PROCESS FOLLOWED IN COMPLETING PROJECT)

START

SELECT TOPIC

RESEARCH ON TOPIC

GATHER RESEARCH PAPER RELATED TO PROJECT

SELECTION OF VARIOUS PARAMETERS WHICH AFFECT ERGONOMY AND DIVIDE THEM INTO VARIOUS PARAMETERS.

DEFINE ANTHROPOMETRIC PARAMETERS, WORKSTATION PARAMETERS AND CHAIR PARAMETERS.

A
Model Formulation: Following symbols are used:

- IP1: Input dimensionless pi term for human personal data
- IP2: Input dimensionless pi term for Anthropometric data
- IP3: Input dimensionless pi term for chair design parameters
- IP4: Input dimensionless pi term for Workstation parameters
- Op1: Output dimensionless pi term for chair seat
- Op2: Output dimensionless pi term for chair Visibility parameters
- Op3: Output dimensionless pi term for discomfort in the body

The possible relation may be linear, log linear, polynomial with n degrees. Linear with products of independent pi terms. In this manner any complicated relationship can be evaluated and further investigated for error. Mapping Buckingham’s pi theorem to regression situation.

\[
\text{Op1} = K_0 \times \text{IP1}^{K_1} \times \text{IP2}^{K_2} \times \text{IP3}^{K_3} \times \text{IP4}^{K_4}
\]
(Eqn. 1)

This dimensionless statement is easily transformed into linear relationship using log operation.

\[
\log(\text{Op1}) = \log(K_0) + K_1 \log(\text{IP1}) + K_2 \log(\text{IP2}) + K_3 \log(\text{IP3}) + K_4 \log(\text{IP4})
\]
(Eqn 2)

In this case we have six independent entities, ruling out the possibility of polynomial relationship i.e.

\[Y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots + a_n x^n\]
(Eqn. 3)

The general form of Buckingham’s pi theorem can be stated as

\[
\text{Op1} = K_0 \times \text{IP1}^{K_1} \times \text{IP2}^{K_2} \times \text{IP3}^{K_3} \times \text{IP4}^{K_4}
\]
(Eqn. 4)

Old K0 is not referred hereinafter for any purpose. Wherever necessary value of constant can be computed by \(e^{\text{new K0}}\) hence equation is modified as

\[
\text{Op1} = e^{K_0} \times \text{IP1}^{K_1} \times \text{IP2}^{K_2} \times \text{IP3}^{K_3} \times \text{IP4}^{K_4}
\]
(Eqn. 5)

Obtaining the log on both sides we get

\[
\log(\text{Op1}) = K_0 + K_1 \log(\text{IP1}) + K_2 \log(\text{IP2}) + K_3 \log(\text{IP3}) + K_4 \log(\text{IP4})
\]
(Eqn. 6)

This linear relationship now can be viewed as the hyper plane in five dimensional spaces. To simplify further let us replace the log terms by linear terms implies

\[
Z_1 = K_0 + K_1 (A) + K_2 (B) + K_3 (C) + K_4 (D)
\]
(Eqn. 7)

Where Z= \log(\text{Op1}), A= \log(\text{IP1}), B= \log(\text{IP2}), C= \log(\text{IP3}), D=\log(\text{IP4}).
This is true linear relationship between IP1----- IP4 to reveal OP1.

Applying the theories of regression analysis, the aim is to minimize the error. Say Yc is the computed value of OP1 using regression equation and Ya is the value of same term obtained from experimental data with exactly same values of IP1 ---- -- IP4 then

\[\text{Error (E)} = Ya - Yc. \]

(Eqn. 8)

An attempt to minimize error (E) is normally translated to minimization of \(E^2 \) conventionally in regression, using differential algebra the point of minimum can be easily obtained by stating.

\[\frac{\partial E^2}{\partial x} = 0 \]

It will ensure the extreme position of error with parameter \(x \) which may mean either maximization or minimization. The second differentiation of \(E^2 \) awards the confidence whether it is maximum value or minimum value. This entire process can be reduced to finding the values of K0, K1, K2, K3, K4, K5 and K6. Once these values are known the relation between independent and dependent variables can be is completely established. Since the aim is to obtain values like K0, K1, K2, K3, K4, K5 and K6 it is obvious that square of error should be differentiated with respect to the constant of equation.

\[E = Yc - Ya = (K0 + K1 A + K2 B + K3 C + K4 D - Ye) \]

Differentiating with respect to \(K0 \)

\[\frac{\partial E^2}{\partial K0} = 2 (K0 + K1 A + K2 B + K3 C + K4 D - Ye) = 0 \]

\[\frac{\partial E^2}{\partial K1} = 2 (K0 + K1 A + K2 B + K3 C + K4 D - Ye) A = 0 \]

\[\frac{\partial E^2}{\partial K2} = 2 (K0B + K1 AB + K2 B^2 + K3 BC + K4 BD - BYe) = 0 \]

\[\frac{\partial E^2}{\partial K3} = 2 (K0C + K1 AC + K2 BC + K3 C^2 + K4 CD - CYe) = 0 \]

\[\frac{\partial E^2}{\partial K4} = 2 (K0 D + K1 AD + K2 BD + K3 CD + K4 D^2 - DYe) = 0 \]

All equations are equated to zero and hence the constant term 2 can be dropped. In matrix form it can be written as

\[
\begin{bmatrix}
1 & A & B & C & D \\
A & A^2 & AB & AC & AD \\
B & AB & B^2 & BC & BD \\
C & AC & CB & C^2 & CD \\
D & AD & BD & CD & D^2 \\
\end{bmatrix}
\begin{bmatrix}
K0 \\
K1 \\
K2 \\
K3 \\
K4 \\
\end{bmatrix}
=
\begin{bmatrix}
Ye \\
AYe \\
BYe \\
CYe \\
DYe \\
\end{bmatrix}
\]

Replacing symbol Ye by Z and shifting it to right AND Applying summation over all experimental findings we get,

\[
\begin{bmatrix}
N & \Sigma A & \Sigma B & \Sigma C & \Sigma D \\
\Sigma A & \Sigma A^2 & \Sigma AB & \Sigma AC & \Sigma AD \\
\Sigma B & \Sigma AB & \Sigma B^2 & \Sigma BC & \Sigma BD \\
\Sigma C & \Sigma AC & \Sigma BC & \Sigma C^2 & \Sigma CD \\
\Sigma D & \Sigma AD & \Sigma BD & \Sigma DC & \Sigma D^2 \\
\end{bmatrix}
X
=
\begin{bmatrix}
K0 \\
K1 \\
K2 \\
K3 \\
K4 \\
\end{bmatrix}
=
\begin{bmatrix}
\Sigma Z \\
\Sigma AZ \\
\Sigma BZ \\
\Sigma CZ \\
\Sigma DZ \\
\end{bmatrix}
\]
Using array names viz P, K and Z we get,
\[P \times K = Z \]
\[K = Z \times P \]

After obtaining all the summation indicated in array P and array Z the statement of the problem can be computed. After inverting array P and post multiplying with array Z we get all the required values i.e. values of K0, K1, K2, -------K4 are known after this process. The value of associated error now can be found out. Once the values of all k are known the computed value Yc can be generated.

Calculations:-
Chart On Calculations

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>RANKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are You Comfortable with the Chair</td>
<td></td>
</tr>
<tr>
<td>Comfortable with the chair</td>
<td>5</td>
</tr>
<tr>
<td>Backrest Adjustment range</td>
<td>1</td>
</tr>
<tr>
<td>Vertical Adjustment range</td>
<td>5</td>
</tr>
<tr>
<td>Visibility from the chair</td>
<td>19</td>
</tr>
<tr>
<td>Feel about buttock after working with chair</td>
<td>10</td>
</tr>
<tr>
<td>Feel about hands</td>
<td>0</td>
</tr>
<tr>
<td>Feel about Legs</td>
<td>0</td>
</tr>
<tr>
<td>Feel about Upper Backs</td>
<td>4</td>
</tr>
<tr>
<td>Feel about Upper Backs</td>
<td>26</td>
</tr>
<tr>
<td>Feel about Shoulders</td>
<td>0</td>
</tr>
<tr>
<td>Feel about Eye Sights</td>
<td>3</td>
</tr>
<tr>
<td>Feel about Numbness in the Body Parts</td>
<td>3</td>
</tr>
<tr>
<td>PARAMETER RANKING</td>
<td></td>
</tr>
<tr>
<td>1: Uncomfortable</td>
<td>12</td>
</tr>
<tr>
<td>2: Uncomfortable</td>
<td>53</td>
</tr>
<tr>
<td>3: Just Right</td>
<td>41</td>
</tr>
<tr>
<td>4: Comfortable</td>
<td>28</td>
</tr>
<tr>
<td>5: Very Comfortable</td>
<td>6</td>
</tr>
</tbody>
</table>

(Table:Chart on Comfortability Calculation)

Where
- Grade 1: Very Uncomfortable
- Grade 2: Uncomfortable
- Grade 3: Just Right
- Q1: Comfortable with the chair
- Q2: Backrest Adjustment range
- Q3: Vertical Adjustment range
- Grade 4: Comfortable
- Grade 5: Very Comfortable
- Q4: visibility from the chair
- Q5: feel about buttock after working with chair
- Q6: Feel about hands
RESULTS AND DISCUSSION:

Discomfort rating in %

CONCLUSION:
From the ergonomics assessment of chairs used in different offices, it could be concluded that the present’s chairs were not designed as per the ergonomic standards. It was observed that the ergonomic assessment of chair was very discomfort in the that legs, upper backs, visibility and numbness.

The chair had to design by considering the following six questions

1. Is the chair comfortable to sit in for the way that you work?
2. Can you adjust the important features of the chairs?
3. Is the chair stable when you sit on it?
4. Does the chair have comfortable armrests?
5. Is the backrest high enough to provide support to the thoracic area?
6. Does the seat depth fulfilling the objectives like safety, comforts, ease of use, productivity and performance?
REFERENCES:
1. Ergonomic analysis of two different office chairs included in the ateneaprogamme; Alicante; Alfonso Panchón Ruiz; September 2007.
4. The productivity impacts of two office ergonomic interventions: a highly adjustable chair and office ergonomics training; Kelly DeRango, Ph.D.; Benjamin C. Amick III, Ph.D.
6. Computer workstation ergonomic evaluation; Dr John cena; 2008.
11. The effects of vehicle interior geometry and anthropometric variables on automobile driving posture. Human Factors.42 (4); Reed, M.P., Manary, M.A., Flannagan, C.A.C., and Schneider, L.W; vol541 -552; 2001.